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Abstract—One of the fundamental tasks of a smart-grid is
achieving an optimal balance between the supplied and consumed
energy in the grid. The optimal balance avoids underutilisation
as well as overloading of energy sources; minimises the cost
of energy transportation and storage; and reduces the price
of energy. In this paper we propose a stochastic model for
associating energy-suppliers with consumers having matching
characteristics in a probabilistic sense. The optimal number of
users a particular supplier can serve is described in terms of the
probability density functions of its energy production and the
demand of consumers. We shall demonstrate both analytically
and numerically that an optimal balance can be achieved when
the supplied energy, the demand for energy, and the number of
users associated with a particular supplier, all, have a normally
distributed probability distribution function (pdf).

Index Terms—Smart grid, supply-demand model, probabilistic
model, optimal number of consumers, probability distribution
function

I. INTRODUCTION

The worldwide energy consumption and energy price are
increasing steady [1], [2]; the former affected by factors such
as population growth, improved quality of life in middle-
income economies, increment in the number of electrically
operated equipments and devices per household, the growing
influence of ICT in the world, and similar emerging factors;
and the former due to the inherent scarcity of resources. The
concomitant effect of a growing energy demand is the negative
impact of energy related wastes on the environment. These
collective developments have necessitated the inclusion or the
consideration of alternatives both at the energy generation and
energy distribution stages.

At the energy generation stage, alternative as well as
complementary energy sources, such as wind and solar, are
presently being integrated in different countries to provide
additional but also environment-friendly (clean) energy to con-
sumers. As of July 2015, the statistics from EWEA reveals that
in “the first six months of 2015, Europe fully grid connected
584 commercial offshore wind turbines, with a combined
capacity totalling 2,342.9 MW. Overall, 15 commercial wind
farms were under construction. Once completed, these wind

farms will have a total capacity of over 4,268.5 MW.”1 At the
distribution stage, the main aim is to ensure the efficient but
also the flexible utilisation of energy by consumers.

The traditional grid structure (producer-controlled and cen-
trally managed) is optimised for the seamless integration of
energy producers, so that the availability of energy sources can
be abstracted from customers, so that the fluctuation of energy
supply can be avoided as energy sources join and leave the
grid. In other words, the relationship between energy suppliers
and consumers is loosely coupled. The structure, however,
performs poorly when it comes to participating consumers,
because the communication is unidirectional. Consequently,
there is a strong drive to distribute energy supply and for
a smart integration of consumers in the grid, so that they
can cooperate with utility companies as to when, for how
long, and how much energy they should draw from the grid
in specific circumstances. For example, consumers can be
enticed by incentives (in the form of extra Kilowatt-hours or
lowered price per kilowatt-hours) whenever they refrain from
overloading the grid during peak hours [3].

The vision of a smart grid is to achieve both the seamless
integration of energy suppliers and participatory energy con-
sumption. Different energy suppliers expose their product to
retailers through the grid. The retailers or utility companies
buy, aggregate, temporarily store, and distribute energy. The
price they set on the energy they sale depends on many factors
such as the relative stability of the energy sources and the cost
of storage and distribution. Since the smart grid includes a
communication and smart metering facilities, utility companies
can also directly negotiate with consumers about the energy
consumption modalities, so that consumers can avoid both
the underutilisation and the excess utilisation (overloading)
of the system, both of which are sources of inefficiency; the
former producing high storage cost whilst the latter producing
undesirable fluctuation of energy distribution and potential
damage to the infrastructure.

One of the advantages of the smart grid concept is the
ease with which local (small-scale) and ubiquitous energy

1http://www.ewea.org/statistics/ (Last accessed on December 02, 2015).978-1-4673-8473-5/16/$31.00 c©IEEE



producers can find customers within their proximity. For
example, in rural areas, small towns, and villages, small-scale
energy producers can sale their product to local customers
in the same way small-scale farmers can sale dairy and milk
products to their local customers thereby significantly reducing
storage and transportation costs. Customers also profit from a
local strategy because they can have access and contribute
to environment-friendly and affordable products and play a
vital role in strengthening the local economy. In this paper
we mathematically determine the number of customers that
can be associated with a specific energy producer so that the
energy produced by the producer can be efficiently consumed
(1) with a minimum demand for energy storage and (2) with-
out considerably overloading the producer. Our mathematical
approach models both the produced and the consumed energy
as random variables and estimate peak energy production and
consumption in a probabilistic sense.

The remaining part of the paper is organised as follows: In
Section II we discuss related work and demonstrate how our
work complements state-of-the-art. In Section III we present
our mathematical approach in detail. In Section IV we evaluate
our approach numerically. Finally, in Section V we provide
concluding remarks.

II. RELATED WORK

Several approaches have been proposed to manage the smart
grid and to involve customers in the decision-making process,
so that energy can be consumed in an efficient and affordable
manner. Some of these strategies involve (1) avoidance of
excessive fluctuation of energy supply as energy sources join
and leave the grid [4]; (2) dynamic pricing based on the
availability and the demand of energy and the avoidance
of both underutilisation and excessive utilisation of energy;
(3) participatory decision-making in order to avoid excessive
energy draw during peak times; and (4) dynamic scheduling
of energy utilisation to ensure a steady and balanced energy
consumption. Except (1), the aim of which is improving the
reliability of the grid, all the others are some form of demand
side management (DSM) [5], [6], [7] the core concept of which
is introduced by the Electric Power Research Institute (EPRI)
in the 1980s [8]. The core idea of DSM is to persuade users
to modify or postpone their demand during peak hours of
consumption. This way a balance in the grid between energy
supply and energy utilisation can be maintained. In order to
make customers apt for persuasion, utility companies offer
them some form of incentives.

One of the aspects of DSM is the integration of smart
meters [9] and a communication infrastructure into the smart
grid system. Among its merits, this idea enables to gather
sufficient statistics about consumption behaviours and timing
and to communicate the statistics with the utility companies,
so that based on the statistics, customer profiling, load shifting
and control [10], [5], and dynamic pricing [11] can be made.
Alternatively, the customers themselves can manage their
energy load voluntarily [7], [12] by predicting load and price

distribution and by avoiding the use of electricity during peak
hours [13].

Different strategies and mathematical models have been
proposed to support DSM. In [14], [15], [16] a stochastic
optimisation model is proposed to determine the optimal
energy load in a smart grid and the corresponding optimal
energy price. In [11] a game-theoretic strategy is proposed to
control energy demand at the user side. The idea is to install
the optimal strategy at the customer side so that customers
can identify the most suitable and, therefore, the most afford-
able price and schedule their consumption accordingly. The
approach attempts to distribute the time of energy utilisation.
Similarly, in [17] an autonomous and distributed demand-
side management system is proposed. In [18], a four-stage
Stackelberg game strategy is employed where energy suppliers
are grouped into two distinct price groups. In the first group,
unreliable but cheap suppliers can be found whereas in the
other group reliable but costly suppliers are grouped. The
strategy aims to determine the optimal supplier combination
for a customer, so that its demand is met for an optimal price.

Most of the proposed approaches attempt to influence users’
behaviour in managing the smart grid. But in most realistic
situations user’ behaviour cannot easily be influenced because
they are causally connected to different factors related to their
lifestyle, work and familial situations, and convenience. In this
paper we propose an optimal pairing strategy that takes pro-
duction and consumption statistics into consideration. Hence,
our approach, instead of influencing suppliers or consumers
behaviours, aims to identify matching statistics and the optimal
number of consumers a given supplier can satisfy. The strategy
also minimises the cost of storage because energy can be
utilised as soon as it is produced. With a localisation algorithm,
our strategy can be most suitable for small-scale suppliers and
consumers in villages, small towns, and remote places where
small-scale wind, solar, and similar renewable energy can be
pervasively produced.

III. CONCEPT

Neither the energy produced nor the energy consumed in
a smart grid is a deterministic quantity. This is particularly
true for renewable energy the amount of which depends on the
wind or solar that can be harvested at any given time from any
given location, which is never deterministic. Consequently, we
model the amount of energy that can be produced by a specific
producer and the energy consumed by a specific customer as
random variables. A random variable is sufficiently explained
by its probability density function (pdf), which assigns a
probability term to any real value assignable to the random
variable.

Suppose the energy produced by the i-th supplier is si and
the energy consumed by the j-th consumer is cj kWh. The
pdf of si and cj are fi(s) are fj(c), respectively. Generally, a
single supplier produces more energy than can be consumed
by a single consumer. In small communities, categorising
consumers based on their function is plausible. For example,



consumers can be categorised as households, hotels, restau-
rants, etc. The classification enables to assume that members
of a group have similar energy consumption characteristics. In
other words, they have similar density functions.

The overall energy consumed by n consumers (where n, too,
is a random variable, as the number of consumers drawing
energy from a grid at any given time cannot be known in
advance) can be expressed as:

c =

n∑
i=1

ci (1)

where n and ci are statistically independent for all i, since the
number of users accessing the grid and the amount of energy
consumed by individual consumers have nothing to do with
one another. Notice that c is a random variable as it is a result
of the summation of multiple random variables.

In order to understand how the pdf of c is affected by
the pdf of the ci, suppose we have only two consumers
and each consumer consumes at any given time either
8 kWh or 9 kWh with equal probabilities. So the overall
energy drawn from the grid can be one of the following
combinations: [(8 + 8), (8 + 9), (9 + 8), (9 + 9)]. In terms of
probabilities, the amount of energy that can be drawn by
the two consumers simultaneously has the following distri-
bution: [16(0.25), 17(0.5), 18(0.25)]. Similarly, if the num-
ber of distinct amounts of energy increases for the two
consumers, the distribution of the overall energy consump-
tion changes significantly. For example, if they consume
[7, 8, 9, 10] kWh with equal probabilities (0.25) at any time,
the energy drawn from the grid will have six different values:
[14, 15, 16, 17, 18, 19, 20], obviously, some values are more
probable than others (16 kWh being the most probable). In
general, if the pdfs of the two random variables are continuous,
the pdf of c can be determined as the convolution of the
pdfs of c1 and c2. The pdf of c becomes normal or Gaussian
if more than two ci are added (following the central limit
theorem), which is the case for our case, because we assumed
that potentially a large number of consumers draw energy from
the grid. Figure 1 shows how the pdf of c evolves to become
a normal distribution as the the number of ci increases from
2 to 3.

Hence, the aggregate energy demand of n customers is
a normally distributed random variable with mean ηn and
variance σ2

n. If we know the mean (η) and variance (σ2) of
the demand of each customer, then it is possible to adequately
describe the overall demand as follows:

ηn =E {x1 + x2 + ...+ xn} (2)
=E {x1}+ E {x2}+ ...+ E {xn}
=η1 + η2 + ...+ ηn = nη

Note that in Equation 2 we assumed that the expected con-
sumption of the n customers is the same. Likewise, the
variance of the aggregate consumption can be calculated as
follows:
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Figure 1: In accordance with the central limit theorem, the
pdf (density function) of the sum of multiple random variables
tends to be normal (gaussian) regardless of the nature of the
pdf of the individual random variables. From left to right: The
pdfs of three individual random variables (uniform), the pdf
of c1 + c2 and the pdf of c1 + c2 + c3

.

σ2
n = E

{
(c− ηn)2

}
= E

{
c2
}
− (E {c})2 (3)

To demonstrate the solution of Equation 3, assume that we
have only two customers: c1 and c2. Thus, σ2

n=2 is expressed
as:

σ2
n=2 =E

{
(c1 + c2)

2
}
− (2η)

2

=E
{

c21
}
+ E

{
c22
}
+ 2E {c1c2} − 4η2 (4)

Each c2i can be expressed in terms of its variance and mean;
since σ2 = E

{
c2i
}
− η2, E

[
c2i
]
= σ2 + η2. Hence,

σ2
n=2 =

(
σ2 + η2

)
+
(
σ2 + η2

)
+ 2η2 − 4η2 = 2σ2 (5)

Note that in Equation 3 we have assumed that the two
consumers are independent and 2E {c1c2} = 2ηη = 2η2. In
general, for n consumers, Equation 4 becomes:

σ2
n = nσ2 (6)

The number of customers drawing energy from the grid
simultaneously at any give time of the day cannot be known
in a deterministic sense and, therefore, should be considered
as a random variable, as we already mentioned above. This
also means that the expected amount of energy that can be
drawn from the grid by these n customers (Equation 2) and
the variance (Equation 6) are both random variables:

ηn = nη (7)

And,

σ2
n = nσ2 (8)



where n denotes that the number of consumers is modelled
as a random variable. Considering n and c are statistically
independent and assuming that the pdf of n or the expected
number of customers that can draw energy from the grid
simultaneously is known, we can determine the expected mean
and variance of the energy that can be drawn from the grid
simultaneously by the group of customers as follows:

E {ηn} = ηnη (9)

where ηn is the expected number of customers that draw
energy from the grid simultaneously. And,

E
{
σ2

n
}
= ηnσ

2 (10)

In conclusion, the aggregate demand (consumption) of the
n customers will have a normal distribution according to the
central limit theorem and as shown in Figure 1. The expected
mean and variance of this pdf are given by Equations 9 and
10, respectively. From the supplier side, energy is efficiently
utilised if it can be consumed as soon as it is produced, so
as to eliminate the cost of energy storage. For this to happen,
the expected amount of energy that can be produced by the
j-th supplier should be matched by the appropriate amount of
demand:

E {sj} = ηnη (11)

Consequently, for a specific group of consumers with a
known η (i.e., households, restaurant, hotels, pastry, etc.), the
optimal expected number of customers that can be served by
the j-th supplier can be expressed as:

ηn =
E {sj}
ηnη

(12)

IV. EVALUATION

We used the R statistical tool to validate our model. The
number of users that consume the energy produced by a single
supplier in a smart grid is set to be normally distributed, with
the expected number of consumers being 20. The variance of
the distribution is 0.5. Each household consumes on average
9.6 kWh per day. This is based on the latest statistics available
for Germany (the average electricity consumption per elec-
trified household)2. According to the central limit theorem,
the aggregate energy utilisation of the n consumers has a
normally distributed pdf with mean and variance specified by
Equations 2 and 6, respectively.

If a supplier, the energy supply of which has a normally
distributed pdf with mean and variance equalling the mean
and variance described by Equations 9 and 10 is found, then
the optimal balance between energy generation and consump-
tion will be attained with a minimum amount of surplus
or deficiency of energy. Fig. 2 shows this condition. In the
figure, the dashed lines indicate the demand of customers

2https://www.wec-indicators.enerdata.eu/household-electricity-use.html
(last accessed on December 08, 2015).
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Figure 2: The difference between the pdf of the supplier and
the average energy demand of n consumers when n is normally
distributed (blue) and uniformly distributed (red) with a mean
number of users being 20 for both cases.
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Figure 3: The variance of the energy utilised by the n number
of users which indicate the expected mismatch between the
energy supplied by the j-th supplier and the energy consumed
by the n customers. The blue line indicates the fluctuation in
the energy demand when n is normally distributed and the red
line indicates the fluctuation in the energy demand when n is
uniformly distributed.
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Figure 4: The difference between the pdf of the supplier and
the average energy demand of n consumers when n is normally
distributed (blue) and uniformly distributed (red) with a mean
number of users being 20 for both cases.

when the energy consumption of each household is normally
distributed (blue) and uniformly distributed (red). In both
cases, the aggregate energy consumption of the n consumers
is normally distributed with a slightly different characteristics.
The solid line (black) shows the distribution of the energy
generated by the supplier. As can be seen, the expected energy
demand and the expected energy supply overlap, confirming
that the approach is optimal. Fig. 3 shows the discrepancy
between the energy supplied and consumed: a value above the
mean indicating energy surplus and a value below the mean
indicating a shortage of energy. The expected discrepancy is
(25/475) × 100% = 5.26% when the energy utilisation of
each household is normally distributed. The number slightly
increases when it is uniformly distributed (5.47%).

In contrast, in Fig. 4 the supplier produces a uniformly
distributed energy. Even though the mean, min and max of
the supplied and demanded energy are the same, there is,
however, a significant difference between the supplied and
demanded energy, leading to either a significant surplus of
energy (requiring storage) or shortage of energy.

V. CONCLUSION

In this paper we proposed a probabilistic model for coupling
small-scale suppliers of energy with small-scale energy con-
sumers. The model is useful for villages, small towns, and
remote locations where private households can find small-
scale energy suppliers in their vicinity. The energy that can
be generated by renewable sources, the energy consumed by a
single household, and the number of consumers that can draw
energy simultaneously at any given time cannot be known in a
deterministic sense. Consequently, we modelled them as ran-
dom variables and specified their statistical characteristics with

probability distribution functions (pdf). Based on the statistical
features and making use of the central limit theorem, we
proposed the optimal number of users that can be associated
with a single supplier. The matching is optimal when all the
three random variables have normally distributed pdfs.

REFERENCES

[1] C. Mobius, W. Dargie, and A. Schill, “Power consumption estimation
models for processors, virtual machines, and servers,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 25, no. 6, pp. 1600–
1614, 2014.

[2] W. Dargie, “A stochastic model for estimating the power consumption of
a processor,” Computers, IEEE Transactions on, vol. 64, no. 5, pp. 1311–
1322, 2015.

[3] L. D. Kannberg, D. P. Chassin, J. G. DeSteese, S. G. Hauser, M. C.
Kintner-Meyer, R. G. Pratt, L. A. Schienbein, and W. M. Warwick,
“Gridwisetm: The benefits of a transformed energy system,” arXiv
preprint nlin/0409035, 2004.

[4] C. Triki and A. Violi, “Dynamic pricing of electricity in retail markets,”
4OR, vol. 7, no. 1, pp. 21–36, 2009.

[5] B. Ramanathan and V. Vittal, “A framework for evaluation of advanced
direct load control with minimum disruption,” Power Systems, IEEE
Transactions on, vol. 23, no. 4, pp. 1681–1688, 2008.

[6] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Scheduling of
demand side resources using binary particle swarm optimization,” Power
Systems, IEEE Transactions on, vol. 24, no. 3, pp. 1173–1181, 2009.

[7] M. Fahrioglu and F. L. Alvarado, “Designing incentive compatible
contracts for effective demand management,” Power Systems, IEEE
Transactions on, vol. 15, no. 4, pp. 1255–1260, 2000.

[8] V. M. Balijepalli, V. Pradhan, S. Khaparde, and R. Shereef, “Review of
demand response under smart grid paradigm,” in Innovative Smart Grid
Technologies-India (ISGT India), 2011 IEEE PES, pp. 236–243, IEEE,
2011.

[9] R. Krishnan, “Meters of tomorrow [in my view],” Power and Energy
Magazine, IEEE, vol. 6, no. 2, pp. 96–94, 2008.

[10] C. Babu and S. Ashok, “Peak load management in electrolytic process
industries,” Power Systems, IEEE Transactions on, vol. 23, no. 2,
pp. 399–405, 2008.

[11] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” Smart Grid, IEEE Transactions on, vol. 1, no. 3, pp. 320–331,
2010.

[12] R. Faranda, A. Pievatolo, and E. Tironi, “Load shedding: a new pro-
posal,” Power Systems, IEEE Transactions on, vol. 22, no. 4, pp. 2086–
2093, 2007.

[13] H. Zhang, F. Zhao, and J. W. Sutherland, “Manufacturing scheduling
for energy cost reduction in a smart grid scenario,” in ASME 2014
International Manufacturing Science and Engineering Conference col-
located with the JSME 2014 International Conference on Materials
and Processing and the 42nd North American Manufacturing Research
Conference, pp. V001T05A001–V001T05A001, American Society of
Mechanical Engineers, 2014.

[14] S. Gabriel, A. J. Conejo, M. A. Plazas, and S. Balakrishnan, “Optimal
price and quantity determination for retail electric power contracts,”
IEEE Transactions on power systems, vol. 21, no. 1, pp. 180–187, 2006.

[15] M. Carrión, A. J. Conejo, and J. M. Arroyo, “Forward contracting
and selling price determination for a retailer,” Power Systems, IEEE
Transactions on, vol. 22, no. 4, pp. 2105–2114, 2007.

[16] A. Hatami, H. Seifi, and M. K. Sheikh-El-Eslami, “A stochastic-
based decision-making framework for an electricity retailer: Time-of-
use pricing and electricity portfolio optimization,” Power Systems, IEEE
Transactions on, vol. 26, no. 4, pp. 1808–1816, 2011.

[17] M. A. Rahman, L. Bai, M. Shehab, and E. Al-Shaer, “Secure distributed
solution for optimal energy consumption scheduling in smart grid,”
in Trust, Security and Privacy in Computing and Communications
(TrustCom), 2012 IEEE 11th International Conference on, pp. 279–286,
IEEE, 2012.

[18] S. Bu and F. R. Yu, “A game-theoretical scheme in the smart grid
with demand-side management: Towards a smart cyber-physical power
infrastructure,” Emerging Topics in Computing, IEEE Transactions on,
vol. 1, no. 1, pp. 22–32, 2013.


