
Service Orientation in Middleware Components for Scalable Service
Marketplaces

Josef Spillner
Technische Universität Dresden

Faculty of Computer Science, Chair for Computer Networks
01062 Dresden, Germany

E-mail: josef.spillner@tu-dresden.de

Abstract – The purpose of marketplaces in an economic sense is
the offering of a venue for selling and buying goods. On the
internet, virtual marketplaces for trading goods have also been
known since the 1990s. More recently, the marketplace idea has
been extended towards the exchange of highly-specialised,
custom services which are technically implemented as
redistributable web services. As opposed to tradable goods which
are sold at a discrete point in time, the service marketplace
retains its functionality beyond the purchase through continuous
contracting and management of services. This additional activity
increases the amount of required resources. For a scalable
exchange between thousands of users, the underlying system
and middleware thus needs to adhere to scalability principles
known from service-oriented architectures. This paper confirms
the idea of representing the middleware as a set of distributed
platform services which can themselves be offered on service
marketplaces.

I. Principles of Service Orientation
The definition of the principles of service orientation is

subject to contextual and chronological variations [1,2].
Often-mentioned core principles include:
• Loose coupling between services and their users.

This allows users to exchange one service for
another based on functional equality and non-
functional preferences.

• Reusability. This software-technological aspect is
important for the idea of service orientation on the
middleware level, as it mandates the offering of parts
of the middleware as actual services.

• Discoverability and composability. These two
properties lead to the requirement of a user-centric
approach which can be realised by a service
marketplace.

The application of these principles to service
marketplaces will yield highly scalable platforms with
many users and parallel service execution. Both the
interactive marketplace and the execution need
sophisticated middleware in order to enable rapid
development of higher-level applications.

II. Overview on Middleware functionality
A middleware's task is to mediate between services

and systems. On service marketplaces, its functionality
must support the provider and the consumer of services.
Hence, it must offer interfaces for installing or referencing
new services, for searching for services and for using
them. This includes the pre-execution (configuration,
contracting, allocation), execution (invocation, monitoring,
adaptation) and post-execution (billing, rating,
optimisation) steps.

Now that the functional requirement on middleware
has been explained, the architectural requirement of
dividing the functionality into services needs to be
fulfilled. The principles of service orientation act as a
guideline for the segmentation of common middleware
functionality into separate, loosely-coupled, self-
described, reusable and composable platform services.

III. Emergence of Platform Services
As shown in figure 1, platform services are aligned

with other services. Both the system and users can
search for them in the service registry, inspect their
formal interface definition and invoke them through any
protocol, with any authentication and contracting scheme
already available for the other services offered on the
marketplace. If for example the monitoring service
provides different monitoring quality levels, each one
having a unique price, a reseller can bundle distributable
services with as much monitoring as is necessary to
control a guaranteed quality level. Grid solution
providers can buy as many BPEL execution and
deployment services as necessary to offer a high
availability service execution on top of the middleware,
using the same or a custom marketplace.

Figure 2 shows a concrete example for services
making use of monitoring information. A chain of value-
adding platform services, each with a number of
configurable and hence payable non-functional
properties, is offered to service users. Each user can
decide to purchase basic statistical information or
aggregated, analysed charts and tables related to the
performance indicators of the service execution.

The realisation imposes a number of challenges,
most importantly the description of feature-based pricing
rules and the restriction of access rights to trusted
platform services. Only when these challenges are
solved, the full potential of service users offering higher-
level composed services can be utilised.

Figure 1: Emergence of distributable platform services

Figure 2: Value-adding chain of configurable platform
services

This concept reaches beyond the traditional
perception of platform services or Platform-as-a-Service
(PaaS) where service and web interfaces to middleware
components are offered, while the functionality is not
encapsulated and made available as a redistributable
service itself. A definite advantage can be seen in the
inherent distributed computation through service
orientation. At any time, parts of the platform can be
externalised and run at different computers or data
centres. In the example of the monitoring service, the
collection of monitoring data can be decoupled from the
aggregation of higher-level metrics and statistical
computation.

IV. Analysis of Existing Middleware
Middleware systems can be analysed with

comparison frameworks based on key requirements,
architectural style and fundamental services [3]. The
requirements include scalability, openness and
distribution transparency. These properties can easily be
covered by platform services. The architectural style
calls for modularity, encapsulation and inheritance (or
composition), which can also be offered by service
orientation.

Fundamental services seem to differ according to the
middleware's purpose and type such as transactional,
message-oriented or object-oriented middleware [4]. The
ones required for the operation of service marketplaces
have been mentioned in section II already and will be
used for the selection of middleware components for the
comparison. We therefore introduce exposition as a
service as an additional explicitly derived requirement.

Currently, only few web service hosting and trading
platforms expose service interfaces to the controlling
middleware. Even fewer offer platform services as
redistributable, self-described, composable entities. The
lack of formal service descriptions and instant-on usage
as web service are the main limiting factors. The
following table compares a selection of existing platform
services. It includes middleware components from our
own research as well as popular components with a high
user base.

Platform/
Service

Functionality Service
exposure

WSDL/
WADL
descripti
on

Apache ODE BPEL
execution

SOAP
management API:
service listing,
process details,
property
manipulation

none

Dynvoker Web service
invocation

HTTP API for
parameter control;
XMLRPC API for
service inspection
and invocation

WSDL

jBilling Billing SOAP API for bill
management,
invoices and
payment

none

Grand SLAM SLA monitor SOAP API for
service and SLA
registration

XSD

Contract
Wizard

Interactive
SLA
management

HTTP API for
parameter control

none

ConQoMon Service
discovery

SOAP APIs for
clients, providers
and monitors

WSDL

Puq Unified
hosting
environment

SOAP API for
service
deployment

WSDL

Other execution platforms and middleware systems
like WSMX and WSO2 and monitoring tools like
WSMonitor are not exposing their functionality as
services and were therefore not included in the table [5].

V. Discussion
Dividing monolithic middlewares into modular platform

services and offering their functionality on virtual
marketplaces along with other redistributable services
leverages the advantages of service orientation. In
particular, it allows for a greater variety of custom location-
independent service offerings which is essential in service
markets as opposed to tradable goods markets [6].

These concepts are being validated by us with a
number of newly developed platform services, including
contracting services with a HTTP/REST interface and
Monitoring-as-a-Service (MaaS) with a SOAP interface.
We expect that in the future, distributed service-oriented
middleware will be composed out of individual, specialised
and redistributable platform services. This migration will
have to be followed by intra-middleware and inter-
middleware standardisation efforts on data and metadata
exchange, including a common security concept, as well
as a global approach to finding services. While UDDI's
Universal Business Registry was for a long time seen as
the solution to the last issue, service search engines like
Service Finder [7] and marketplaces like TEXO [8] appear
to become suitable means for runtime integration and
composition. Eventually, they will allow the composition of
arbitrary value-added service and customised middleware
systems based on offerings from specialised providers.

VI. Acknowledgment

The project was funded by means of the German Federal Ministry
of Economy and Technology under the promotional reference
``01MQ07012''. The authors take the responsibility for the contents.

VII. References
[1] C. Pautasso, E. Wilde: Why is the Web Loosely Coupled? A

Multi-Faceted Metric for Service Design. WWW, April 2009.
[2] T. Erl: An Introduction to the Service-Orientation Paradigm.

Online: http://soaprinciples.com, May 2009
[3] A. Zarras: A Comparison Framework for Middleware

Infrastructures. Journal of Object Technology, Vol. 3, No. 5,
May-June 2004

[4] H. Pinus: Middleware: Past and Present - A Comparison. June
2004

[5] E. Cimpian, M. Zaremba (eds.): Web Service Execution
Environment (WSMX). W3C Member Submission, June 2005

[6] Globalisation and Structural Adjustment: Summary Report of the
Study on Globalisation and Innovation in the Business Services
Sector. OECD, 2007

[7] Service Finder research project. Online: http://www.service-
finder.eu, May 2009

[8] C. Janiesch, K. Fleischmann, A. Dreiling: Extending Service
Delivery with Lightweight Composition. Web Information
Systems Engineering (WISE) workshops, September 2008

