Spillner, Josef, Dipl.-Inf.
(Technische Universitat Dresden, Germany, josef.spillner@tu-dresden.de)

PRIVACY-ENHANCED SERVICE EXECUTION

Abstract: Service users have increasing requirements towards the quality of
services. The service execution environment needs to translate these
requirements to distribution, resource acquisition and adaptivity. We present a
platform-level feature called PrivacyCage based on monitoring facilities and
service replication mechanisms to protect the users' privacy when they interact
with services on the platform. This feature will be reflected in the service level
agreements.

1. MOTIVATION

Both in personal computing and in enterprise environments, the use of services and
remote applications is increasing. A lot of people rely on interactive web applications such
as HTML-based mail clients, which don't offer any guarantees regarding availability, privacy
or costs. There isn't even a standard mechanism available to retrieve such non-functional
information about remote applications before attempting to use them. Any guarantees and
conditions published by service providers appear in textual descriptions. Several research
projects have proposed and implemented machine-readable SLAs which cover
specifications of parts of the system, metrics and guarantees, information about contract
duration and the actions in cases of violations such as penalties or compensation. These
SLAs need to be simple enough to be used in practice (which arguably isn't the case at the
moment), and yet powerful enough to derive negotiation protocol parameters, monitoring
configuration and system adaptation hints from them. The service execution environment
assumes an important role in providing the coordination facilities to gain an overview about
installed services so that SLAs only offer the guarantees which do not exceed the system's
capabilities, unless the system can dynamically add resources at runtime.

We are interested in the possibilities and limits of conveying system features into
service agreement templates and have designed and implemented a prototype for one
such feature: service execution privacy. This document first explains some of the available
state-of-the-art service execution platforms with a focus towards increased privacy and
autonomy from service providers. It then presents the problems involved and our approach
for solving them, in particular how to advertise and enforce guarantees, and concludes
with some remarks on their general applicability beyond privacy features.

2. RELATED WORK

We will present existing approaches to SLA handling in current service platforms with
a focus on how the content of SLAs or SLA templates prior to contract binding is generated
by them.

2.1 Service execution platforms

Both production systems and recent academic work suggest a trend towards more
end user-targeted service platforms, leading to instant access to grid systems and other
service execution environments with monitoring interfaces.

Environments in practical use today already provide tracing and interception features,
notwithstanding scientific scrutiny for the validation of these claims. The Google App
Engine, a closed-source software, is one such example which «isolates [one's] application
in its own secure, reliable environment», and prevents applications from creating
subprocesses and writing to the hard disk. According to the documentation, the sandbox is
not configurable and doesn't convey its restrictions into any form of machine-readable
SLA. The Gigaspaces implementation, which focuses on linear scalability based on the
tuple space model, uses introspection on event objects to define instrumentation points in
the associated SLAs. However, no low-level system or container features are propagated
into the SLA automatically. The TAPAS architecture for QoS-enabled application servers
provides a one-way adaptation between applications, the system and SLAs: For each SLA,
a configuration service configures the system in a way that the SLA can be fulfilled, e.g. by
reserving resources. However, no system features or restrictions can be propagated to the
application to achieve bidirectional adaptivity. In the COMQUAD component-based project,
contracts between the components, or services, and their managing container were
considered separately from contracts between the container and the underlying runtime
platform. It was not explained how platform or container features would propagate into SLA
templates between the services and the clients [6].

According to the examples above, the discovery and expression of system features
by service implementations is very weak compared to research on the discovery of
functional and non-functional properties by potential service users (figure 1).

. Container / platform
Functional

properties
> SerVice
properties
Non-functional
properties
Design
properties

Figure 1: Sources of NFPs at design and execution time

il

2.2 Service contracts

We do not assume any particular format for the expression of service-level
agreements, since there is a number of them available from several projects already, each
with specific advantages and disadvantages regarding their negotiation, expressiveness
and monitorability. Instead, we are only interested in how to express privacy features and
other system features dynamically as a subset of the non-functional specifications in these
agreements. They may complement other properties derived from the service model or
implementation, measured historic assessment about the service features, and heuristic
calculations. We do however not want to assume abstract specifications and hence need a
mechanism to put system-level properties into SLAs at runtime.

In many approaches, SLAs are instantiated from SLA templates. The substituted
template parameters often encompass only properties with ranges of values which are
fixated to certain values for the contract by a negotiation algorithm. In FeMoWS [2], service

feature lists are used to introduce properties into SLAs. In [1], the authors argue against
static SLAs and for the dynamic inclusion of properties, which also helps to avoid service
substitution in SLA-protected processes by gaining more flexibility during the renegotiation
phase. The authors derive their properties from software engineering aspects, but do not
cover system-level properties which may be added, changed or removed at runtime.
Machine-readable privacy guarantees have been made popular by the P3P format for use
in web pages. While P3P can be evaluated programmatically, it lacks several details about
the further use of data or contractual obligations in case of not fulfilling the agreement. We
therefore aim at an approach of enforced guarantees to avoid such issues. The Open
Digital Rights Language and similar languages, some of which are embeddable into SLAs,
define a more formal syntax for rules governing the exchange of data with services.

3. CHALLENGES

After the presentation of the state of the art in today's systems, we introduce the topic
of privacy-enhanced service execution as a use case to see how system-level features can
and should show up in SLAs. The following challenges have to be overcome:

e Data privacy: For simplicity reasons, we define privacy in the context of service
execution as the protection of all data exchanged with the service against unwanted
leakage to any other party. According to this model, the user will have to trust the
execution environment, but not the service itself. We don't consider anonymity or
privacy management functionality.

e Service replication: While the concept of Software-as-a-Service promotes the use of
remote applications and the storage of data online, and SOA concepts in general
favour this approach, it is insufficient in many cases where privacy and code
integrity play a major role. An extension to declarative service self-descriptions,
such as WSDL files, would make it possible to assess information about the service
implementation and hence its replication without breaking existing infrastructures.
Replication mechanisms could be based on standardised service packaging
formats, including Servlets, OSGi bundles and LSB-compliant services. One
challenge here is to extend the replication to configuration data.

e System-level monitoring: The extent of monitoring performed on a service might in
some cases directly translate into enhanced service agreement offers. An example
would be to be able to offer certain privacy guarantees if a service execution can be
traced on an operating system call level, a virtual machine interpreter level, or a
higher-level process execution level. System-level monitoring can be distinguished
from Monitoring-as-a-Service to further refine the scope of trust in the service
execution environment.

e Contractual representation of the infrastructure: While quality modelling languages
exist for model-driven approaches of describing individual components, they are
insufficient for distributed systems. The system configuration, network topology and
previously gathered monitoring information could be used to describe the behaviour
of systems more accurately. This will lead to more representative SLAs and less
potentially expensive renegotiations. The challenge is how to infer infrastructure
dependencies and relationships between systems without having a full model.

These topics are closely related to each other. For example, in order to guarantee
privacy by tracing service execution, a service might need to be replicated to the execution
platform at first. The security properties of the platform will likely be better if its codebase

remains small, thus favouring a microkernel-style approach of offering as much
functionality as possible as a service on top of the platform, such as monitoring.

4. SOLUTION APPROACH

In order to solve the problems identified up to this point, we selected a certain real-
world service where both replication and privacy of the exchanged data are desired
properties.

4.1 Scenario

A popular and frequently used public web service is the W3C validator for HTML
documents. The provider offers the service implementation as source code and
recommends its replication to lower the load on the W3C servers. Replication is also
desired by some of the service users themselves who do not want to submit potentially
confidential documents to a public service. Finally, since the validator uses an HTML
parser internally, one has to take care about parser implementations which due to low
security awareness and misunderstanding of namespace URIs by the reponsible
programmers accidentally fetch DTD files from the network for each validation process,
accumulating up to 130 million mostly unnecessary requests per day [3]. Network access
restrictions will help lowering this number. While the service itself does not offer a
machine-readable service description, there has been made one available by a user of the
very similar CSS validator. The description in WSDL format will serve as a basis for the
HTML validator, extended with replication information and an SLA feature section.

4.2 Replication

WS-Source, an extension to WSDL, has been specified and was added to the WSDL
file for the W3C validator service. The specification has been made available at [4]. The
extension refers to the service implementation in a certain packaging format and in
addition to its licencing requirements. This way, service users will be able to request its
implementation, or refuse to use the service if the code is either not available or the licence
is considered not suitable.

4.3 Privacy

PrivacyCage, a system-level monitoring and tracing tool, has been designed to
monitor services over their use of system calls. Assuming a compartmentised runtime
environment where no service can access data or state information of others, the syscall
interception mechanism of this tool presents a reasonable guarantee that the service will
not perform instructions which it is not supposed to do. Policies can be configured through
a web application and include syscall groups like «must not access the network» and
«must not write to disk». Loopholes might exist though due to the poor granularity and
semantics of some system calls. We do not claim to have a mechanism right now for
absolute guarantees about the enforcement of the desired policies; rather, we recommend
using whatever facilities the operating system provides.

4.4 SLA representation

We employ the technique of dynamic SLA templates. Before any (re)negotiation of
contracts takes place, system-level features are added to the SLA template by the service
execution environment depending on the presence of PrivacyCage and other such tools.

5. IMPLEMENTATION

The approach presented in the last section was implemented in order to validate its
feasability and usefulness in the context of ad-hoc process composition based on non-
functional properties of the potential constituent web services.

5.1 Architecture

PrivacyCage has been implemented as a set of small modules which work together,
rather than a monolithic tool. One of the advantages of this approach is that new tracing
mechanisms or new interfaces can be added in place (figure 2). For example, Java-based
services could be confined into a locked-down JVM. Our implementation only works on the
OS level so far, which doesn't allow for fine-grained access control but on the other hand
doesn't assume any particular implementation language for the executed service.

(application) —> dataflow PrivacyCage itself is a small Ruby
—> execution application which loads the tracing rules and

1\ 3 fiedata INVOKes Subterfugue, an already existing syscall

tracer for Linux. This tool can report syscall

bee’ﬂ’g@ usage by monitoring or intercepting them and

Yy, handing over these events to plugins. There

was no plugin readily available with it for the

Tracing rules | ./ interception of arbitrary syscalls, so we
CONE ::'@Vacyca% extended the tool with one called
stdin + stdout SyscalllinterceptorTrick. The application is finally

parameters + stderr launched under the supervision of Subterfugue.
(aapping The first version of PrivacyCage included a web

service interface. We changed this for several

reasons: First, one might want to run the tool
from a non-web service context. Second, one
might want to use different web service
protocols. Third, the fine-granular design will
\ exhibit the same advantages as descibed above

u"ericwememce_/ regarding substitutability. ~ Therefore, we

XML input xmlmapper XML output

dessirrY,i)ct?on reimplemented it as a command-line application

e : s and wrote a generic web service mapper called
xmlmapper for it. Both tools are usable

client application T independent of each other but work well

\ together for our scenario. The mapping tool is

Figure 2: Architecture of PrivacyCage similar in spirit to gFac, the Generic Service
Toolkit [5], although it isn't limited to SOAP. In fact, PrivacyCage has been mapped to a
REST-style service.

An application called wssource-loader has been written as an implementation of the
WS-Source extension. It scans through the service description and install the service
implementation. No configuration takes place yet, as it is assumed for implementation
packages to be completely self-contained including code, data and configuration
parameters. The implementation has been made available under a free licence to gather
suggestions for improvement [7].

5.2 Tracing rules

The association between syscalls and the actions performed on them is stored in so-
called tracing rules. A web interface has been implemented to make their configuration as
easy as possible. Associations can be grouped to higher-level rules, which is useful for
often-used expressions such as the prohibition of network access or hard disk write
operations. To give an example, the following (incomplete) rule will prevent network

access.
netrule := socketcall | nfsservctl | sendto; on(netrule) abort();

For performance assessment, the rules would have to be written accordingly:
perfrule := prof | sendfile; on(perfrule) log();

6. FUTURE PLANS

The first implementation of PrivacyCage is functional, even though it has only been
tested for simple cases including the scenario presented in this work. Additional tracing
layers on other levels like virtual machines for Java (JVM) and other bytecode-interpreted
languages, or on the service message level, could provide for more powerful SLA
guarantees. The WS-Source specification needs to be validated using more real-world
services. In general, replication through wssource-loader would only be considered one
use case for WS-Source. A second one is the strategic advantages for the client like
independence from the service provider. Once enough feedback on this topic has been
collected, we will consider a separate publication about WS-Source.

7. CONCLUSION

We have shown how to increase the privacy for web service consumption by claiming
guarantees in SLAs and enforcing them on the service execution layer. In addition to that,
we have touched on service replication as an infrastructure-level prerequisite for effective
privacy-enhanced service execution in dynamic service environments. While we cannot
claim to have solved the problem of privacy-aware service execution in particular or the
propagation of system-level features into service contracts in general, it is worth to point
out that our implementation can serve as building blocks for future research on this topic.

BIBLIOGRAPHY

[1] N. C. Narendra, Karthikeyan Ponnalagu, Jayatheerthan Krishnamurthy, R. Ramkumar:
Run-Time Adaptation of Non-functional Properties of Composite Web Services Using
Aspect-Oriented Programming, Proceedings of the ICSOC 2007.

[2] M. Fantinato, I. M. de S. Gimenes, M. Beatriz F. de Toledo: Supporting QoS
Negotiation with Feature Modeling, Proceedings of the ICSOC 2007.

[38] G. Oskoboiny, T. Guild: W3C's Excessive DTD Traffic, W3C article, online:
http://www.w3.org/blog/systeam/2008/02/08/w3c_s_excessive_dtd_traffic

[4] J. Spillner: WS-Source: an implementation-revealing extension to web service
description languages, software project, online: http://rcswww.zih.tu-
dresden.de/~spillner/software/.

[5] G. Kandaswamy, D. Gannon: A mechanism for just-in-time creation of web services for
scientific workflows, Workshop on Web Services-based Grid Applications, 2006.

[6] S. Zschaler, S. Réttger: Types of Quality of Service Contracts for Component-Based
Systems, Proceedings of the IASTED SE 2004.

[7] J. Spillner: PrivacyCage: SLA-based confined service execution, software project,
online: http://rcswww.zih.tu-dresden.de/~spillner/software/.

