
Dynamic SLA Template Adjustments based on Service Property Monitoring

Josef Spillner and Alexander Schill
Technische Universität Dresden

Faculty of Computer Science
Nöthnitzer Str. 46, 01062 Dresden, Germany
{josef.spillner,alexander.schill}@tu-dresden.de

Abstract

Service Level Agreements (SLAs) are used to manifest
guarantees about certain functional and non-functional as-
pects of service execution. Service providers are confronted
with a hard problem when trying to estimate reasonable
QoS levels and other default settings for SLA templates.
The insufficient use of formal service behaviour descrip-
tions, varying resource demands and a choice of configu-
ration options expected by users contribute to this issue. We
present our solution of gathering monitoring data at run-
time and feeding it back into the service registry to adjust
descriptions and make contract template derivation a more
realistic process. In addition, we show how to extend SOA
building blocks such as service discoveries and SLA man-
agers with the adjustment mechanism.

1 Introduction to SLA Management

Service Level Agreements are established between ser-

vice consumers and providers and define a number of obli-

gations and rights for both sides. Research on SLA man-

agement for web services is often focusing on SLAs with

rights for consumers and obligations for providers, keeping

the balance by requiring per-use or interval payment by the

consumer. To attract consumers, providers need to clearly

specify the pricing of service offerings.

SLAs are defined prior to service usage based on a nego-

tiation between both sides, which can happen autonomously

within any number of constraints, or can be performed inter-

actively, even offline in some cases. Online negotiation fa-

cilities based on agents and SLA managers are increasingly

available and support more dynamic service environments.

In most negotiation protocols, SLA templates or profiles

are offered by the service provider to initiate the negotia-

tion. The providers, either represented by humans or by an

SLA manager service, need to know in advance of how to

find a suitable ratio of payment to operational cost in or-

der to create feasible SLA templates. This is a non-trivial

task in the context of distributable services whose functional

and especially non-functional properties cannot be inferred

from the associated service descriptions or SLA templates.

We attempt to solve this gap by presenting a method-

ology for adding or adjusting the values of non-functional

properties (NFPs) in service descriptions depending on the

service runtime behaviour, and deriving adjusted SLA tem-

plate constraints from the updated NFPs. The presented

methodology separates the adjustment logics from the tech-

nical implementation needed for today’s service description

and SLA formats. It does not consider legal aspects and

legal validity of runtime modification to SLA templates.

2 Related SLA Provisioning Approaches

There are two main reasons why monitoring data is gath-

ered and aggregated in service hosting environments at run-

time. Initially, the provider needs to infer knowledge about

grey-box services with insufficient property descriptions.

Throughout the service lifecycle, the existing assumptions

about a service need then to be continuously validated.

When no expected behaviour is known prior to the exe-

cution, the provider can infer the knowledge incrementally

through machine learning. In this case, both functional and

non-functional aspects can be found out given sufficient sta-

tistical characteristics. In fact, recent work has shown that

it is possible to gather information about services and ser-

vice descriptions and store derived knowledge in ontolo-

gies expressed in OWL-S, e.g. [8][1]. Additionally, black

and grey box testing techniques help determining the func-

tional interfaces of services. When the expected behaviour

is known, the provider can compare the observed service

behaviour against the expected behaviour. The comparison

is often part of the testing stage of an integrated software

engineering approach, realised as continuous self-checking

of systems for improving the coverage of tests for SOA-

specific challenges [4]. Recently, this reason has gained

momentum with approaches like models at runtime and

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.56

168

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.56

168

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.56

168

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.56

168

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.56

176

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.56

183

model-based system management [7].

Adaptivity can also benefit from accurate NFPs, and the

quality of adaptivity decisions depends on the precision of

data collected from precise, ubiquitous and non-intrusive

service monitoring at runtime [13]. The presented tech-

niques help with NFP additions and adjustments in service

descriptions, but are not complete regarding the handling of

SLAs in contract-bound service execution.

There are several known strategies of how to estimate

non-functional service properties for the creation of SLA

templates. In [5], the authors propose a method and a tool

suite to perform BPEL model checking at design time in or-

der to find out the resource requirements of processes, and

reason about its importance for SLAs. However, this ap-

proach is not combined with run-time monitoring. In [16],

a QoS specification language and framework is presented.

The major contribution of this framework to our work is the

introduction of formal descriptions of SLA templates. Its

shortcoming is the lack of a methodology for SLA template

creation and adjustment at runtime.

Additional approaches for resource reservations in ad-

vance can be found in [11] and [10] based on fully-

described component models. Planning ahead is useful and

required for being able to offer guarantees, but will not

suffice for dynamic service environments where resources

might fail or formally specified NFPs might be influenced

by previously unconsidered parameters. Therefore, the au-

thors of [3] argue for dynamic resource provisioning to

avoid SLA violation. This is a rather complementary ap-

proach to our work which could also benefit from long-term

monitoring and adjustments to minimise the amount of ad-

ditional provisioning after each contract negotiation. An-

other reason why this concept alone is not enough is that re-

sources cannot be added indefinitely, therefore the provider

needs to limit the SLA commitment level before reaching

the resource limit. Another grid-oriented approach is pre-

sented in [12] which discusses transactional challenges for

parallel negotiations. Feasibility checks on the side of the

provider are considered necessary, but not explained further.

A closely related approach concerning SLA template ad-

justment focuses on the price for a service [6]. The devised

architecture takes reasons for pricing differences into ac-

count. However, the approach was not implemented yet.

In summary, none of the related techniques presented

above cover the entire SLA management lifecycle as they

leave out the SLA template provisioning and adjustment

techniques. Therefore, we want to contribute a more de-

tailed look into the determination and dynamic adjustment

of SLA templates, including price and other non-functional

properties, from a service provider point of view.

3 Solution Approach: NFP Adjustments in
Service Descriptions and and SLA Tem-
plates

We propose a two-step mechanism which considers the

service registry adjustments of specified NFPs first and in

a second phase calibrates SLA template offers accordingly.

This division allows for independent use and optimisation

of the algorithms.

3.1 Service Description Adjustments

NFPs of components and services can be specified for-

mally with advanced generic languages like WSML1 as

well as with languages focusing on NFP and quality aspects

like UML-OCL or CQML [16] and its derivatives μCQML,

CQML+ and QML/CS. Descriptions of service NFPs are

made available in service registries so they can serve as

influence for service selection. In practice, NFP descrip-

tions are often omitted, incomplete, erroneous or expressed

inefficiently. Either way, monitoring services and SLA-

bound service instances helps in determining the correct

values for a specific environment. The underlying assump-

tion is that similarly to predictive monitoring approaches,

future values are assumed to be influenced by historic val-

ues gathered by measurement and aggregation. For each

NFP, a function predict works on a set of historic data

nfpi where 0 <= i <= n and i either refers to time-

variant, event-driven measurements or to isochronous, rate-

monotonic values. The effect of the measurement times on

the result of prediction functions is shown in figure 1.

Figure 1. Dependency of NFP prediction on
isochronous measurements

The prediction function returns an intermediate value

nfpavg based exclusively on measurements.

1Web Service Modelling Language: http://www.wsmo.org/
wsml/wsml-syntax

169169169169177184

nfpavg = predict(nfp0, ..., nfpn) (1)

A second function nfp adjust takes previously for-

mally specified NFPs nfpspec into account and relates them

to the result of predict to yield the final prediction value

such that:

nfppred = nfp adjust(nfpavg, nfpspec) (2)

The optimal definition of both functions is subject to fu-

ture research. We can assume that predict calculates simple

average values or smoothed averages for a certain value of

n. Based on the resulting nfpavg , the function nfp adjust
leans towards nfpspec at the beginning to avoid high in-

fluence of outlying measurements but eventually converges

towards the measured values nfpi to account for the dif-

ference in service execution environment conditions of the

provider and the conditions assumed by the service devel-

oper. If no formal NFPs are specified, this function will

obviously return the result of predict. We will reason about

candidates for these functions in the section on experimen-

tal results.

3.2 SLA Template Adjustments

SLA languages like WS-Agreement2, WSLA or SLAng

typically provide a section on constraining possible SLA

negotiations and listing example templates. While a

provider-side agent like an SLA manager always gets to de-

cide on whether to accept an SLA offer or not, it is use-

ful to infer this information with a high probability in ad-

vance. This way, negotiation roundtrips can be minimised

and applications can be designed to help users negotiate an

SLA. Typically, these constraints are based on business and

strategic decisions which will not be exposed to service con-

sumers. But even the sections only available to the provider

in current SLA languages lack meta-constraint expressivity

for automatic updates of the constraints over time. There-

fore, adjustments can only happen relative to their previ-

ous values. We define another function slat adjust which

depends on the initial provider-given guarantee template

slatspec to yield a predicted guarantee offer slatpred as fol-

lows:

slatpred = slat adjust(slatspec, nfppred, nfpspec) (3)

= slatspec ∗ nfppred

nfpspec
(4)

2Web Services Agreement Specification: http://www.ogf.org/
documents/GFD.107.pdf

In the case of lower-is-better guarantees like response

time, from the consumer point of view, the provider will

have an interest towards higher-is-better to avoid frequent

SLA violations. Conversely, higher-is-better guarantees

like throughput should rather be kept low in SLA adjust-

ments. Both preferences are honoured by slat adjust.
We see the introduction of meta-constraints as an es-

sential extension of current SLA languages to derive more

business-aligned definitions of slat adjust. Such prefer-

ences already exist for client-side service selection and SLA

renegotiation agents, e.g. for query preferences [9] and for

semantic goal descriptions [2].

4 Experimental Results

We have written a tiny simulator in Python which in

its first iteration produced simulated service response time

monitoring information. While the response time NFP

was initially specified by the service developer to be be

nfpspec = 0.5s on average, the simulator was calibrated

to artificially random delay around nfpi
∼= 0.8s. On each

service invocation, the value was measured and, using a

total average function, the resulting nfpavg stabilised at

the simulated value as expected by stochastic prediction

using the knowledge about the randomness. Not having

this knowledge available, nfppred still slowly converged

against nfpavg . The SLA template values was updated by

the same relative amount due to reasons explained before.

This iteration is shown in figure 2.

In a second iteration, dynamic negotiations were also

simulated. SLAs were established when the price specified

in the template was deemed competitive enough, for a ran-

dom period of time with a depending cost and compensation

amount. This time though, a long-term defect was config-

ured to happen soon after the start which would delay the

response times significantly. As can be seen in figure 3, not

only were almost all of the active SLAs violated as deter-

mined by the monitoring result nfpavg , but the slow conver-

gence of guarantees in SLA templates relative to measured

NFP values through nfp adjust led to the effect that many

of the newly negotiated SLAs were violated soon after their

creation.

Several optimisations were tried, including experimen-

tal smoothing of the monitored values as is common with

other stochastically random measurements which are hard

to predict. With this technique, nfpn depends on the pre-

vious average of nfpn−1, ..., nfp0 by a factor of (1 − α)
and influences the new average by α. Eventually, a conser-

vative choice favouring the worst response time among the

total average and the exponentially smoothed average with

α = 0.1 was giving the best results. Figure 4 shows that

the fast convergence leads to a quick recovery of provider

compensation losses and an overall greater income after the

170170170170178185

Figure 2. NFP specification converging against the average values as determined by monitoring

same period of time.

These results should not be considered a proof of optimal

convergence, but they clearly show that by tuning the con-

vergence algorithm, the SLA template offers can become

more rewarding for the provider. On the other hand, the

effect of potentially higher cost on the consumer can only

be fully verified in a multi-provider scenario where there

is some competition among providers. In the extreme case

of a monopoly of only one provider, cost could be max-

imised and compensation minimised independently of the

SLA violation frequency, whereas in a healthy competition

the margins would have to be calculated as exactly as pos-

sible.

5 Extension of SOA Building Blocks

In order to demonstrate the feasibility of the two pre-

sented techniques and to verify the simulated results, an ap-

plication of both techniques within existing SOA building

blocks will be shown in this section. The service descrip-

tion updates relate to a dynamic service registry and discov-

ery process, while the SLA template updates influence the

capabilities of SLA managers.

5.1 Extension of ConQoMon for Service
Description Updates

ConQoMon is a QoS- and context-aware service dis-

covery [15]. Its registry contains WSML service descrip-

tions. The WSML goals for queries for suitable services can

be generated from the visual selection of a functional do-

main and non-functional requirements. Corresponding non-

functional service properties are specified in the WSML

files based on generic ontologies for QoS and context and

can be extended with domain-specific properties. Using

a matchmaking process, the most suitable service can be

found by matching the required properties against the of-

fered ones. ConQoMon is already an extension of an earlier

ConQo prototype with the SLA-driven Grand SLAM mon-

itoring framework. This makes it possible for users to look

up current performance parameters of services before at-

tempting to negotiate an SLA with them. ConQoMon stores

updated NFPs reported by the monitor in its database and

applies a utility function to both the original values from

the WSML file and the current values to find the right value

for the matchmaking process.

Using the technique presented in this paper, ConQoMon

can be extended even more to incorporate the measured ser-

vice properties into the service descriptions and the associ-

ated SLA templates, respectively, as shown in figure 5. We

have implemented dynamic service description documents

171171171171179186

Figure 3. Dynamic SLA negotiations based
on resource constraint assessment

which can now be retrieved in parallel to the unaltered doc-

uments registered at service deployment time. The NFPs in

the returned WSML descriptions are updated to the values

determined by nfp adjust. For that matter, ConQoMon

produces updated WSML files on request by using a rewrit-

ing mechanism based on the WSMO4J library. This tech-

nique assumes a common NFP vocabulary between the ser-

vice developer, discovery users and SLA monitors. If there

are multiple active SLAs associated to services and possi-

bly multiple service instances, the NFPs are determined for

all services per SLA first and then averaged depending on

further SLA-specific weights. In our implementation, we

assume no resource preferences based on tariffs and other

SLA-specific settings and hence can assume equal weight-

ing. Listing 1 shows an except from a WSML file including

the dynamically inserted value.

Listing 1. WSML definition for a service avail-
ability characteristic

namespace { _"urn:...:PrinterService2.wsml#
",

qos _"urn:...:QoSBase.wsml#",
[...]

}
ontology BasicParam

importsOntology { _"urn:...:
PrinterContextQoSBase.wsml#" }

instance WsAvailInst1 memberOf { qos#
Availability, qos#ServiceSpec}

qos#unit hasValue qos#Percentage
qos#value hasValue 0.995

Figure 4. Dynamic SLA negotiations, variant
with exponential smoothing of averaged NFP

Figure 5. SLA adjustments in the presence of
multiple service instances

WSML as a rather general service description language

lacks a formal semantics behind NFP specifications. There-

fore precise statistical distributions of monitoring infor-

mation could be expressed in CQML+ in addition to the

inclusion of average NFP values in WSML descriptions.

We have implemented a dynamic CQML+ generator to

demonstrate the smaller dependency on the usefulness of

nfp adjust. In the listing 2, an excerpt for a single NFP is

shown for a randomly selected service.

Listing 2. CQML+ definition for a service
throughput characteristic

quality_characteristic throughput {
domain: increasing real [0..) kilobytes/s

;
}
quality_characteristic avg_throughput :

throughput {

172172172172180187

mean;
}
quality default {

best-effort throughput > 350.216;
avg_throughput.mean > 437.770;
avg_throughput.minimum > 254.013;
avg_throughput.maximum < 536.006;

}

Leveraging the extensible nature of semantic service de-

scriptions, the service ontology supports links to supple-

mentary description files. In ConQoMon this feature is used

to link WSDL files, SLA templates and CQML+ quality

profiles to WSML files. In the shown architecture, the ser-

vice discovery assumes the role of the SLA manager. On

an implementation level, it is useful to distribute the roles

onto two interacting components to maintain a separation

of concerns. Therefore, the next section describes the im-

plementation of slat adjust with existing SLA managers.

5.2 Extension of an SLA manager for SLA
Template Updates

SLA management is often encapsulated in dedicated

components called SLA managers. Two representatives are

the GRIA SLA Manager [3] and the TEXO SLA Man-

ager [14]. Both already support the storage and retrieval

of SLAs and SLA templates. However, neither supports

integrated dynamic SLA template adjustments. Single-

property guarantee offers can be updated by directly modi-

fying SLA templates as shown in listing 3. The SLA tem-

plates which are based on WS-Agreement can either be

modified in the creationConstraints section or in

the guaranteeTerm section and will then be offered for

negotiations from that point on, without affecting already

active SLA. However, this automatic method might might

still pose risks in a business context where exposed offers

need to be controlled.

Listing 3. Updated WS-Agreement SLA Tem-
plate in compact XML notation

Template templateId="SomeSLATemplate" {
terms {
all {
serviceProperties {
variableSet {
variable name="availability" {
location { printer#WsAvailInst1 }

}}}
guaranteeTerm obligated="Responder" {
serviceScope serviceName="SomeService";
qualifyingCondition { ... }
serviceLevelObjective {

kpiName { availability }
target {
operator { IS_ABOVE }
value { 0.992 }

}}
businessValueList { ... }

}}}}

We propose to extend existing SLA managers and its no-

tions of active SLAs and SLA templates with a third docu-

ment type, automatically generated SLA template proposals

(SLATPs). This extension makes it possible to turn auto-

matic SLA template adjustments into semi-automatic up-

date suggestions which service providers can evaluate and

eventually manually confirm. This concept extends current

approaches such as the GRIA template administration by

adding a monitoring-supported SLA template offering guid-

ance. The SLA managers would be extended with the fol-

lowing operations:

• list<SLATP> listTemplateProposals(),

to be used by an application to show automatically

generated proposals to the provider;

• bool addTemplateProposal(SLATP), to be

used by the SLA manager extension based on an ex-

isting SLA template;

• bool updateTemplateProposal(SLATP),

likewise used for continuous updates by the SLA

manager;

• bool removeTemplateProposal(SLATP), to

be used by the provider to discard unsuitable propos-

als; and

• SLAT confirmTemplateProposal(SLATP),

to eventually turn a proposal into a publicly offered

SLA template.

We have implemented the logic behind this extension for

the TEXO SLA Manager with an SLA template rewriting

technique similar to how dynamic WSML documents are

implemented. Rewriting works by replacing operators and

values in WS-Agreement documents depending on the de-

cision taken by the slat adjust function introduced in this

paper. Depending on the desired tradeoff between precision

and system load, the rewriting can be scheduled to occur

after every monitor measurement, after exceptional events

such as service level objective violations or after periods of

a fixed duration. Service providers are given the ability to

modify the SLATPs through a user interface and override

unsuitable decisions by slat adjust with guarantee terms

aligned with their business objectives. The user interface is

shown in figure 6.

173173173173181188

Figure 6. Semi-automatic SLA template ad-
justments

6 Conclusion

In fast-moving service environments with frequent SLA

negotiations, service providers need to decide which guar-

antees can be offered for which NFPs through SLA tem-

plates. This task is non-trivial as it depends on precise and

accurate NFPs in service descriptions and on business de-

cisions. We have shown an initial attempt of how mon-

itoring data gathered at runtime can be used to increase

the accuracy of service descriptions with up-to-date NFP

information and how based on these updates SLA tem-

plates can be adjusted semi-automatically aligned with busi-

ness goals. Additionally, we have integrated the techniques

from both steps into existing SOA platform components to

produce dynamic service descriptions and SLA templates

based on WSML, CQML+ and WS-Agreement. This pub-

licly available work contributes to future SOA architectures

with higher vitality and dynamics.

Acknowledgment

The project was funded by means of the German Fed-

eral Ministry of Economy and Technology under the pro-

motional reference “01MQ07012”. The authors take the re-

sponsibility for the contents.

References

[1] M. Babik, L. Hluchy, J. Kitowski, and B. Kryza. Generating

Semantic Descriptions of Web and Grid Services. In Dis-
tributed and Parallel Systems - From Cluster to Grid Com-
puting (Proceedings of the 6th Austrian-Hungarian Work-
shop on Distributed and Parallel Systems (DAPSYS)), pages

83–93, 2006. Innsbruck, Austria.

[2] Y. Badr, A. Abraham, F. Biennier, and C. Grosan. En-

hancing Web Service Selection by User Preferences of Non-

Functional Features. In Proceedings of the 2008 4th In-
ternational Conference on Next Generation Web Services
Practices (NWeSP), volume 00, pages 60–65, October 2008.

Seoul, South Korea.

[3] M. Boniface, S. C. Phillips, A. Sanchez-Macian, , and

M. Surridge. Dynamic Service Provisioning Using GRIA

SLAs. In Proceedings of NFPSLA-SOC’07, September

2007. Vienna, Austria.
[4] G. Canfora and M. D. Penta. Testing Services and Service-

Centric Systems: Challenges and Opportunities. IT Profes-
sional, 8(2):10–17, 2006.

[5] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosen-

blum, and S. Uchitel. Model Checking Service Composi-

tions under Resource Constraints. In Proceedings of ES-
EC/FSE, September 2007. Dubrovnik, Croatia.

[6] P. Hasselmeyer, B. Koller, I. Kotsiopoulos, D. Kuo, and

M. Parkin. Negotiating SLAs with Dynamic Pricing Poli-

cies. In Proceedings of the SOC@Inside’07, September

2007. Vienna, Austria.
[7] C. Hein, T. Ritter, and M. Wagner. System Monitoring

using Constraint Checking as part of Model Based Sys-

tem Management. In 2nd International Workshop on Mod-
els@run.time, October 2007. Nashville, Tennessee, USA.

[8] A. Heß, E. Johnston, and N. Kushmerick. Machine learning

techniques for annotating semantic web services. In Proc.
Dagstuhl Seminar on Machine Learning for the Semantic
Web, 2005.

[9] M. Klein and B. König-Ries. Combining Query and Prefer-

ence – An Approach to Fully Automatize Dynamic Service

Binding. In Proceedings of the IEEE International Confer-
ence on Web Services (ICWS), July 2004. San Diego, Cali-

fornia, USA.
[10] M. Meyerhöfer and K. Meyer-Wegener. Estimating Non-

functional Properties of Component-based Software Based

on Resource Consumption. In Electronic Notes in Theoreti-
cal Computer Science (ENTCS), volume 114, pages 25–45,

January 2005. Barcelona, Spain.
[11] M. A. S. Netto, K. Bubendorfer, and R. Buyya. SLA-

Based Advance Reservations with Flexible and Adaptive

Time QoS Parameters. In Proceedings of the 5th interna-
tional conference on Service-Oriented Computing, Septem-

ber 2007. Vienna, Austria.
[12] A. Pichot, P. Wieder, O. Wäldrich, and W. Ziegler. Dynamic

SLA-negotiation based on WS-Agreement. Technical Re-

port TR-0082, CoreGRID, June 2007.
[13] E. Putrycz and G. Bernard. Client Side Reconfiguration

on Software Components for Load Balancing. In Proc. In-
ternational Workshop on Distributed Dynamic Multiservice
Architecture, in conjunction with IEEE International Con-
ference on Distributed Computing Systems (ICDCS), April

2001. Phoenix, Arizona, USA.
[14] J. Spillner, M. Winkler, S. Reichert, J. Cardoso, and

A. Schill. Distributed Contracting and Monitoring in the

Internet of Services. In Proceedings of DAIS: IFIP Interna-
tional Conference on Distributed Applications and Interop-
erable Systems, volume 5523 of LNCS, pages 129–142, June

2009. Lisbon, Portugal.
[15] G. Stoyanova, B. Buder, A. Strunk, and I. Braun. ConQo – A

Context- and QoS-Aware Service Discovery. In Proceedings
of IADIS International Conference WWW/Internet, October

2008. Freiburg, Germany.
[16] J. Øyvind Aagedal. Quality of Service Support in Develop-

ment of Distributed Systems. PhD thesis, University of Oslo,

Faculty of Mathematics and Natural Sciences, Department

of Informatics, March 2001.

174174174174182189

