
Distributed Contracting and Monitoring in the

Internet of Services

Josef Spillner1, Matthias Winkler2, Sandro Reichert1, Jorge Cardoso2,
and Alexander Schill1

1 TU Dresden, Nöthnitzer Str. 46, 01187 Dresden, Germany
{josef.spillner,sandro.reichert,alexander.schill}@tu-dresden.de

2 SAP Research CEC Dresden, Chemnitzer Str. 48, 01187 Dresden, Germany
{matthias.winkler,jorge.cardoso}@sap.com

Abstract. The recent approval of the EU Services Directive is foster-
ing the Internet of Services (IoS) and will promote the emergence of
marketplaces for business and real-world services. From a research per-
spective, the IoS will require a new bread of technological infrastructures
to support the concepts of business service description, contract manage-
ment from various perspectives, end-to-end marketplaces, and business
monitoring.

The IoS is a vision referring to web service-based digital societies.
When service hosting moves from best-effort provisioning to guaranteed
service delivery, monitoring becomes a crucial point of proof for providers
and consumers of such services. We present the uplifting of technical
contract monitoring results to business effects based on the distributed
service infrastructure developed in project THESEUS, use case TEXO.1

1 Introduction

The emergence of electronic marketplaces for services is driving the need to
describe services, not only at the technical level, but also from business and op-
erational perspectives. In this context, Service-oriented Architectures (SOA) and
web services leverage the technical value of solutions in the areas of distributed
systems, cross-enterprise integration, and enterprise architectures. While SOA
and web services reside in an IT layer, organisations are requiring advertising
and trading business services which reside in a business layer. Previous solu-
tions for Service Level Agreement (SLA) negotiation and monitoring need to be
adapted to provide suitable infrastructures for the monitoring of the business
aspects.

The European directive on services in the internal market [1] will facilitate
businesses to provide and use cross-border services in the EU. It will also
strengthen the rights of consumers of services, for instance by enshrining the

1 The project was funded by means of the German Federal Ministry of Economy and
Technology under the promotional reference “01MQ07012”. The authors take the
responsibility for the contents.

T. Senivongse and R. Oliveira (Eds.): DAIS 2009, LNCS 5523, pp. 129–142, 2009.
c© IFIP International Federation for Information Processing 2009

130 J. Spillner et al.

right of non-discrimination and contract fulfilment protection. In business, a ser-
vice is the non-material equivalent of a good. It is considered to be an activity
which is intangible by nature and is provided by a service provider to a service
consumer to create a value possibly for both parties.

Real world examples of domains with requirements to digitally describe and
monitor business services and establish contracts include the software industry
(e.g. SAP Business ByDesign Services and IBM Smart Market) and automobile
industry (e.g. BMW Assist, and Mercedes-Benz TeleAid). In these use cases,
providers as well as consumers face the problem of describing service offerings,
which is of considerable importance since services are one of the least understood
portions of the global economy [2,3].

This paper is structured as follows: in Sect. 2 we explain the advantages of the
Universal Service Description Language (USDL) as our approach to describing
business services, the creation of SLA templates from USDL service descriptions
and the negotiation of SLAs. In Sect. 3 we present our monitoring architecture
and illustrate different aspects of IoS monitoring. In Sect. 4 we show how moni-
toring data can be aggregated and used to evaluate SLAs. Finally, we describe
how discovered problems can be handled in Sect. 5, followed by a summary of
the novelties of our approach.

2 Descriptions of Services and Service Level Agreements

The description of services is a fundamental requirement for enabling offer-
ing, search and usage of services. SLAs are formal contracts between a service
provider and consumer regulating the provisioning and consumption. In this sec-
tion we argue for a need of suitable means for describing services and present
USDL as our approach. We will also show how SLAs are created based on USDL
descriptions.

2.1 Business Service Descriptions

Recently, the vision of the IoS [4] and service marketplaces have emerged and
can be seen as a new business model that can radically change the way users
discover and invoke services. The development of infrastructures to maintain
electronic marketplaces for services will require the support for the contracting
and monitoring of business aspects of services. In the IoS vision, services are
seen as tradeable goods that can be offered on service marketplaces by their
providers to make them available for consumers. Barros et al. [5] describe service
marketplaces as one example of service ecosystems that represent ”[...] a logical
collection of [...] services whose exposure and access is subject to constraints,
which are characteristic of business service delivery.” On a service marketplace
multiple providers may offer their business services, thus creating an ecosystem
which enables competition as well as collaboration among service providers.

Going beyond WSDL. The notion of business service is broader than the
well-known concept of web service. Web services have mainly an information

Distributed Contracting and Monitoring in the Internet of Services 131

technology (IT) perspective. They are technical software resources which are
discoverable, invokable, platform independent, and self descriptive [6]. This type
of service is mainly described by an interface definition (e.g., WSDL and other
WS-* protocols) with a focus on technical service aspects. SLAs and monitoring
consider the technical and infrastructure level. The IoS has different requirements
from the ones fulfilled with WSDL. While the technical description of services is
important for SOA, the business and operational perspectives on services have a
significant importance for the IoS. Therefore, new service descriptions are needed
to bridge business, operational and technical perspectives. A suitable service de-
scription needs to account for information that includes legal constraints, pricing
strategies [7], resources consumed and produced [8], service scope and purpose,
consumer benefit, participating roles and responsibilities, service level, opera-
tions, distribution channels, and marketing endeavours. A better description of
the business and operational perspectives will bring to a marketplace an advan-
tage over competitive platforms by being an added value for service providers and
consumers. Based on this examination and requirements, we have devised a new
specification language - USDL: the Universal Service Description Language - for
services that will be hosted and traded in electronic marketplaces.

Describing Services with USDL. The Universal Service Description Lan-
guage [10] enables the description of business characteristics exposed by an or-
ganisation for the purpose of providing a way for consumers to invoke and use
services. The USDL schema defines three core clusters of information: business,
operational and technical. Fig. 1 shows a simplified view of the USDL meta
model. It can be seen that USDL has a strong emphasis on business and oper-
ations, while the technical perspective is reduced. The business cluster is used
to describe information about the service provider and relevant consumers it is
destined for, quality of service aspects, legal information, and marketing infor-
mation such as pricing. Also, interaction aspects regarding service invocation
and execution and bundling information is described. The operational cluster
describes the offered functions of a service and provides a functional classifica-
tion which supports the search for a service. Finally, the technical perspective
allows the specification of different WS-* protocols for interaction. By defining
the three clusters USDL goes beyond purely technical approaches such as WSDL.
On the other hand it provides a well-understood and limited set of options for
describing the most important aspects of business services. This approach is
different from e.g. ontological approaches such as WSMO [9] which enable the
user to model complex descriptions, but have the drawback of being difficult to
handle by business users. More details on USDL can be found in [10].

USDL: An example from logistics. Listing 1.1 presents a simplified example
of a USDL description (business and operational aspects) of a logistics service.
The example describes the Truck Transport service that enables the transport
of goods within the city limits of Dresden. It is classified as a logistics ser-
vice according to the UN/SPSC standard2. The service will be executed within
2 United Nations Standard Products and Services Code, http://www.unspsc.org/

http://www.unspsc.org/

132 J. Spillner et al.

Fig. 1. Simplified view of the model behind USDL

3 hours and has an advertised reliability of 95%. This example will be used in the
next section to exemplify how an SLA template can be generated automatically
on behalf of the provider.

1 s e r v i c e {
2 serviceName Truck Transport
3 d e s c r i p t i o n Transport o f goods with in c i t y area
4 bus ine s s {
5 providerName Truck Transport Dresden GmbH
6 prov iderAddress Traubestr 17 , Dresden , Germany
7 p r i c e 100 EUR
8 termsOfUse h t tp : //www. truck−dd . com/ToU. html
9 executionTime 3H

10 r e l i a b i l i t y 95%
11 }
12 op e ra t i ona l {
13 c lass i f i ca t ion UNSPSC 80111623
14 }}

Listing 1.1. Sample USDL for logistics service

Distributed Contracting and Monitoring in the Internet of Services 133

2.2 Deriving Service Level Agreements from Service Descriptions

In the IoS vision SLAs provide a formal base regulating the provisioning and con-
sumption of services between service providers and consumers. These contracts
are monitored to assure conformance to the agreement by both involved parties.
Violations of the different service level objectives (SLOs) of an SLA need to be
identified and reactions triggered.

Different technologies have been developed in recent years for negotiating and
representing such formal contracts (e.g. WSLA [11], SLAng [12], WS-Agreement
[13]). While WSLA and SLAng are not being developed any further, the WS-
Agreement specification is driven by the Open Grid Forum. It provides a struc-
ture and language for specifying SLAs as well as a protocol for offering and
negotiating SLAs. For our purpose we have chosen to implement SLA handling
based on WS-Agreement and augment it with information from our USDL speci-
fication. The creation of SLAs is integrated with our service development process.
A runtime component, called SLA Manager, encapsulates SLA syntax and han-
dling. Its task is the negotiation of SLAs and making SLA information available
to other components. In the following sections we will describe the extended
WS-Agreement structure as well as the implementation of the SLA Manager.

Specifying Service Level Agreements. The SLA negotiation process, which
follows the protocol specified by WS-Agreement, has an SLA template as its
starting point. It is generated from the service description at the end of the ser-
vice development process. During the negotiation process this template is refined
first to an agreement proposal and finally to an agreement. The different WS-
Agreement files are structured in mainly three sections: the ServiceDescription-
Terms, ServiceProperties and GuaranteeTerms. The ServiceDescriptionTerms
section describes general information on the service and the functionality it pro-
vides including but not limited to the service name, pricing information, terms
of use, and a functional classification. The ServiceProperties section defines mea-
surable service attributes (e.g. execution time). The GuaranteeTerms section
defines SLOs (e.g. min, max, average, or concrete values) which are guaranteed
for service provisioning. They can be specified for the variables defined in the
ServiceProperties section. A simplified SLA example is shown in Fig. 2. Due to
the space limitations of the paper not all attributes are shown in the SLA.

In order to create SLA documents for services, a language for describing ser-
vices is needed in addition to the language constructs of WS-Agreement. USDL
provides such functionality. Thus, we have used it within SLA documents. Fig.
2 depicts examples of USDL code marked via the usdl namespace within an
agreement.

Fig. 3 presents an overview of the SLA generation, negotiation, and monitor-
ing processes which support tradeable services. In our implementation thereof,
services are created using a service engineering workbench which is called ISE
(Integrated Service Engineering). It implements a model-driven approach to ser-
vice development and was developed based on the Eclipse platform. As a final
step of the development process ISE generates SLA templates from the USDL
service description. There are two ways for integrating information from a USDL

134 J. Spillner et al.

<wsag:Template>
<wsag:ServiceDescriptionTerm>
<usdl:ServiceName>Truck Transport</usdl:serviceName>
<usdl:classifications>
<usdl:name> Logistics UN/SPSC </usdl:name>
<usdl:concept> 80111623 </usdl:concept>
</usdl:classifications>
<usdl:price>
<usdl:priceCurrency> EUR </usdl:priceCurrency>
<usdl:pricePeriod> 100 </usdl:pricePeriod>

</usdl:price>
</wsag:ServiceDescriptionTerm>

<wsag:ServiceProperties>
<wsag:VariableSet>
<wsag:Variable wsag:Name="executionTime“/>
</wsag:VariableSet>

</wsag:ServiceProperties>

<wsag:GuaranteeTerm wsag:Name="ExecutionTime_GUARANTEE">
<wsag:ServiceLevelObjective>
<wsag:KPITarget>
<wsag:KPIName> executionTime</wsag:KPIName>
<wsag:Target>3H</wsag:Target>

</wsag:KPITarget>
</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>
</wsag:Template>

<classifications>
<name>
Logistics UN/SPSC

</name>
<concept>
80111623
</concept>
</classifications>

<serviceLevel>
<performance>
<executionTime>
3H
</executionTime>

</performance>
</serviceLevel>

<price>
<priceCurrency>
EUR

</priceCurrency>
<pricePeriod>
100

</pricePeriod>
</price>

<

<
<

u
/

usdl:classifications>
<usdl:name> Logistics UN/SPSC </usdl:name>
<usdl:concept> 80111623 </usdl:concept>
</usdl:classifications>
<usdl:price>
<usdl:priceCurrency> EUR </usdl:priceCurrency>
<usdl:pricePeriod> 100 </usdl:pricePeriod>
usdl:price>
wsag:ServiceDescriptionTerm>

<serviceName>
Truck Transport
</serviceName> <usdl:ServiceName>Truck Transport</usdl:serviceName><

Fig. 2. Mapping USDL to a WSAG template

service description into an SLA template file. The first approach which we apply
is to embed sections of USDL code into the WS-Agreement document structure.
This is done in order to create the ServiceDescriptionTerms section, where a
domain-specific service description language is needed. The second way of inte-
grating service description information into the SLA is the mapping of USDL
parameter names and values to WS-Agreement elements. This mapping is used
for the generation of the ServiceProperties and GuaranteeTerms sections. Fig. 2
illustrates the mapping between USDL and a WS-Agreement template. Four sim-
ple USDL fragments (service name, classification, price, service level) are mapped
to the different sections of the template. We implemented this transformation
using openArchitectureWare [14]. The generated templates are then deployed to
the SLA Manager where they are available for the negotiation process which is
described in the next section. An approach of generating SLA templates from
service descriptions was also described in [15]. It is limited to purely technical
service aspects, while our approach, through the usage of USDL, allows to spec-
ify also business related service aspects such as rights and duties of the involved
parties and penalties, to only mention a few.

The SLA Manager. The SLA Manager is a central component of the Service
Management Platform (see Fig. 4), which handles a variety of tasks related to
SLAs. First of all it provides interfaces for the deployment, update and removal
of SLA templates. These interfaces are currently used e.g. by a deployment
component which enables the deployment of newly modelled or changed services

Distributed Contracting and Monitoring in the Internet of Services 135

Tradable Service

Runtime

Service

Management

Platform

Service

Development

Environment

ISE Workbench

SLA Manager

Monitoring Data

Collection

SLA Monitoring

Monitoring Dashboard

R

SLA Information

R

SLA Template

Web

Browser

R

R

Fig. 3. Overview SLA generation, negotiation, monitoring

and related artefacts from the ISE workbench. The update functionality for SLA
templates may also be used by other components, e.g. a monitoring component
after realising that current SLAs are often violated and thus the SLA template
needs to be refined accordingly.

The main task of the SLA Manager is to support the negotiation of SLAs
which follows the approach defined by WS-Agreement. The negotiation is started
by a user who intends to consume a service. The SLA Manager provides an SLA
template which is presented to the consumer via a user interface as part of
the Service Management Platform. It allows the consumers to make changes to
the SLA template and submit it in the form of an agreement proposal. This
document is validated by the service provider and accepted or rejected.

Another major task of the SLA Manager is the monitoring of the state of ne-
gotiated SLAs. While the evaluation of SLAs based on monitoring information
is executed in a distributed fashion by the SLA Monitoring components at the
Service Delivery Platforms (see Fig. 4), the SLA manager keeps track on SLO
violation information from these components. It provides an interface for SMP
components such as Billing to retrieve information regarding the state (SLA ful-
filled, violated, not determined) of an SLA as well as the types of SLA violations
that occurred.

Further interfaces are provided for information about contractual details
which are needed by the SLA Monitoring components (SLOs to monitor) or
by any subsequent pricing and billing components, e.g. for pricing information
and consumer data.

3 Contract Monitoring

The task of contract monitoring is to collect all information necessary to realise
the execution of tradeable services with respect to given guarantees (SLA) and
to get usage data relevant for billing. On a technical level, service and system
monitoring help reaching this goal. We present a monitoring architecture which
integrates the flow of contracts.

136 J. Spillner et al.

3.1 Distributed Monitoring Architecture

In Sect. 1 we briefly introduced the proposed IoS architecture, consisting of one
Service Management Platform (SMP) as central marketplace and several,
distributed Tradeable Services Runtimes (TSR) for hosting the services. The con-
sideration of all requirements produces the contracting and monitoring architec-
ture illustrated3 in Fig. 4. The main building blocks at TSR level are the Process
and Service Engines, Access Gate, Adaptation Container and TSR Monitoring.
At SMP level the blocks are SLA Manager, Monitoring Backend, Access Rights
Management and components for further processing. The communication inter-
nal to TSR and between TSR and SMP is accomplished via a message-oriented
middleware (MoM) to efficiently send events to multiple recipients.

When a new service is deployed, its code is transferred to the Process and
Service Engines at the TSR. Once a customer has negotiated a contract via
the SLA Manager’s SLA Negotiation component, the resulting SLA is stored in
the SLA Repository and the SLA Manager sends a message to the MoM that
a new SLA is available. Subscribers of this type of message are SLA Monitoring
and Monitoring Coordinator at TSR Monitoring. The latter then starts the ap-
propriate Monitoring Sensors and Aggregators as described in the following sec-
tions. In case of an SLA violation, the SLA Monitoring triggers the Adaptation
Coordinator to start one of the Adaptation Mechanisms described in Sect. 4.3.

Since complex business processes may consist of multiple services, deployed
on distinct TSRs, a central Monitoring Backend at SMP level is needed to collect
the monitoring data from single services and merge it into a central database.
Consumers with further processing needs can access the monitoring data via
Monitoring as a Service (MaaS). To keep SLA-related data private, MaaS checks
the requester’s identity and the access rights at every request.

In the following subsections we highlight the challenges of the various Mon-
itoring Sensor types. We distinguish between monitoring on the system and
execution container level (Sect. 3.2) on the one hand, and individual service
monitoring on the other one. A further difference exists in that some of the ser-
vice properties can be monitored from the outside (Sect. 3.3), e.g. by observing
its message transmission behaviour, while other properties can only be mea-
sured with explicit support within the execution container (Sect. 3.4). Finally,
the sensor data is converted to business objects (Sect. 3.5) and linked to contract
objectives.

3.2 System Monitoring

IT system monitoring is a well-established activity ranging from single desktop
computers to large data centres. Usually, the overall health status of distributed
hardware and software is determined by measurement with agents, e.g. using
SNMP or Nagios [16], and controlled from a central monitoring location. In sce-
narios of contract-bound service execution, determining the status and available
resources of the execution servers is mandatory for creating realistic SLA offers.
3 FMC-notation, see http://www.fmc-modeling.org

Distributed Contracting and Monitoring in the Internet of Services 137

Fig. 4. Contracting and monitoring architecture for the IoS

In our approach, system monitoring controls the overall system health by keep-
ing track of typical system parameters, e.g. system load, network performance,
CPU and memory usage. For each SLO parameter found in active SLA files,
the Monitoring Coordinator initialises a System Sensor which then transmits its
measurements to the Monitoring DB, and the Aggregators for further processing,
see Sect. 4.3.

In contrast to the system monitoring where only system-wide parameters are
monitored, the following two categories covers all monitoring mechanisms which
observe service specific parameters.

3.3 External Service Monitoring

External service monitoring mechanisms observe a service without the need for
platform support. Parameters like the availability of a service can be probed
by a third instance. Since these parameters are of a high importance to ser-
vice providers, our monitoring framework possesses sensors and aggregators to
monitor these non-functional properties of services.

An instance for external monitoring is the Access Gate. It represents a service
by a transparent proxy which asynchronously intercepts all service invocations.
In a first step, it checks the caller’s identity by an authentication mechanism.
In a second step, the Access Gate checks whether the caller is authorised to
send this request. If positive, it forwards the intercepted message to the service

138 J. Spillner et al.

originally called, awaits the answer and sends it back to the originator of the
request. The gathered usage information is sent to the MoM and will be used
for billing purposes. Besides this, the Access Gate measures the response time,
calculates the throughput of a call and sends the monitored value to the local
Monitoring DB. If the caller can not be identified or is not allowed to send
the particular request, an appropriate error message is sent to the MoM. The
separation of concerns is maintained by encapsulating the authentication and
monitoring code.

All of these monitoring operations are driven by SLAs which include both the
objectives and the quality and therefore frequency of the monitoring probes. Due
to often overlapping objectives, the probes are optimised by combining them.

3.4 Internal Service Monitoring

Going step by step closer from System Monitoring (see Sect. 3.2) to the services,
parameters like CPU load or memory consumption are available at a more fine
grained level for execution containers, e.g. a web server or the Java Virtual
Machine, where all services share the same address space.

To gain even more knowledge about the status and behaviour of services, sev-
eral techniques are available to inspect service instances at runtime. Most of
them are based either on prior instrumentation, e.g. addition of monitoring sta-
tus calls from within the service or opening up a shared memory structure to
give insight into data structures, or on run-time instrumentation with tracing
support from the execution environment (virtual machine, operating system).
Tracing can be used to monitor the SLA compliance of a potentially untrusted
service [17] whereas instrumentation is typically used for profiling and perfor-
mance measurement. Either technique leverages the IoS concept of combining
rapidly developed services with powerful execution platforms, leaving the mea-
surement and management of services with specialised providers.

3.5 Business Monitoring

Based on the various available techniques for technical monitoring, higher-level
business objectives in SLAs can also be monitored. Provider objectives like ser-
vice popularity or increasing numbers of value contracts can easily be aggregated
from existing sensor data. Consumer objectives like SLA compliance can likewise
be controlled by using monitoring data. Therefore, we see the need to introduce
aggregators and SLA checks on top of the already mentioned components.

4 Aggregation and SLA Status Determination

While the collection of monitoring data is a continuous process, a parallel activity
to find out the interesting events and correlations is needed in order to determine
the fulfilment of SLAs. We present an aggregation mechanism and an algorithm
for SLA violation detection, and include methods to avoid SLA violations from
happening at all.

Distributed Contracting and Monitoring in the Internet of Services 139

4.1 Aggregation

On each service execution host, we assume the presence of one monitor. Sensors
and aggregators run side-by-side as part of each monitor. While sensors collect
data from various sources, aggregators turn such streams of data into higher-
level indicators. To identify meaningful or complex events, reduce the amount
of low-level events, and ensure the scalability of our system, we use existing
complex event processing techniques. The uptime of a service is a good example
for a non-measurable value which can only be calculated based on a series of
individual test calls.

Since we assume a decentralised architecture with a central marketplace, an-
other instance of the monitoring framework with special configuration runs on
the marketplace. It only contains aggregators to further refine the results and
produce cross-host metrics like the overall reliability of services available from
that marketplace. In the previously introduced example of service guarantees in
logistics, this can be seen in Fig. 5. Suppose that each incoming connection (1)
gets redirected by a proxy to the service (2), while at the same time information
about start and end times is measured (3) and broadcast across the monitoring
infrastructure (4), (5). If the guaranteed response time of 3 hours is not met
in at least 95% of all cases within a month, the aggregator sends an additional
event (6) to the SLA Monitoring, which can then check the SLA violation status
and transmit this information (7), (8) to the SMP to make it available to the
user in a monthly report (9).

Fig. 5. Example of event propagation leading up to SLA violation

4.2 Determining SLA Conformance

We are currently developing a component for monitoring SLA conformance. Its
task is to validate available monitoring information against negotiated SLAs.
The SLA Monitoring component receives monitoring information via the MoM.
Information on negotiated SLAs is requested from the SLA Manager. When the

140 J. Spillner et al.

violation of an SLO of an SLA is detected, an SLO violation message is sent
to the MoM. From there the information is available to other components for
triggering further actions (e.g. informing a responsible person) or displaying the
information in the monitoring cockpit. An additional step following the monitor-
ing could be the analysis of the effects of SLO violations. In service compositions,
services are not isolated from each other. Instead, SLO violations of one service
may lead to situations where other services cannot be provided any more. Moni-
toring such effects at runtime would help to improve the provisioning of services
in compositions.

4.3 SLA Violation Prevention through Adaptation

Monitoring is not just an end in itself; rather, the collected and calculated data
serves a very special purpose: to improve the quality of the service delivery. We
distinguish between passive observation of monitoring data and active use for
service adaptation, and argue for the necessity of adaptation to avoid contract
violations.

Based on the information provided by the MaaS, the SLA Manager compo-
nent decides if an SLA has been violated or is at risk of being violated in the
near future as predicted by a probability-based forecast function. In such cases,
adaptation can help avoiding the violation. Adaptation strategies include scaling-
up by dynamically adding computing resources such as CPUs, memory or hard
disk space, and scaling-down by reconfiguring the services or cutting down on
some aspects of the contract. Adaptation mechanisms implement the strategies
on a technical level by controlling certain targets like services or contracts. An
Adaptation Coordinator (Fig. 4) is needed to prevent the collision and mutual
neutralisation of the mechanisms. Upon completion of the chosen mechanisms,
an adaptivity reasoner conveys this information into the service registry to adjust
future contract template offers. We have based our categorisation of adaptation
mechanisms on existing works, e.g. [18], but concentrated on a clear division be-
tween matchmaking time and runtime. The interplay between the coordinator,
the reasoner, the mechanisms and the adaptation targets is shown in Fig. 6.

The effectiveness of adaptation shall be shown using the recurring example of
a contract with a logistics service. In case an implied and agreed-upon tolerance
region of a reliability of 95% is reached, e.g. at 96% after 50% of the associ-
ated time frame, the service can be reconfigured to increase the reliability at the
expense of another property, most likely cost. This applies to both a technical
sense of web service reliability and to a business sense of truck logistics reliability.
In the given business-level example, assuming the main cause for belated trans-
port is traffic congestion, the mechanism in question would modify the booking
of trucks to insist on using faster, but more expensive, vehicle toll roads. De-
pending on the contract tariff scheme, this trade-off between toll and contract
violation compensation can be an economic and reputation gain, as shown in
Table 1.

Distributed Contracting and Monitoring in the Internet of Services 141

Fig. 6. Adaptation coordinator, reasoner, mechanisms and targets

Table 1. Cost-based adaptation trade-off

Tariff without toll Tariff with toll

Cost per transport 30 EUR 32 EUR

Probability of traffic congestion 7% 3%

Congestion compensation fee 50 EUR

Resulting average cost 33.50 EUR 33.50 EUR

Effect on reputation lowering raising

5 Conclusion

We have designed and partially implemented a technical foundation for dis-
tributed service contracting and monitoring. A novel aspect of linking it to the
business level was introduced. It allows consumers to rely on the advertised func-
tionality of business services. The resulting architecture is built around USDL
service descriptions and WS-Agreement based SLAs. Through a division into
user-visible marketplaces and execution servers, it scales well enough for opera-
tion in an Internet of Services. The pervasive use of contracts and the enforce-
ment of contractually guaranteed terms increases the acceptance among business
users and makes it feasible to establish the excogitated service marketplaces.

Acknowledgements

The information in this document is proprietary to the following Theseus Texo
consortium members: SAP AG and Technische Universität Dresden. The infor-
mation in this document is provided ”as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced
consortium members shall have no liability for damages of any kind including
without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory
due to applicable law. Copyright 2009 by the Theseus Texo consortium.

142 J. Spillner et al.

References

1. European Parliament: EU Directive 2006/123/EC of the European Parliament and
of the Council of 12 December 2006 on services in the internal market. Technical
report, European Parliament (December 2006)

2. OECD: Business and Industry Policy Forum on the Services Economy. Technical
report, Organisation for Economic Cooperation and Development (OECD) (2000)

3. Riddle, D.: Service-Led Growth. The Role of the Service Sector in World Develop-
ment. Praeger Publishers, New York (1986)

4. Schroth, C., Janner, T.: Web 2.0 and SOA: Converging Concepts Enabling the
Internet of Services. IT Professional 9(3), 36–41 (2007)

5. Barros, A.P., Dumas, M.: The Rise of Web Service Ecosystems. IT Professional 8(5),
31–37 (2006)

6. Ameller, D., Franch, X.: Service-oriented computing: Concepts, characteristics and
directions. In: WISE 2003: Proceedings of the Fourth International Conference on
Web Information Systems Engineering, pp. 3–12. IEEE Computer Society Press,
Washington (2003)

7. O’Sullivan, J., Edmond, D., Hofstede, A.: Formal description of non-functional
service properties. Technical report, Queensland University of Technology (2005)

8. Dietrich, B.: Resource planning for business services. Commun. ACM 49(7), 62–64
(2006)

9. Roman, D., Lausen, H., Keller, U., de Bruijn, J., Bussler, C., Domingue, J., Fensel,
D., Hepp, M., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., Polleres,
A., Scicluna, J., Stollberg, M.: D2v1.3. Web Service Modeling Ontology (WSMO).
WSMO Working Draft (October 2006)

10. Cardoso, J., Winkler, M., Voigt, K.: A Service Description Language for the Inter-
net of Services. In: Proceedings of ISSS 2009 - International Symposium on Services
Science (March 2009)

11. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification. Technical report, IBM (2003)

12. Lamanna, D., Skene, J., Emmerich, W.: Specification Language for Service Level
Agreements. EU IST 34069 deliverable D (2003)

13. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specifica-
tion (WS-Agreement). Technical report, Open Grid Forum (2007)

14. openArchitectureWare.org: openArchitectureWare. Project page
15. Reichert, J.: Serviceabhängige Qualitätsparameter in Dienstgäteverträgen. Java

Spektrum (6), 29–33 (2008)
16. Toland, C., Meenan, C., Warnock, M., Nagy, P.: Proactively Monitoring Depart-

mental Clinical IT Systems with an Open Source Availability System. Journal of
Digital Imaging 20, 119–124 (2007)

17. Spillner, J.: Privacy-enhanced Service Execution. In: Westnik DUIKT - Proceed-
ings of the International Conference for Modern Information and Telecommunica-
tion Technologies, Livadia, Krim, Ukraine (September 2008)

18. Meyer, H., Kuropka, D., Tröger, P.: ASG–Techniques of Adaptivity. In: Proceedings
of Autonomous and Adaptive Web Systems, Dagstuhl, Germany (June 2007)

	Distributed Contracting and Monitoring in the Internet of Services
	Introduction
	Descriptions of Services and Service Level Agreements
	Business Service Descriptions
	Deriving Service Level Agreements from Service Descriptions

	Contract Monitoring
	Distributed Monitoring Architecture
	System Monitoring
	External Service Monitoring
	Internal Service Monitoring
	Business Monitoring

	Aggregation and SLA Status Determination
	Aggregation
	Determining SLA Conformance
	SLA Violation Prevention through Adaptation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

