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Abstract—The use of wireless electrocardiograms, wearable as
well as implants, enable long-term and unobtrusive monitoring
of patients in their everyday living and working environments.
If enriched by environmental contexts, these devices can be vital
for early detection of cardiovascular diseases. Often cardiologists
encourage patients to keep medical journals in order to con-
textualise the measurements of electrocardiograms. Experiences
show, however, journal entries can be inconsistent or incomplete.
In this paper we associate the measurements of a wireless
electrocardiogram with the measurements of inertial sensors in
order to reason about the activities of a person. We put together
the raw measurements and their wavelet transform in a three-way
tensor and apply tensor decomposition to uncover hidden features
which can be vital for detecting the underlying activities. We
model and reason about six everyday activities, namely, cycling,
climbing up and down a staircase, jumping, push-ups, running, and
skipping.

Index Terms—Activity recognition, inertial sensors, tensor
decomposition, wireless electrocardiogram

I. INTRODUCTION

The electrocardiogram is a device which measures cardiac
action potentials [1]. Under normal circumstances, the P, the
QRS, and the T waves are produced in a single heartbeat. The
former is associated with atrial contraction, the middle with
ventricular contraction, and the latter with ventricular depo-
larisation. Understanding the occurrence, sequence, frequency,
and time interval between these waves is crucial to determine
various cardiac conditions.

A wide range of wireless electrocardiograms have been
developed both by the research community and the industry to
monitor patients in residential and rehabilitation settings [2]–
[5]. The aim is to enable long-term monitoring while patients
freely move and carry out everyday activities. This way,
the possibility of observing symptoms which may otherwise
remain hidden during clinical diagnosis increases.

Often cardiac patients are encouraged to keep medical
journals in order to associate environmental, biomedical, and
physiological factors – such as range of motion, pain, fatigue,
headache, irritability, etc. – with ECG measurements, so that
doctors can establish correlation between symptoms and po-
tential causes and better interpret ECG measurements. Medical
journalling, however, is often subjective and may contain in-
consistent or incomplete reports. In this paper we fuse together
the measurements of inertial sensors (3D accelerometers and
3D gyroscope) with the measurements of a wireless ECG in
order to reason about underlying physical activities (or level of
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exertions). Our aim is to objectively explain the measurements
of a wireless ECG.

The remaining part of this paper is organised as follows:
In Section II, we review related work. In Section III, we
discuss the measurement and experiment settings as well as
the preprocessing of the measurement sets. In Section IV we
discuss dimensionality reduction techniques as a mechanism
to efficiently model and analyse the sensed data. In Section V,
we present the results of our analysis. Finally, in Section VI,
we give concluding remarks.

II. RELATED WORK

The usefulness of wireless electrocardiograms in residential
and clinical settings has been the focus of research in the recent
past. An overview of their association with different everyday
human activities can be found in [6].

Li et al. [7] employ measurements of a 3D accelerometer
and a wireless ECG to reason about motion artefacts and the
activity of a user – a work similar to ours. The authors employ
various time and frequency domain features as well as data
fusion strategies. Thus, they combine the Hermite polynomial
expansion [8], [9] and principal component analysis to model
the temporal characteristics of regular cardiac activities and
artefacts, respectively. Likewise, a combination of different
time domain features and a support vector machine (VSM) is
used to model the accelerometer measurements. In parallel, the
authors extract cepstral features from ECG and accelerometer
signals and combine these features using Gaussian mixture
models (GMMs). Finally, the multi-modal components (ECG
and accelerometer) and the multi-domain models (time domain
SVM and cepstral domain GMM) are fed into a scoring
function which then discriminates between different activities
(lying, walking, sitting, running, fidgeting). The authors report
a classification accuracy ranging from 79.3% to 97.3%.

Leutmezer et al. [10] employ a wireless ECG for detecting
major epileptic seizures in real-time, relying on changes in
cardiac rhythm. The system comprises of an ECG monitor and
a control unit. The control unit acts as a gateway between an
external clinical application and the ECG. The authors propose
algorithms for detecting major epileptic seizures (tonic-clonic,
generalized tonic, clonic, or hypermotor) using variations of
the heart rate. The heartbeat detection algorithm relies on the
continuous wavelet transformation and adaptive thresholding
to detect heartbeats in ambulatory conditions even during an
intense body motion. Real-time analysis of the ECG data is
achieved by processing the data stream locally on the ECG
monitor. Alarms are transmitted over a wireless link to the



control unit which is synchronized with a video surveillance
system. The prototype is evaluated on four healthy volunteers
in their home environment and on three epilepsy patients
at medical facility in the Netherlands. The subjects were
monitored while sleeping, for a total of 50 nights. Due to
low positive predictive values in one of the patients, the
authors suggested to improve their algorithm by adding other
modalities, such as a 3D accelerometers, REM, and EMG
sensors.

Rincon et al. [11] propose a wearable ECG that detects
atrial fibrillation episodes in near real-time. Atrial fibrillation
(AF) happens when disorganized electrical signals cause the
heart’s atria to contract very fast and irregularly resulting a
desynchronization between the atria and the ventricles and
causing an inefficient pump of blood [12]. Most AF symptoms
are caused by a poorly controlled or irregular ventricular
rate. The associated risk of stroke, dementia, heart failure,
and death is high in patients who have a history of AF.
Hence, early detection of AF is important to ensure immediate
treatments. Since it is not known when AF can occur (it
may also be asymptomatic), continuous monitoring and real-
time diagnosis are crucial. AF episodes can be seen from
ECG waveforms by checking for anomalies. Rincon et al.’s
proposal is based on the analysis of heart rate and checking
the absence of the P wave in the ECG waveforms. For this
task, the authors propose two algorithms: one for analysing
the heart rate and the other for detecting the P wave. The
outputs of the algorithms are combined using fuzzy logic in
order to classify the analysis as normal or AF. The algorithms
are implemented on the Shimmer platform (ref. to Section III).
The performance of the proposed system is evaluated using the
MIT-BIH database [13]. The evaluation results reveal that the
proposed AF detection algorithm achieves 96% sensitivity and
93% specificity.

Our approach complements proposed or existing approaches
in two ways. Firstly, our measurement space offers nine
degrees-of-freedom (three channels measuring ECG, three
channels measuring acceleration, and three channels measur-
ing angular velocity), thus enriching our model with evi-
dence pertaining to human cardiology and physical activities.
Secondly, we combine temporal, spectral and spatial aspects
using tensors, a seamless and intuitive way of combining
complementary evidence.

III. DATA ACQUISITION AND PREPROCESSING

We employed the Shimmer (v. 3) platform1 for acquiring
the measurement sets. The platform integrates a 5-lead wire-
less ECG, a 3D accelerometer, a 3D gyroscope, and a 3D
magnetometer. The ECG measures cardiac action potentials at
three abstract positions triangulating the heart, namely, left leg-
left arm (LL-LA), left leg-right arm (LL-RA), and left arm-
right arm (LA-RA). An additional measurement taken from
the centre of the heart serves as a reference. So, there are four

1http://www.shimmersensing.com/products/ecg-development-kit (Last vis-
ited on January 08, 2019: 14:20).

Fig. 1. The standardised measurement sets originating from a 3D accelerom-
eter, a 3D gyroscope, and a 5-lead wireless electrocardiogram. The activity
associated with the measurements was push-up.

ECG channels all together and six additional channels mea-
suring rectilinear (3-dimensional acceleration) and curvilinear
(angular velocity) motions. We abandoned the measurements
of the magnetometer sensor because they were unreliable.

The Shimmer platform supports the synchronous sampling
of all the channels. Its disadvantage is that the location from
where the inertial measurements are taken and the location
where the electrodes of the wireless electrocardiograms are
placed are different, because the inertial sensors are not
embedded in the electrodes. Hence, the motion affecting the
individual electrodes is an approximation.

We identify six different everyday activities a subject wear-
ing a wireless electrocardiogram may undertake – cycling,
climbing up and down a staircase, jumping, doing push-ups,
running, and skipping. Fig. 1 displays the row measurement
sets originating from a subject performing push-ups. As can
be seen, the measurement sets reveal that the subject rested
between different push-up sessions. We used the intermissions
to clearly mark the beginning and end of each session. Thus,
we segmented the measurement sets into six push-up activity
sessions. We use three of them to train our model and the
other three to test our model.

In order to avoid bias arising from the heterogeneity of the
row data and to give equal statistical significance to all the
channels, we standardised each measurement set:

xn =
(x− ηx)

σx
(1)

where ηx is the mean and σx is the standard deviation of x,
respectively. Now xn has a zero mean and a standard deviation
of one. It should be noted that xn and x are, statistically
speaking, equivalent.

IV. DIMENSIONALITY REDUCTION

The research questions we wish to address in combining the
measurements of the inertial sensors with the measurements
of the ECG can be stated as follows:
• Do the measurements correlate well?



• Is it possible to uncover hidden features common to all
the channels from the row measurements which can be
useful for reasoning about the underlying activities?

We assert that these questions can be answered affirmatively
and efficiently if we employ dimensionality reduction tech-
niques. The justifications are the following:

• Since we have nine channels, the amount of data which
can be generated in a short time is appreciably large.

• These data potentially exhibit strong correlations with
one another, in which case dimensionality reduction tech-
niques can reduce the overall size significantly without a
significant lose of the data’s statistical properties.

In the subsequent subsections, we give a brief introduction
to 2D and 3D dimensionality reduction techniques – singular
value decomposition and tensor decomposition –, highlighting
their merit and demerits. Then, in Section V, we present in
detail how we employed tensor decomposition to process the
measurements of the inertial and ECG sensors to determine the
activity of a person. Readers who have a sound background
in dimensionality reduction techniques can skip the remainder
of this section.

A. Singular-Value Decomposition

The samples taken during a single, continuous activity can
be put together to form a matrix X of size n × m, where
n refers to the sample size and m refers to the number of
channels. Since we are concerned with a single activity, we
assume that the samples exhibit correlation in both dimensions
of the matrix. Therefore, the matrix can be described by a
few number of statistically independent factors. If we apply
singular value decomposition (SVD) on X, the result will be:

X = UΣVT (2)

where U (n × r) and V (m × r) are orthonormal matrices
and Σ (r× r) is a non-negative diagonal matrix whose entries
σii, 1 ≤ i ≤ r are sorted in decreasing order. The diagonal
entries of Σ are called the singular values of X and encode
the distinct features of X and their relative significance. The
advantage of using SVD is that:

1) One does not need to make any assumption as regards
the hidden features. Their number and significance is
automatically revealed by the decomposition process in
the diagonal matrix.

2) One can express the original matrix X as the summation
of many matrices as follows:

X =

R∑
r=1

σrrur ◦ vr (3)

where ◦ indicates the vector (outer) product and ur and
vr refer to the r-th column of the matrices U and V,
respectively. Note that the relevance of each component
is determined by the relevance of σii.

3) If the samples of the original matrix exhibit strong
correlations, then, X can be approximated by taking the
first K components only:

X ≈
K∑
r=1

σrrur ◦ vr (4)

for K < R. If the difference in magnitude between
the successive σrr entries is significantly large, then a
strong correlation is identified in the original matrix and,
hence, the error resulting from our approximation will
be significantly small.

One of the limitations of working with SVD is that it is only
two dimensional. Since one of these dimensions represents the
temporal aspect of the datasets, which we wish to preserve
(because we wish to know what activity is taking place at any
instant of time), the hidden feature we seek to uncover can be
searched along one dimension only.

In correlating the inertial measurements with the ECG
measurements, we face one challenge. The inertial sensors
encode the robustness of the activity in terms of both the
frequency and amplitude of the measurement they produce
whereas the ECG encodes the same activity mainly along the
frequency dimension (the heart beats faster when the body
exerts). In order to cohesively correlate these aspects, we
can use spectrum analysis. Fourier based spectrum analysis,
however, reveals the spectral aspects of a signal but in doing
so, completely hides its temporal aspects. For the analysis
of ECG, this can be problematic. For example, a specialist
may determine that the heart was exerting, may not, however,
be able to determine why or when. The continuous wavelet
transform [14] can be applied to capture both temporal and
spectral aspects in the same dataset. Hence, for each of the
channels we have, the wavelet transform results in a matrix
whose rows and columns encode the frequency and temporal
components, respectively.

Each of the channels we consider is unreliable when consid-
ered independently. Indeed, a closer look at Fig. 1 reveals that
all the ECG channels suffer from a strong, long-term drift and
zooming into a single ECG channel reveals a considerable
distortion by motion artefacts. Putting the measurements of
all the channels together along with their continuous wavelet
transform enables to model a single activity as a three-way
tensor (i.e., as a three dimensional array) as shown in Fig. 2.

B. Tensor Decomposition
In the same way a matrix can be decomposed (factorised)

into basic constituting elements, a tensor can be decomposed
into basic constituting elements. However, unlike decomposing
a matrix, decomposing a tensor is not straightforward. To start
with, an assumption has to be made as regards the number of
the hidden factors, whereas this is done automatically with
SVD. Secondly, a tensor has to be unfolded (or flattened) into
a matrix before it can be decomposed, which influences the
outcome of the decomposition.

A closer look into the activity tensor in Fig. 2 reveals
that it provides three complementary views which can serve



Fig. 2. A three-way tensor for modelling the activity of a person in terms
of the measurements of a wireless ECG and inertial sensors along with their
continuous wavelet transform.

different purposes. For example, the front view provides a
matrix describing a single channel. This view is called the
front slice. The top view provides a matrix describing the
temporal aspect of all the channels for a single frequency.
In other words, if a given activity manifested itself in terms
of a single frequency component, it is easier to determine
at which time this happened and whether all the sensors
have registered this event. This view is called the horizontal
slice. Likewise, the side view provides a matrix describing the
manifestation of all frequency components in all the channels
at any given time. This is called the lateral slice. It is this
flexibility, among others, which makes a tensor decomposition
desirable. The chief task of a tensor decomposition is to
identify multidimensional features in terms of which activities
can be categorized. Compared to the size of the tensor, the
basic features are significantly small in size, so that the
clustering process is computationally tractable.

A tensor analysis begins by unfolding (flattening) the tensor
into a matrix. The unfolding can take place in different ways,
but whichever way is chosen, the entries along each dimension
form a column vector. Suppose, the first three front slices of
the original tensor2 are represented as follows:

X1 =

 12 10 0 · · ·
8 2 120 · · ·
...

...
...

...


X2 =

 15 10 0 · · ·
12 4 60 · · ·
...

...
...


X3 =

 26 8 21 · · ·
50 3 15 · · ·
...

...
... · · ·


(5)

2This corresponds to the wavelet transform of the first three channels (say,
the outputs of the X, Y, and Z axes of the accelerometer). The wavelet
transform of a channel, as we already highlighted, is an n×m matrix.
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Fig. 3. One of the four factors of the B matrix (temporal aspects) of the
tensor decomposition describing the activities of a person (Left to right and
top to bottom: cycling, climbing up and down a staircase, jumping up and
down on a flat surface, push-ups, running, and skipping).

The mode-1 unfolding of the above tensor takes each
column vector of the matrices as they are and put them
together side-by-side:

X(1) =

 12 10 0 · · · 15 10 0 · · · 26 · · ·
8 2 120 · · · 12 4 60 · · · 50 · · ·
...

...
...

...
...

...
...

...
...

...


(6)

The mode-2 unfolding takes each raw entry of the matrices
and places them as column vectors in a single matrix:

X(1) =


12 8 · · · 15 12 · · · 26 50 · · ·
10 2 · · · 10 4 · · · 8 3 · · ·
0 120 · · · 0 60 · · · 21 15 · · ·
...

...
...

...
...

...
...

...
...

 (7)

Likewise, the mode-3 unfolding takes each lateral entry (along
the time dimension) of the matrices and places them as column
vectors in a single matrix. Afterwards, the unfolded matrix
can be decomposed as if it were a normal matrix. There are
different tensor decomposition strategies, but we employ the
canonical polyadic decomposition (referred in the literature
as CANDECOM/PARAFAC, or, in short, CP) [15] which
decomposes a three-way tensor into three matrices:

X = ABC (8)

or

X =

R∑
r=1

ar ◦ br ◦ cr (9)

where ar, br, and cr, are the r-th columns of the matrices A
B, and C, respectively. In the existence of a strong correlation,
the activity tensor can be approximated only by the outer
product of the first K column vectors of the matrices A,
B, and C, respectively. The three basic matrices have the
following significance: The matrix A relates the frequency
components of the activity with the hidden features. The
matrix B associates the unique features with the temporal
aspect of the activity and the matrix C associates the different
channels with the hidden features.



V. EVALUATION

The focus of this section is on the scope and usefulness
of a tensor decomposition in modelling and reasoning about
different physical activities. We sample all the sensors at 512
samples per second. Then we apply the continuous wavelet
transform on the row data in order to associate spectral
aspects with temporal aspects. This results in a single channel
being modelled by a matrix whose rows and columns express
spectral and temporal aspects, respectively. The organisation
of the matrices into a multi-dimensional array results in an
activity tensor.

The CANDECOMP/PARAFAC (CP) requires as its input
a tensor and the number of basis factors in terms of which
the row data can be explained. In order to determine the
number of basis factors, we began with two, performed the
tensor decomposition, and evaluated the accuracy with which
the reverse process produced the original tensor using Equa-
tion 5. For all the activities we considered in our analysis, no
appreciable improvement in the coefficient of determination
(R2) was observed when we increased the basis factors beyond
four. Therefore, we set the number of factors to four.

As we already mentioned in the previous section, the CP
decomposition yields the A, B, and C matrices. Since our main
concern is discriminating between different activities and not
as such in determining which of the channels make the most
contribution for the discrimination, the matrices A and B are
the most important for our further analysis.

Fig. 3 displays how one of the four basis factors of the B
matrix describes six different activities. Since the B matrix
encodes the temporal aspect of an activity, the basis factor
represents one unique temporal aspect. From visual inspection,
it can be seen that the different activities have different
footprints. If we take a small time window ∆T and add the
square of the samples, we get the energy of the activity for
that time window. Computing the energy this way by sliding
the window and normalising the overall result by the number
of windows, we get the average energy:

1

N

∑
n∈N

(
T∑

k=1

a2k

)
(10)

From this factor alone, it is possible to discriminate between
the different activities. Nevertheless, not all the activities can
be recognised with equal confidence. Whereas the push-up
activity can be recognised with hundred percent accuracy, this
cannot be achieved for discriminating between cycling and
jumping as well as running and skipping. If we combine the
first two factors of the B matrix, the recognition accuracy
improves slightly, but not significantly. Other approaches can
be adopted to systematically combine all the four temporal
factors in order to improve the recognition accuracy, but
this will introduce complexity to both the modelling and the
computation process.

Unlike the factors expressing the temporal aspects, the
factors expressing spectral aspects do not uniquely discrimi-
nate between activities when considered independently. When
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Fig. 4. The factors of the A matrix (spectral aspects of the tensor decompo-
sition) describing the activities of a person in one of the experiments.
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Fig. 5. The factors of the A matrix (spectral aspects of the tensor decompo-
sition) describing the activities of a person in a different experiment.

considered collectively, however, their expression power is
much superior than the temporal aspects. First of all, the
spectral maximum of a given basis factor can be determined
uniquely for each activity. This maximum does not change
appreciably from experiment to experiment. An exception to
this is the cycling activity. Secondly, when the fmax of the
different basis factors are added, they uniquely express an
activity. This is despite the fact that some activities have
similar maxima in one or more basis factors.

In order to explain these two aspects, we refer to Figures 4
and 5 where we plotted the four spectral basis factors (the
columns of the A matrix of the CP decomposition) for all
the activities. The two figures correspond to two different
experiments involving the same sets of activities. The colour of
a plot corresponds to a particular activity. Summing the square
of the magnitudes of all the factors for a particular activity
amounts to obtaining the energy spectral density of the signal
for that particular activity. We realise that the energy spectral
density is not unique enough to discriminate between the
activities, particularly when they involve intense movements.
If, on the other hand, we obtain the frequencies at which the
spectral density is maximum in the basis factors and simply
add them, we can uniquely determine to which of the activities
a particular sum refers.

In order to determine how the sum of frequencies differ from
experiment to experiment for any given activity, we conduct
six different experiments for each activity and examine the
difference using Equation 11:



TABLE I
THE FREQUENCY SIGNATURE OF THE DIFFERENT MOVEMENTS

FOLLOWING A TENSOR DECOMPOSITION.

Activity Cyle Climb Jump Push-up Run Skip
N∑

i,j=1
i 6=j

|Si − Sj | 35 17 1 15 3 2

1
N

∑N
i=1 f

i
max 226 228 183 352 225 203

TABLE II
THE FREQUENCY DIFFERENCE BETWEEN THE MAXIMUM FREQUENCIES OF

THE DIFFERENT MOVEMENT TYPES FOLLOWING A TENSOR
DECOMPOSITION.

Cycle Climb Jump Push-up Run Skip
Cycle - 2 43 126 1 23
Climb 2 - 45 124 3 25
Jump 43 45 - 169 42 20
Push-up 126 124 169 - 127 149
Run 1 3 42 127 - 22
Skip 23 25 20 149 22 -

∆E =

N∑
i,j=1
i 6=j

|Si − Sj | (11)

where Si and Sj refer to the sum of frequencies in exper-
iment i and j, respectively. Tab. I lists the result. Ideally,
the difference should be zero if the sum of frequencies
uniquely expresses an activity. This, however, is not the case
in reality. In order to appreciate the discrimination power of
this approach, we consider the sums of frequencies of the
different activities. The third row of Tab. I lists the average sum
of frequencies for each activity (averaged over six different
experiments). Tab. II displays the distance between the sums
of frequencies for the different activities. Except for cycling,
climbing, and running, discriminating between all the other
activities results in almost 100 % accuracy. A false positive can
be avoided for running almost with 100 % accuracy, since its
sum of frequencies can be determined with great confidence,
unlike for climbing and cycling whose sums of frequencies
vary appreciably from experiment to experiment.

VI. CONCLUSION

In this paper we expressed the measurements of inertial
sensors and a wireless electrocardiogram as elements of a
three-way tensor in order to model different human activities.
The inertial sensors consist of a 3D accelerometer and a
3D gyroscope and measure three dimensional rectilinear and
curvilinear accelerations, respectively, whereas the wireless
ECG provides three complementary channels (left leg-left arm,
left leg-right arm, and left arm-right arm) measuring cardiac
action potentials. Thus, we decomposed the activity tensor into

three matrices and analysed the expression power of the factors
encoded in these matrices. The first matrix encodes spectral
aspects whilst the second matrix encodes temporal aspects.
The third matrix was not of interest. We demonstrated how
easily the basis factors describing spectral aspects can be used
to recognise activities. One way to improve the expression
power of the spectral aspects of a tensor decomposition will
be to use a Bayesian Network, so as to associate a probabilistic
value to each of the spectral aspects. This will be the focus of
our future work.
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