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Estimation

Designing a good sensor is the first step towards interfacing the physical world with the
virtual world. Two additional steps are required before the data obtained from a sen-
sor can be useful. The first step deals with determining whether the data represent the
physical reality and the second step deals with understanding themeaning of the sensed
data. Erroneous representations or interpretations of sensor data often have detrimen-
tal consequences and great care must be taken over the two stages. This chapter deals
with the intermediate stage. I will not be dealing with the last stage in this book, as it is
application dependent. I shall begin this chapter at the simplest level; you may already
know some of the concepts and techniques I will be treating, butmy goal is to lay a sound
foundation, so that the book is self-contained.
The subjects treated in this chapter are by no means exhaustive. Moreover, I regard

estimation from a single viewpoint, which is the processing of sensed data. I refer readers
wishing to further enrich their knowledge on random variables, stochastic processes,
and estimation techniques to the excellent books by Papoulis and Pillai (2002), Ross
et al. (1996), Gardiner (1985) and Grewal (2011).
I shall begin this chapter by making a somewhat sensitive statement: we shall never

be able to construct a sensor (or any system, for that matter) that captures reality as it is.
We can approach reality but never touch it. Even at a quantum level, our approaching of
reality is limited byHeisenberg’s uncertainty principle.The errorwithwhichwe perceive
reality accumulates as we move away from a quantum reality towards a macro reality.
But fortunately for us, this error will never reach a magnitude at which our perception
of reality makes existence impossible.
There are two fundamental premises—understood consciously or unconsciously—for

relying on sensor data; whether the data come from a biological sensor or a physical
sensor constructed by human beings, does not matter. These are:

1) The change in the physical reality (measurand) is a gradual process rather than hap-
hazard and wild; statistically speaking, the measurand is correlated with itself to a
certain extent.

2) The state of reality and the output of a sensor are correlated to a certain extent.

The significance of these assertions will become clear when we deal with the mathe-
matics. But for now, consider Figure 12.1, which is a measurement taken from an ordi-
nary temperature sensor having an accuracy (according to the manufacturer) of 1 ∘C.
The sensor was placed outdoors and sampled every second for 30min. From the read-
ing (and also from intuition) it is clear that even though the measurement fluctuates
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Figure 12.1 The reading of a temperature sensor having an accuracy of 1 ∘C.

over time, the fluctuation is not haphazard. Secondly, the temperature sensor may not
be accurate enough (whatever that means) but it reflects reality. The outside temper-
ature might not have changed at all during the 30 minutes during which we took the
reading, or the change might have been quite dissimilar from the one we obtained using
the sensor. But there should be certain correlation between the physical reality and the
sensor output (unless the sensor is defective). It cannot, for instance, be the case that
the temperature fluctuated by around 5 ∘C much of the time whilst the sensor reading
fluctuated by around 20 ∘C!

12.1 Sensor Error as a Random Variable

Theaccuracy of a sensor can be quantified but it can also be viewed as a qualitative prop-
erty. The qualitative and quantitative aspects of a sensor’s accuracy can be explained by
Figure 12.2. Suppose we expose two sensors having different accuracies to a measurand
that does not change; in other words one that is constant over time. For our example,
the measurand is a temperature of 20 ∘C. As can be seen, even if the input is constant,
the outputs vary to some extent. Most existing physical sensors share this basic feature.
The nearness of the sensor output to the true value of a measurand (as we have already
seen inChapter 11) is what we call accuracy. In Figure 12.2 (top), the output of the sensor
appears to be constant, properly reflecting reality, but whenwe regard it at a fine-grained
resolution (in the middle), we see that the samples are different. Indeed, the samples are
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Figure 12.2 A computer generated simulation of the output of two temperature sensors for a fixed
(constant) input: (top), (middle) the output of the same sensor at two different granularities; (bottom)
the output of a second sensor, having a different accuracy, for the same input.
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different not only from the input, but also from each other. The dissimilarity becomes
conspicuous in the output of the second sensor (bottom), which has a different accuracy.
Because we cannot be certain of what specific value we will get when we next sample a

sensor, we regard its output as a random variable. It is worthwhile emphasising here that
the variation in the output of a sensor may have nothing to do with the measurand or
the physical process; it can be an inherent property of the sensor itself.The randomness
in the output of the sensor nevertheless obeys an underlying probability distribution,
because some samples are more likely to occur than others. If we represent the output
of a sensor (a random variable) by a small boldface letter (such as x), the function that
assigns a probability term to each of the outputs of x is called a probability density func-
tion (pdf), f (x), where x is a real number, representing one of the distinct outcomes of
x. Assuming that an infinite number of samples can be obtained if we sample the sensor
for long enough, then f (x) provides sufficient information about x.
Figure 12.3 compares the pdfs of the two sensor outputs in Figure 12.2, which hap-

pen to be normally distributed. The width of a pdf is an indication of the dissimilarity
between the sample outputs of a sensor. The broader it is, the more dissimilar the sam-
ple outputs are, and therefore the less reliable the sensor is. If we have the mathematical
expression of the pdf, we can ask and answer several questions, such as:

• What is the expected outcome of the random variable (the mean)?
• What is the variance of the random variable (the quantifiable expression of the dis-

similarity between the samples, which is also a measure of the error of the sensor)?
• What is the probability that the output of the sensor is between two real numbers, say

between 19.5 and 20.5∘C, in other words, P{19.5 ≤ x ≤ 20.5}?

The expected outcome or the mean is given by:

𝜂x = E[x] = ∫
∞

−∞
xf (x)dx (12.1)
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Figure 12.3 The probability density
functions of two random variables.
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Similarly, the variance of x is defined as the square of the expected variance of the
sample outputs with respect to the mean:

𝜎2
x = E[(x − 𝜂x)2] = ∫

∞

−∞
(x − 𝜂x)2f (x)dx (12.2)

The reason we consider E[(x − 𝜂x)2] instead of E[(x − 𝜂x)] is that the latter will always
yield a value of zero, since the summation (integration) results in a net negative value for
the samples below themean and a net positive value for the samples above themean and
both values are equal inmagnitude (alternatively, E[(x − 𝜂x)] = E[x] − 𝜂x = 𝜂x − 𝜂x = 0).
The variance and mean are related with one another and we shall exploit their relation-
ship to solve some important problems later. Since 𝜎2

x = E[(x − 𝜂x)2], we can distribute
the right-hand termas follows:E[x2 − 2𝜂xx + 𝜂2x ] = E[x2] − 2𝜂xE[x] + 𝜂2x , fromwhichwe
have (as a reminder, the expected value of a constant is the constant itself ):

𝜎2
x = E[x2] − 𝜂2x (12.3)

The probability that {x1 ≤ x ≤ x2} can be computed using f (x) alone:

P{x1 ≤ x ≤ x2} = ∫
x2

x1

f (x)dx (12.4)

The pdf is also useful to visualise the difference between precision (consistency) and
accuracy. Suppose the output of two sensors for a known, fixed input (say, 20 ∘C), is
described by the two pdfs shown in Figure 12.4. As can be seen, the first sensor (the
solid line) has a mean that overlaps the input (the true value), while the second sensor
(the dotted line) has a mean that is different from the input. Hence we can say that the
first sensor is more accurate than the second. On the other hand, the pdf of the second
sensor is much wider than that of the first, so we can say that it is more precise than the
first, because its output is more consistent and hence more predictable.
Another important function bywhich a randomvariable can be described is the cumu-

lative distribution function (CDF) or the probability distribution function (PDF), F(x):
F(x) = P{x ≤ x} (12.5)

Figure 12.4 The probability density
functions of the outputs of two
sensors are shown to explain the
difference between accuracy and
precision. Assuming that the known
input is 20 ∘C, the mean of one of
the pdfs (solid line) overlaps with the
known input, but its variance is big
whereas the mean of the other pdf
(dotted line) does not overlap with
the input but its variance is small. In
the first case, we can say that the
sensor is more accurate but in the
second case we can say that the
sensor is more precise.
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where x (boldface type) is the random variable and x (normal font) is a real number. F(x)
quantifies the probability that the outcome of a random variable is below a certain value
x. For example:

F(20) = P{T ≤ 20}

refers to the probability that the temperature is below 20 ∘C. Since the probability
accumulates as x increases, it is called a cumulative function. Therefore, F(x) is a
non-decreasing (monotonically increasing), right-continuous function. For example,

F(21) = P{T ≤ 21} = F(20) + P{20 < T ≤ 21}

Figure 12.5 compares the distribution functions of the two simulated temperature sen-
sors of Figure 12.2. The slope of the distribution function indicates the variance of a
random variable. The steeper the slope, the smaller the variance, and for our case, the
more consistent a sensor is, the gentler the slope, the larger the variance, and the more
dissimilar are the outcomes of the sensor.The distribution and the density functions are
related with one another:

f (x) = dF(x)
dx

(12.6)

F(x) = ∫
x

−∞
f (u)du (12.7)

We shall use the two functions alternatively to solve different problems. Sometimes
solving problems with one is simpler than solving with the other. It is also worthwhile
noticing that since the total probability is always one, we have:

∫
∞

−∞
f (x)dx = 1 (12.8)

and

1 = P{x ≤ x} + P{x > x} (12.9)

16 18 20 22 24

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(t

)

Figure 12.5 A comparison of the
cumulative distribution functions of
the two simulated temperature
sensors, the output of which (for a
fixed input) are shown in Figure 12.2.
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or

1 = F(x) + P{x > x} (12.10)

from which we have:

P{x > x} = 1 − F(x) (12.11)

12.2 Zero-offset Error

One of the inherent errors of physical sensors is the zero-offset error. This error corre-
sponds to the random output of the sensor when there is no input from the measurand.
The sources of these outputs can be many, including internal thermal noise, external
thermal noise, radiation, and so on. The most significant of these is the internal ther-
mal noise coming from the random vibration of electrons. Most existing sensors have a
zero-mean, normal distributed zero-offset error at a given temperature (for example, at
room temperature). In other words, the density function of this error can be described
as follows:

f (e) = 1√
2𝜋𝜎e

e−e2∕2𝜎2
e (12.12)

where𝜎e is the standard deviation or𝜎2
e is the variance of the offset. Figure 12.6 compares

the zero-offset errors of two sensors. In general, the inherent error of a sensor due to
its internal composition increases as the magnitude and frequency of the measurand
increase. You may recall from Chapter 11 how self-heating contributes to the error of a
sensor.

Example 12.1 The zero-offset error of a given sensor can be modelled as a uniformly
distributed random variable between -2mV and 2mV as shown in Figure 12.7. Deter-
mine the variance of the random variable. x

Figure 12.6 The zero-offset (the
output being a voltage) of two
different sensors described by
normally distributed random
variables. The zero-offset described
by the solid line has a standard
deviation of 1mV whilst the
zero-offset described by the dashed
line has a standard deviation of
0.5mV.
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Figure 12.7 The zero-offset of a sensor modelled as a uniformly distributed random variable.

The variance of a random variable is expressed as:

𝜎2
x = E[(x − 𝜂x)2] = E[x𝟐] − 𝜂2x

Since the mean of our random variable is zero, we have:

𝜎2
x = E[x𝟐] = ∫

2

−2
x2f (x)dx = 1

12
(23 − (−2)3) = 1.33mV

Example 12.2 Wewish to build an electronic switch as shown in Figure 12.8. It should
respond when the temperature of the measurand crosses a set threshold (specified by
VREF). Suppose the RTD has a resistance of 1 kΩ at the reference temperature and a
zero-offset voltage distribution as shown in Figure 12.7. Since the sensor contains a
zero-offset output, it may trigger the switch erroneously. On the other hand, the sen-
sor may also attenuate an authentic signal due to a negative offset voltage. Assuming
the zero-offset is independent of the measurand’s temperature and that our priority is
reducing false positives, determine a reference voltage that suppresses the contribution
of both the biasing voltage and the zero-offset 75% of the time.

At the reference temperature, the voltage across the RTD is a superposition of a portion
of the biasing voltage and the zero-offset voltage:

VS = VB + VOFF

+

–

vout

vREF

VS

vDD = 10 mV

9 KΩ

1 KΩ

RTD

Figure 12.8 The circuit block diagram of a simple comparator. The reference voltage of the
comparator is set so that 75 % of the false positive originating from the zero-offset voltage of the
sensor can be suppressed.
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But,

VB =
(

1 kΩ
9 kΩ + 1 kΩ

)
10mV = 1mV

Since VS contains a random variable, it too is a random variable. As long as VS is
less than VREF, the output of the comparator is negative. If we simply set the reference
voltage to be -3mV, we can be certain that the switch is turned on only as a result of
an increment in the measurand’s temperature. By doing so, however, we also increase
the possibility of a false negative, because the offset voltage might have suppressed
an output voltage due to an increase in temperature. In order to satisfy the specified
requirement,

0.75 = P{VS ≤ x} = P{(VB + VOFF) ≤ x} = P{VOFF ≤ (x − VB)}

Since we have the distribution ofVOFF, the value of x that yields a probability of 0.75 can
be determined as follows:

0.75 = 1
4 ∫

x−VB

−2
dx = 1

4 ∫
x−1

−2
dx

From which we have:

0.75(4) = (x − 1mV) − (−2mV)

Rearranging terms will result in,

x = 2mV

12.3 Conversion Error

The output of a sensor passes through many intermediate stages.Therefore, it is impor-
tant to understand how these stages influence the accuracy and precision of the sensor
output. In this sectionwe shall consider how the randomness of the sensor influences the
probability distribution of the output. In the next section, wewill consider the accumula-
tion of error inmore detail. In order to demonstrate how the statistics of the sensor error
influence the output voltage, consider Figure 12.9, where we display the electrical cir-
cuit diagram of a temperature-to-voltage converter employing a TC1047A temperature
sensor manufactured byMicrochip Technology Inc. According to themanufacturer, the
module has an accuracy of ±2 ∘C at 25 ∘C and can measure a change in temperature
between -40 and 125 ∘C. For the specified temperature range the output voltage varies
from2.7V to 4.4V.Assuming that the sensor has a zero-offset voltage that can be charac-
terised by a zero-mean, normally distributed random variable with a variance of 0.5mV,
we can determine the statistics of the output voltage.
Because the reference voltage is a fixed quantity, the output of the operational ampli-

fier is a square wave, positive when VREF > VS and negative when VREF < VS. Moreover,
we have,

is = −if = −
VS

jXC
=

(VS − VO)
RTD
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Figure 12.9 A schematic diagram of a temperature-to-voltage converter employing a resistance
temperature detector (RTD).

(Recall that because of the high input impedance of the amplifier, we assume that no
current flows into the operational amplifier). Hence,

VO = VS

[
1 + RTD

jXC

]
(12.13)

Because the output of the operational amplifier is related to a random variable (VS), it,
too, is a random variable. If we for now disregard the randomness added to the output
voltage from the internal noise of the operational amplifier, then the PDF of the output
voltage can be expressed in terms of the distribution of the sensor’s voltage:

FO(𝑣) = P{VO ≤ 𝑣} = P
{[

1 + RTD
jXC

]
VS ≤ 𝑣

}
(12.14)

wherewe use FO(𝑣) to indicate that the distribution function refers to the output voltage.
If we rearrange the terms in Eq. 12.14, we have:

FO(𝑣) = P
{
vs ≤

[
1 +

jXC

RTD

]
𝑣

}
= FS

([
1 +

jXC

RTD

]
𝑣

)
(12.15)

where FS(.) refers to the PDF ofVS. As can be seen, we managed to express the distribu-
tion of VO in terms of the distribution of VS.
The labelsVO,VS and 𝑣 should by now be clear; the boldface letters represent random

variables whilst the normal font 𝑣 represents a real number or an instance of the random
variables. With the change in the distribution function of the output voltage, its mean
and variance change as well. As far as the error of the sensor is concerned, the change
in the mean is not much of an issue (it is zero), but the variance is. So how does the
variance of the output voltage change?

𝜎2
Vo

= E[(Vo − 𝜂VO
)2] = E[(VO)2] − 𝜂2Vo

(12.16)
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Substituting Eq. (12.13) into Eq. (12.16) yields,

𝜎2
VO

=
[
1 + RTD

jXC

]2
E(V2

S) =
[
1 + RTD

jXC

]2
𝜎2

VS
(12.17)

Notice that 𝜂2VO
= 0, because VS is a zero-mean random variable. From Eq. (12.15), it is

possible to determine the probability density of the output voltage, because:

fO(𝑣) =
dFO(𝑣)

d𝑣
=
[
1 +

jXC

RTD

]
fS

([
1 +

jXC

RTD

]
𝑣

)
(12.18)

where we applied the chain-rule on Eq. (12.15).

Example 12.3 We wish to determine the pdf of the magnitude of the output voltage
of the temperature-to-voltage converter in the absence of a measurand. Suppose we are
interested in the response of the converter at 100Hz, with the circuit elements having
the values shown in Figure 12.10.

The probability density function of the output voltage is a complex function because
of the capacitive reactance. Its magnitude component is given as:

|FO(𝑣)| =
√√√√[

1 +
( XC

RTD

)2
]
VS

At the specified frequency, the capacitive reactance is:

XC = −j
(

1
2𝜋 × 100 × 10−6

)
= −j1.6 kΩ

Thus,

|FO(𝑣)| =
√√√√[

1 +
(
1.6kΩ
1kΩ

)2
]
VS = 1.9VS

100 μF

MCP6541

VO

VS

IS
If

vDD

vREF

5 KΩ5 KΩ

5 KΩ

1 KΩ

vDD

–

+

Figure 12.10 The input-output relationship of a temperature-to-voltage converter at 100Hz.
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Moreover, we have:
min (VO) = 1.9 ×min (VS) = 1.9 × −2 = −3.8mV

and
max (VO) = 1.9 ×max (VO) = 1.9 × 2 = 3.8mV

Figure 12.11 shows the relationship between the two random variables, namely, VS
and VO.
In general, if the random variables y and x are related to one another, then it is possible

to determine the statistics of one of the random variables (the unknown) in terms of
the statistics of the other (the known), beginning by describing the PDF of the unknown
random variable in terms of the known random variable. For example, if the two random
variables are related as follows:

y = ax + b
where a and b are known positive constants, the statistics of y can be expressed in terms
of the statistics of x and:

F(y) = P{y ≤ y} = P{(ay + b) ≤ y}

F(y) = P
{
x ≤ (y − b)

a

}
Since

y − b
a

= C

is a constant, then we have:
F(y) = P{x ≤ C} = FX(C)

where FX(C) = P{x ≤ C} is the distribution of x. From here on, it is a matter of making
the appropriate derivation to determine the statistics pertaining to y.
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Figure 12.11 The relationship
between the PDFs of VS and VO at
100Hz frequency.
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12.4 Accumulation of Error

A sensing system typically consists of two or more stages. The conditioning circuit, for
example, may consist of a Wheatstone bridge, an amplifier, and a filter. Each of these
stages will introduce its own error into the signal produced by the sensing stage. These
errors should be accounted for in order tomeaningfully interpret the sensed signal. Sup-
pose the aggregate error of the conditioning circuit can be modelled by the random
variable c, having its own distribution and density functions.The combined error of the
sensing and the conditioning stages is given as:

e = s + c (12.19)

In order to explain the addition of random variables, we shall begin with a simple
example. Suppose, in the absence of an input (due to an internal thermal noise), the
sensing system produces either -0.5mV or 0.5mV with equal probabilities. Likewise,
the conditioning circuit, independent of the sensing system, produces either -0.5mV
or +0.5mV with equal probabilities. If we connect the two systems, as shown in
Figure 12.12, and measure the output voltage, we may get the following values with the
corresponding probabilities:

e = −0.5mV + −0.5mV = −1.0mV (P(−0.5) × P(−0.5))
e = −0.5mV + 0.5mV = 0.0mV (P(−0.5) × P(0.5))
e = 0.5mV + −0.5mV = 0.0mV (P(0.5) × P(−0.5))
e = 0.5mV + 0.5mV = 1.0mV (P(0.5) × P(0.5))

So, we see that e as a random variable has different outcomes with different probabilities
(notice how the new probability distribution should be computed):

e = [−1.0(P = 0.25), 0.0(P = 0.5), 1.0(P = 0.25)]

As a result, some values—0.0mV for example—are more likely to occur—P{0.0mV} =
0.5—than other values. Figure 12.13 shows the probability mass function of e.
Now suppose, s and c each have five discrete outputs (in mV) as follows:

s = c = [−0.5,−0.25, 0.0, 0.25, 0.5]

Then, e = s + c will have 5 × 5 elements, but some of the elements have equal values.
Carrying out the computation as shown above yields nine unique values with corre-
sponding probabilities:

e = [−1.0,−0.75,−0.5,−0.25, 0.0, 0.25, 0.5, 0.75, 1.0]

The corresponding probability of occurrence is:

f (e) = [0.04, 0.08, 0.12, 0.16, 0.2, 0.16, 0.12, 0.08, 0.04]

Sensing stage conditioning stage

Figure 12.12 The accumulation of error when the sensing and the conditioning systems are
connected in series.
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Figure 12.13 The probability mass
function of e = s + cwhen each
random variable has only two
discrete values with equal
probabilities.
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Figure 12.14 The probability mass
function(the discrete equivalent of
the pdf) of e = s + cwhen each
random variable has only five
discrete values with equal
probabilities.

Figure 12.14 shows the probability mass function of e. In general, if s and c have I and
J discrete values, the elements of e can be computed using two for loops, as shown in
Figure 12.15. Moreover, when some of the elements have equal values, their probabil-
ities should be added. From the above example, it is clear that the computation of the
distribution and the density functions for e, when s and c have continuous distributions
and density functions, can be carried out as follows:

F(e) = P{s + c ≤ e} = ∫
∞

s=−∞ ∫
e−c

c=−∞
f (s, c)ds dc (12.20)

where f (s, c) is the joint density function. If s and c are independent, then
f (s, c) = f (s)f (c). You may notice that the two integrations above correspond to
the two for loops in Figure 12.15 for the case where the two random variables are
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for(int i; i < sizeof(s);i++){

for(int j; j < sizeof(c); j++) {

e[ i * sizeof(c) + j] = s[i] + c[j]

}

}

Figure 12.15 Computing the elements of e = s + c in C. As can be seen, e can have sizeof(s) ×
sizeof(c) distinct elements.

discrete. Similarly, the density function of e is given as:

f (e) = ∫
∞

−∞
f (e − c, c)dc (12.21)

If the two random variables are independent, then we have:

f (e) = ∫
∞

−∞
f (e − c)f (c)dc (12.22)

where f (e − c) is the density of s expressed in terms of s = e − c. The density function
amounts to adding the probabilities of similar values after the elements of e are com-
puted in Figure 12.15.

Example 12.4 Suppose both the sensing element and the conditioning circuit of
a given sensor generate random outputs s and c, respectively. In the absence of
a measurand, these outputs are described by uniformly distributed voltages, each
ranging between 0mV and 1mV. Assuming that the two sources of error are indepen-
dent and their cumulative effect is additive, determine the distribution of the error
as e = s + c.

As the sum of two random variables, emay have any outcomes between 0 (theminimum
value) and 2 (themaximumvalue). Since both randomvariables are continuous, the PDF
of e can be determined by integrating the joint density function. Since we are dealing
with definite integrals, we should first determine the boundaries of integration.We shall
rely on Figure 12.16 to determine the boundaries.The x- and y-intercepts of the equation
e = s + c can be determined by setting one of the random variables to zero. Hence, for
the x-intercept we have c = 0 and:

s = e

Similarly, for the y-intercept we have s = 0 and,

c = e

But notice that since s and c are random variables, the x- and y-intercepts are not con-
stant values as they would be for a deterministic function. Instead, the line e = s + c can
be located in different places in the first quadrant bounded by the coordinates (0, 0) and
(1, 1). For any positive real value e ≤ 1, the distribution function,

F(e) = P{e ≤ e} = P{s + c ≤ e}
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(a) (b)

(c) (d)

e

1

f(c) f(c)

f(c) f(c)

1

11

1 1

11

s

e
s = e – c

s + c ≤ 1

s + c = e > 1 e > e

s + c = 1s = e – c

s = e – c

f(s) f(s)

f(s) f(s)

s + c ≤ e

Figure 12.16 Determining the probability distribution function of e = s + c: F(e) = P{s + c ≤ e}. We
are interested in the region where s + c ≤ e. In (a), the shaded region: s + c ≤ 1, and can easily be
integrated. Here it is clear that as c varies from zero to e, s varies from zero to the intersection (e - c). In
(b), the shaded region subsumes the boundary s + c = 1, beyond this boundary, s + c ≤ e is not simple
to integrate on account of the complexity of the geometry of the shaded region, as can be seen in (c).
In (d) we can take advantage of the mutual exclusiveness of {e ≤ e} and {e > e} and the fact that the
probability of the two regions adds to unity.

can be determined by integrating the shaded region of Figure 12.16a, which describes
the regions where the two density functions overlap. From the figure, it is apparent that
as c varies from 0 to e, s varies from 0 to e − c. Alternatively, we can vary s from 0 to e
and bind c to vary from 0 to e − s. Thus, F(e) can be computed as (remember that both
random variables are uniform):

F(e) = ∫
e

c=0 ∫
e−c

s=0
f (c)f (e − c) dsdc

= ∫
e

c=0 ∫
e−c

s=0
dsdc

= ∫
e

c=0
(e − c)dc

= e2
2
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But when e > 1, the graph e = s + c, which is shown in Figure 12.16c becomes a little
complicated to integrate. However, recall from Eq. (12.11) that:

F(e) = P{e ≤ e} = 1 − P{e > e}

Since the black region in Figure 12.16d is (s + c) > e, it is relatively easy to integrate.
Consequently, for 1 < e ≤ 2, we have:

F(e) = 1 − ∫
1

c=e−1 ∫
1

s=e−c
f (c)f (e − c)dsdc

= 1 − ∫
1

c=e−1 ∫
1

s=e−c
dsdc

= 1 − ∫
1

c=e−1
(1 − e + c)dc

= 1 − (2 − e)2

2
The pdf of the error can be determined by differentiating F(e) with respect to e. Thus:

f (e) =

{
e 0 ≤ e ≤ 1
2 − e 1 < e ≤ 2

Figure 12.17 displays the probability density function of e = s + c.

12.4.1 The Central Limit Theorem

One interesting aspect of an accumulation of error is that, as the number of random
variables that should be added increases, their pdf tends to be normally distributed,
regardless of the shape of the density functions of the individual stages. If, for example,
we divide the conditioning circuit into a Wheatstone bridge (w) and an amplification
stage (a) and assume that s, w, and a, are zero-mean, uniformly distributed random

Figure 12.17 The pdf of e = s + c
when both random variables are
uniformly distributed between 0 and
1. As expected, the plot is similar to
the one depicted in Figure 12.14,
where we computed the probability
mass function for two uniformly
distributed discrete random variables.
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variables with the following discrete outputs (in mV):

s = w = a = [−0.5,−0.25, 0.0, 0.25, 0.5]

Then, e = s + w + a will have 5 × 5 × 5 = 125 entries, but some of the values occur
multiple times, as a result of which their frequency of occurrence has to be summed in
order to calculate their probability of occurrence. Table 12.1 summarises the statistical
parameters of e.The approximated probabilitymass function of e is given in Figure 12.18
and reflects a well-studied and statistically well-formulated phenomenon known as the
central limit theorem (CLT). The CLT states that the pdf of the sum (or average) of a

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2
0
.1

4

e (mV)

f(
e)

Figure 12.18 The approximate
density function of e = s +w + a is a
zero-mean normal distribution
function.

Table 12.1 A summary of the statistical parameters of e = s +w + a

Unique entries
of e during
summing

Frequency of
occurrence

Probability of
occurrence

−1.5 1 0.08

−1.25 3 0.02

−1.00 6 0.05

−0.75 10 0.08

−0.50 15 0.12

−0.25 18 0.14

0.00 19 0.15

0.25 18 0.14

0.50 15 0.12

0.75 10 0.08

1.00 6 0.05

1.25 3 0.02

1.50 1 0.08
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large number of independent random variables with well defined means and variances
will be approximately normal, regardless of the underlying distribution of the individual
randomvariables. FromEq. (12.12), a normally distributed density function can be spec-
ified by its mean (𝜂) and variance (𝜎2). Hence, if we have n independent stages, each of
which contributes its own error ei, having its ownmean and variance, then it is possible
to sufficiently describe the overall error as norm(𝜂,

√
𝜎2), where:

𝜂 = E{e} = E{e1 + e2 + · · · + en} = 𝜂1 + 𝜂2 + · · · + 𝜂n (12.23)

To compute the variance (𝜎2) of the overall error, e, we shall make use of the relation
𝜎2 = E[e2] − 𝜂2. Moreover,

E[e2] = E
⎡⎢⎢⎣
( n∑

i=1
ei

)2⎤⎥⎥⎦ =
n∑

i=1

n∑
j=1

E[eiej] (12.24)

Since the individual random variables are independent:

E[eiej] =

{
𝜎2

i + 𝜂i i = j
𝜂i𝜂j i ≠ j

(12.25)

The double sum in Eq. (12.24) contains n terms for i = j and n2 − n terms for i ≠ j.
Notice that we have made use of E[e2i ] = 𝜎2

i + 𝜂2i . Meanwhile, what happens if all the
errors are zero-mean random variables? In that case, the resulting error will also be a
zero-mean normally distributed random variable, the variance of which is the sum total
of the variance of the individual random variables, because:

𝜂 = 𝜂1 + 𝜂2 + · · · + 𝜂n = 0
𝜂i𝜂j = 0

E[eiej] =

{
𝜎2

i i = j
0 i ≠ j

Hence

𝜎2 = 𝜎2
1 + 𝜎2

2 + · · · + 𝜎2
n

12.5 Combining Evidence

So far, we have considered that an error

• is an inherent characteristic of a sensing system
• accumulates as the sensed signal advances towards the processing subsystem (due to

the error introduced by the conditioning and additional intermediate stages).

Moreover, we have considered that as the number of independent error sources
increases, the overall error assumes a normal pdf. One way of reducing the uncertainty
stemming from the inherent sources of error is to employmultiple sensors and combine
their evidence. Indeed, arrays of sensors are employed in many practical applications to
this end. Hence, the next practical question is determining the appropriate techniques
for combining the output of multiple sensors. There can be different combining
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techniques and we shall examine some of them closely, but one essential aspect to bear
in mind when dealing with the combination of evidence is the definition of uncertainty
in quantifiable terms. The degree of unreliability of a sensor is directly related to the
characteristics of its error. Therefore, some aspects of the error should necessarily be
taken into account in the combination equation.
Figure 12.19 shows the outputs (simulated) of three temperature sensors. This figure

is similar to Figure 12.2, but there is a slight difference between them. Two of the sensors
have the samemean but different variances, whereas two of themhave the same variance
but different means. A good combination technique is one that takes these aspects into
account to minimise the overall error.

12.5.1 Weighted Sum

When all the errors are zero-mean random variables, the simplest way to combine the
outputs is as theweighted sumof the individual outputs.Theweight given to each sensor
outputmust be inversely proportional to the variance of its error.This is simply because,
as we have already seen, the bigger the variance, the bigger our uncertainty. However,
uncertainty is a relative term, because it has to be assessed relative to the uncertainty
introduced by the other sensors. Suppose we have only two sensors with zero-mean
errors and wish to combine their output as follows:

ŝ = 𝛼1s1 + 𝛼2s2 (12.26)
where s1 = T + e1 and s2 = T + e2 (and T , we assume, is the true value we are seeking
to determine). One way to determine the weight for each sensor output is as follows:

ŝ =
(

𝜎2
2

𝜎2
1 + 𝜎2

2

)
s1 +

(
𝜎2
1

𝜎2
1 + 𝜎2

2

)
s2 (12.27)

1
9
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Figure 12.19 The output of three temperature sensors for the same input (20 ∘C). Two of the sensor
outputs have the samemean but different variances (one of them 𝜎2

1 = 0.5 and the other 𝜎2
2 = 1). Two

of the sensor outputs have different means but the same variance. A combination technique should
take both aspects into consideration.
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Figure 12.20 The density functions
of the three simulated temperature
sensors shown in Figure 12.19.
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Equation (12.27) fulfils the inverse proportionality requirement as well as the relative
significance of the contribution of each sensor (the term 1∕(𝜎2

1 + 𝜎2
2 ), which is a normal-

isation factor, so that 𝛼1 + 𝛼2 = 1, implicitly gives a relative significance to each coeffi-
cient). If 𝜎2

1 > 𝜎2
2 , then we should trust s2 (which is now multiplied by the larger 𝜎2

1 ). If,
on the other hand, 𝜎2

1 < 𝜎2
2 (which is multiplied by the larger 𝜎2

2 ), then we should trust
s1; otherwise, we should trust both equally. We can rewrite Eq. (12.27) as follows:

ŝ =
(

𝜎2
2

𝜎2
1 + 𝜎2

2

)
s1 +

(
𝜎2
1

𝜎2
1 + 𝜎2

2

)
s2 + (s1 − s1) (12.28)

Taking the 1∕(𝜎2
1 + 𝜎2

2 ) term as the common factor will yield:

ŝ =
(

1
𝜎2
1 + 𝜎2

2

)
[𝜎2

2s1 + 𝜎2
1s2 + (𝜎2

1 + 𝜎2
2 )s1 − 𝜎2

1s1 − 𝜎2
2s1] (12.29)

Collecting like terms and simplifying and rearranging yields:

ŝ = s1 +
𝜎2
1

𝜎2
1 + 𝜎2

2
[s2 − s1] (12.30)

If we let

K =
𝜎2
1

𝜎2
1 + 𝜎2

2
(12.31)

Eq. (12.30) can be expressed in a more compact form:

ŝ = s1 + K[s2 − s1] (12.32)

The significance of Eq. (12.32) will be clearer later, when we deal with the Kalman
filter. For now, it suffices to state the following:

1) Given that we already have evidence from sensor 1, the evidence coming from
sensor 2 can be added into the output by properly weighing the difference between
sensor 2 and sensor 1.
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2) If we trust sensor 1, then the new information (from sensor 2) should not change our
belief considerably (K should be small).

3) If, however, we do not trust sensor 1, then, the new evidence should change our belief
considerably (K should be large).

If, instead of two, we have n independent sensors from which we can gather evidence,
the weighted sum approximating the true value can be described as:

ŝ = 𝛼1s1 + 𝛼2s2 + · · · + 𝛼nsn (12.33)

Notice that ŝ is a random variable, because it is the sum of multiple random variables,
which means it has its own pdf, mean, and variance. Since our aim is reducing the
uncertainty introduced by the error of each sensing element, we must determine the
coefficients in such a way that the variance of ŝ is a minimum. We can achieve this goal
by describing the variance in terms of the coefficients:

𝜎2
ŝ = 𝛼2

1𝜎
2
1 + 𝛼2

2𝜎
2
2 + · · · + 𝛼2

n𝜎
2
n (12.34)

We squared the coefficientsmerely for reason of convenience.We should select the coef-
ficients such that their sum yields unity:

𝛼1 + 𝛼2 + · · · + 𝛼n = 1 (12.35)

Now we can rewrite Eq. (12.34) as follows:

𝜎2
ŝ = 𝛼2

1𝜎
2
1 + 𝛼2

2𝜎
2
2 + · · · + 𝛼2

n𝜎
2
n − 𝜆(𝛼1 + 𝛼2 + · · · + 𝛼n − 1) (12.36)

Since 𝜆(𝛼1 + 𝛼2 + · · · + 𝛼n − 1) is zero, Eq. 12.36 is essentially the same as Eq. 12.34. We
call 𝜆 a Lagrange multiplier and its significance will be clear shortly. The coefficients
minimising the variance in Eq. (12.36) can be determined by partial differentiation:

𝜕𝜎2
ŝ

𝜕𝛼i
= 0! (12.37)

Consequently, the minimummean square estimation approach aims to set the expected
error to a minimum value:

𝜕𝜎2
ŝ

𝜕𝛼i
= 2𝛼i𝜎

2
i − 𝜆 = 0 (12.38)

and,

𝛼i =
𝜆

2𝜎2
i

(12.39)

Equation (12.39) fulfils one of our requirements, namely that our level of confidence in
a sensor should be inversely proportional to its variance. However, we have also stressed
that our uncertainty in a sensor is a relative characteristic, and should be regarded with
respect to the uncertainty the others sensors introduce into the equation, which is why
we introduced the 𝜆 term in Eq. (12.39). Taking the fact that all the coefficients should
add to unity,

𝛼1 + 𝛼2 + · · · + 𝛼n = 𝜆

2

(
1
𝜎2
1
+ 1

𝜎2
2
+ · · · + 1

𝜎2
n

)
(12.40)
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from which we have:
𝜆

2
= 1

1∕𝜎2
1 + 1∕𝜎2

2 + · · · + 1∕𝜎2
n
= 𝜎2

ŝ (12.41)

which now completes our two requirements. We can likewise determine the expected
value of ŝ:

𝜂ŝ = E[ŝ] = 𝛼1E[s1] + 𝛼2E[s2] + · · · + 𝛼n[sn] = 𝛼1𝜂1 + 𝛼2𝜂2 + · · · + 𝛼n𝜂n (12.42)

Substituting Eq. (12.39) for each 𝛼i, we have:

𝜂ŝ =
𝜂1∕𝜎2

1 + 𝜂2∕𝜎2
2 + · · · + 𝜂n∕𝜎2

n

1∕𝜎2
1 + 1∕𝜎2

2 + · · · + 1∕𝜎2
n

(12.43)

Similarly:

ŝ =
s1∕𝜎2

1 + s2∕𝜎2
2 + · · · + sn∕𝜎2

n

1∕𝜎2
1 + 1∕𝜎2

2 + · · · + 1∕𝜎2
n

(12.44)

Notice that unlike in Eq. (12.32), we have made no assumption about the mean of the
individual random variables (si) in Eq. (12.44). They can have any value. But what will
happen if all of them have the same mean (𝜂) and variance (𝜎2)? In this case,

ŝ = 1
n
(s1 + s2 + · · · + sn) (12.45)

and,

𝜎2
ŝ = 𝜎2

n
(12.46)

and,

𝜂ŝ = 𝜂 (12.47)

From Eq. (12.46), we can conclude that the more sensors we involve, however imper-
fect they are when considered individually, the less uncertain we become. Indeed, the
variance tends to zero as n tends to infinity.

Example 12.5 An ultrasound scanning system uses an array of 19 microphones
arranged as shown in Figure 12.21. Each microphone has a normally distributed,
zero-mean, zero-offset output voltage, with a variance of 1mV. Assuming that the
microphones’ output voltages are independent of one another and we employ the
weighted-sum technique to combine their outputs, determine the pdf of the zero-offset
output voltage of the scanning system and compare it with the pdfs of the zero-offset
voltage of the individual microphones.

From the CLT we know that the output zero-offset voltage of the entire systemwill have
a normal distribution. Since the output voltages of the sensors are regarded as inde-
pendent and identically distributed (iid), this suffices for us to determine the variance
of ŝ:

𝜎2
ŝ = 𝜎2

n
= 1

19
≈ 0.05mV
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Figure 12.21 An ultrasound scanning system
consisting of 19 microphones, which serve as
ultrasound receivers. The zero-offset voltages of
the microphones are modelled as independent,
zero-mean, and normally distributed random
variables.

Hence, after inserting the parameters we have into Eq. (12.12), the density function of ŝ
is given as:

f (ŝ) = (1.78)e−10ŝ2

Figure 12.22 compares the density function of the combined error with the density func-
tion of the error of the individual microphones.

Example 12.6 Suppose the manufacturer of the ultrasound scanning system wishes
to make its product affordable by mixing two types of microphones. Maintaining that
the central seven microphones are more important than the outer 12 microphones, it
develops them with an expensive technique, and therefore, each microphone has a nor-
mally distributed, zero-mean zero-offset output voltage having a variance of 1mV. The
outer microphones, on the other hand, are cheaper and have a zero-mean, normally
distributed zero-offset output voltage with a variance of 5mV. How can the manufac-
turer possibly combine the output of the microphones such that the zero-offset error is
minimum?

There can be different combination techniques, but one of the plausible approaches is
to combine the sensor data in two stages, as shown in Figure 12.23. First the sensors are
categorised into two groups, based on their statistical properties, so that we can apply
Eq. (12.46). Then we can apply Eq. (12.32) to combine the output of the intermediate
stages:

1) First stage combination (combination based on statistical properties).

ŝ1 = 𝛼11s11 + 𝛼12s12 + · · · + 𝛼17s17 (12.48)

Since the sensors have identical statistics, the variance of ŝ1 can be computed as:

𝜎2
1 = 1mV

7
= 0.14mV (12.49)

Similarly,

ŝ2 = 𝛼21s21 + 𝛼22s22 + · · · + 𝛼212s212 (12.50)
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Figure 12.22 A comparison of the
zero-offset errors of individual
microphones and their combined
error.
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Figure 12.23 Using intermediate stages to systematically combine the outputs of multiple
independent sensors having different zero-offset output voltage statistics.

And

𝜎2
2 = 5mV

12
= 0.42mV (12.51)

2) Second stage combination.
We can combine the intermediate stages using Eq. (12.32):

ŝ = ŝ1 + K[ŝ1 − ŝ2] (12.52)

Using Eq. (12.31) we can determine K :

K = 0.14mV
0.14mV + 0.42mV

= 0.25mV (12.53)

Hence,

ŝ = ŝ1 + 0.25[ŝ1 − ŝ2] (12.54)



�

� �

�

322 12 Estimation

Likewise, using K , we can compute the variance of ŝ as follows:

𝜎2
ŝ = 𝜎2

1 − K𝜎2
2 = 0.14mV − 0.25(0.42mV) = 0.035 (12.55)

Figure 12.24 displays how the error of the ultrasound scanning system is improved
stage-by-stage through the systematic combination of the different sensor outputs.

12.5.2 Maximum-likelihood Estimation

In Section 12.5.1, we first decided how to combine the outputs of multiple independent
sensors, determined the optimal coefficients for minimising our uncertainty, and pro-
duced the joint pdf (Figure 12.24). In this section we shall take the reverse order. Our
aim is to determine the optimal and unbiased combination technique that optimises the
joint density function.
Recall the two important assertions we made in the beginning of this chapter. One of

them was stated as follows:

The state of reality and the output of a sensor are correlated to a certain extent.

This is the assertion upon which the maximum-likelihood estimation (ML) approach
is established. Regardless of the quality of the sensors, ML asserts that the output of
each sensor has something to do with the real quantity we wish to determine. Take, as
an example, the temperature-to-voltage converter we considered previously. Suppose
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Figure 12.24 Comparison of the pdfs of the different stages during the combination of the zero-offset
voltages of different microphones. From bottom to top: The pdfs of the output of the outer
microphones, the inner microphones, the intermediate stage combining the outputs of the outer
microphones, the intermediate stage combining the outputs of the inner microphones, and the
output of the final stage.
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between t and t + dt we sample, at a rate of 1 kHz, four independent temperature sensors
measuring the temperature of one and the same process and that we obtain the pdfs as
shown in Figure 12.25. Assuming that the temperature of the process during this period
remains unchanged, we suspect that themost likely temperature the sensors “perceived”
should correspond to 2V. Since the sensors are independent, their joint density function
given that they respond to one and the same parameter V –mind you, V is not a random
variable, since we assume that the value of the measurand does not change for the time
interval (t, dt)–can be computed as:

f (s;V ) = f (s1;V )f (s2;V ) · · · f (sn;V ) =
n∏

i=1
f (si;V ) (12.56)

Since we assume that the output of each sensor has something to do with V , we can
express it as follows:

s1 = V + e1
s2 = V + e2

⋮

sn = V + en

If the error introduced by each sensor is a zero-mean, normally distributed random
variable, then si is a normally distributed randomvariable havingV as itsmean, because:

E[si] = V + E[ei] = V
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Figure 12.25 Comparison of the probability density functions of four temperature-to-voltage
converters measuring the temperature of one and the same process.
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and,

𝜎2
si = E[(si − 𝜂si)2] = E[(V + ei − V )2] = E[(ei − 𝜂ei)2] = 𝜎2

ei = 𝜎2
i

Consequently, the density function of the output of each sensor is given as:

f (si;V ) = 1√
2𝜋𝜎2

i

e−(si−V )2∕2𝜎2
i (12.57)

The joint density function as a product of the density functions of the individual sensors
is given by:

f (s1, s2,..., sn;V ) = 1
(2𝜋𝜎2)n∕2 e

−
∑n

i=1((si−V )2∕2𝜎2
i ) (12.58)

Now having the joint density function, we can determine the best combination strat-
egy by differentiating Eq. (12.58) with respect to V , because we are interested in the
value of V that results in the highest probability or which is the most likely outcome
(hence, the name maximum-likelihood estimation). Alternatively, we can differentiate
the logarithmic value of Eq. (12.58) (due to the linearity property of logarithms). Thus,
we have:

ln (f (s1, s2,..., sn;V )) = n
2
ln (2𝜋𝜎2) −

n∑
i=1

(si − V )2

2𝜎2
i

(12.59)

Differentiating Eq. (12.59) with respect to V and setting the result equal to zero to
approximate V in terms of si yields:

n∑
i=1

(si − V )
2𝜎2

i
= 0 (12.60)

Consequently,

V̂ML = 1
n

n∑
i=1

(si) (12.61)

As expected:

E[V̂ML(s)] =
1
n

E

[ n∑
i=1

si

]
= 1

n

n∑
i=1

E[si] = V (12.62)

The variance of V̂ML(s) can be determined as follows:

𝜎2
V̂
= E[(V̂ML − V )2] = 1

n2 E
⎡⎢⎢⎣
( n∑

i=1
(si − V )

)2⎤⎥⎥⎦ (12.63)

where V is the true value we wish to approximate and V̂ML is its approximation. Notice
that in order to include V into the summation term, we have to divide it by n because
it will be added n times as a part of the summation term. The square of the summation
term will yield the following:

𝜎2
V̂
= 1

n2

{ n∑
i=1

E[(si − V )2] +
n∑

i=1

n∑
j=1,j≠i

E[si − V ]E[sj − V ]

}
(12.64)
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The last term of Eq. (12.64) is zero because the sensors are independent and
n∑

i=1

n∑
j=1,j≠i

E[si − V ]E[sj − V ] =
n∑

i=1
E[si − V ]

2∑
j=1,j≠i

E[sj − V ] = 0 (12.65)

From this we conclude that:

𝜎2
V̂
= 1

n2

n∑
i=1

E[(si − V )2] = 1
n2

n∑
i=1

𝜎2
i (12.66)

If all the sensors have the same variance, 𝜎2, then,

𝜎2
V̂
= 1

n2

n∑
i=1

𝜎2 = 𝜎2

n
(12.67)

As a result,

lim
n→∞

𝜎2
V̂
= 0 (12.68)

Under the assumption that all sensors produce errors that can be regarded as iid ran-
dom variables, Eq. (12.67) produces the same result as Eq. (12.46).

12.5.3 MinimumMean Square Error Estimation

So far we assumed, at least implicitly, that the error has nothing to do with the mag-
nitude of the measurand or any of its properties. In reality, however, this is not always
the case; some of the characteristics of the error may change in response to a change
in the characteristics of the measurand. As an example, consider Figure 12.26, where
the pdf of the error changes with a change in the magnitude of the measurand. Another
assumption we have made so far is that the measurand is a fixed or a constant quantity.
Most measurands we wish to sense in real life are themselves continuously chang-

ing and should be regarded as random variables. For instance, the temperature, relative
humidity, the intensity of light, the quality of air, and the air pressure change in time,
however slowly. Through repeated measurements or knowledge of causes and effects
we may have the pdfs of these random variables for particular places or processes. So,
if we label the measurand as a random variable m with its own density function, f (m),
theminimummean square error estimation (MMSE) aims tominimise themean square
error between the realm and its approximation, m̂:

e = m − m̂ (12.69)

If you remember an important assertion made at the beginning of this chapter, at this
point you may wish to ask how we can ever measure the error between m and m̂, as
we may never be able to measure m. This is correct; we may not be able to measure
m. Nevertheless, let us put this question aside for a while and assume that there is a
mechanism to measure the error.
Consequently:

E[(m − m̂)2]
!
= minimum (12.70)
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Figure 12.26 An illustration of the change in the pdf of the error of a temperature sensor as the
magnitude of the measurand changes.

One way to minimise the error is to employ multiple, independent sensors, just as we
did in the previous cases.Thus, if we can approximate themeasurand by properly fusing
the output of multiple sensors:

m̂ = 𝛼1s1 + 𝛼2s2 + · · · + 𝛼nsn (12.71)

We can minimise the error by determining the optimal 𝛼i. In other words, we can dif-
ferentiate Eq. (12.70) with respect to 𝛼i and set the result to zero:

E[(m − m̂)2] = E[(m − (𝛼1s1 + 𝛼2s2 + · · · + 𝛼nsn))2] (12.72)

𝜕

𝜕𝛼i
E[(m − m̂)2] = E[(m − (𝛼1s1 + 𝛼2s2 + · · · + 𝛼nsn))si] = 0 (12.73)

Recalling that,
𝜕

𝜕𝛼i
(𝛼jsj) = 0 (12.74)

and, because of our assumption of independence,

E[sisj] = 𝜂i𝜂j (12.75)

Listing together all the results, we have,

E[ms1] = 𝛼1E[s21] + 𝛼2𝜂1𝜂2 + · · · + 𝛼n𝜂1𝜂n
E[ms2] = 𝛼1𝜂2𝜂1 + 𝛼2E[s22] · · · + 𝛼n𝜂2𝜂n

⋮
E[msn] = 𝛼1𝜂n𝜂1 + 𝛼2𝜂n𝜂2 + · · · + 𝛼nE[s2n]

(12.76)
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If we let E[msi] = R0i, E[s2i ] = Rii and E[sisj] = 𝜂i𝜂j = Rij, then Eq. (12.76) can be
expressed as:

R01 = 𝛼1R11 + 𝛼2R12 + · · · + 𝛼nR1n
R02 = 𝛼1R21 + 𝛼2R22 + · · · + 𝛼nR2n
⋮

R0n = 𝛼1Rn1 + 𝛼2Rn2 + · · · + 𝛼nRnn

(12.77)

Equation (12.77) can be expressed in matrix form as follows:

⎡⎢⎢⎢⎣
R01
R02
⋮

R0n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

R11 R12 · · · R1n
R21 R22 · · · R2n
⋮

Rn1 Rn2 · · · Rnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝛼1
𝛼2
⋮
𝛼n

⎤⎥⎥⎥⎦ (12.78)

At this point, it is imperative to explain some of the variables in Eq. (12.78) and to
address the issue of measuring the true value of the measurand. The quantity Rii con-
tains the variance (signifying the error) of the output of the ith sensor (si), because
E[s2i ] = 𝜎2

i + 𝜂2i ; 𝜎
2
i and 𝜂i are usually determined in an environment resembling the typ-

ical operating condition of the sensor and by reading the output of the sensor in the
absence of a measurand (we have already made reference to this several times). If one
can take enough samples, the pdf of the error and, hence, 𝜎2

i and 𝜂i, can be determined.
The quantity R0i relates the output of the ith sensor to the true value of the measurand.
The quantity R0i is determined in a laboratory setting or by the manufacturer of the sen-
sor itself. Here as well, in an environment resembling the typical operation condition
and spanning the entire sensing range of the sensor, the sensor is given known inputs
(‘known’ meaning that the controlled input is measured by a highly accurate device,
although still an approximation) and for each input, the conditional pdf f (si|m) is care-
fully determined. Then, the joint pdf can be obtained by multiplying the conditional
density function by the density function of the measurand:

f (si,m) = f (si|m)f (m) (12.79)

f (m) is the pdf ofm, which we take as a random variable. Our knowledge of f (m) comes
from our knowledge of the measurand. Then E[msi] can be determined as:

E[msi] = ∫
∞

−∞ ∫
∞

−∞
m si f (si,m) dsi dm (12.80)

Finally, the MMSE coefficients can be determined as:

⎡⎢⎢⎢⎣
𝛼1
𝛼2
⋮
𝛼n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

R11 R12 · · · R1n
R21 R22 · · · R2n
⋮

Rn1 Rn2 · · · Rnn

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

R01
R02
⋮

R0n

⎤⎥⎥⎥⎦ (12.81)

Example 12.7 Suppose we use two sensors to estimate the outside temperature. The
two sensors have a zero-mean, normally distributed error with different statistical prop-
erties and we wish to determine the best way (in the MMSE sense) of combining evi-
dence from these sensors.
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The estimated temperature can be expressed as:

T̂ = 𝛼1s1 + 𝛼2s2 (12.82)
e = T − T̂ = T − (𝛼1s1 + 𝛼2s2) (12.83)
𝜕

𝜕𝛼1
E[e2] = E[(T − (𝛼1s1 + 𝛼2s2))(−s1)] = 0 (12.84)

Likewise,
𝜕

𝜕𝛼2
E[e2] = E[(T − (𝛼1s1 + 𝛼2s2))(−s2)] = 0 (12.85)

From this we have:
E[Ts1] = 𝛼1E[s21]
E[Ts2] = 𝛼2E[s22]

(12.86)

We obtained simplified expressions in Eq. (12.86) because the errors in both sensors
have zero means and, as a result, E[s1s2] = 0. Moreover, E[s21] = 𝜎2

1 and E[s22] = 𝜎2
2 .

Therefore,

𝛼1 =
E[Ts1]
𝜎2
1

(12.87)

and,

𝛼2 =
E[Ts2]
𝜎2
2

(12.88)

12.5.4 Kalman Filter

So far, even though our evidence combination strategies gradually became more com-
plex, we have nevertheless been entirely dependent on the measurements we got from
the sensors in order to determine the values of a measurand. We can reduce our uncer-
tainty about the measurand if we can add knowledge from a different domain. The
second assertion made at the beginning of this chapter can serve us towards this end:

The change in the physical reality (measurand) is a gradual process rather than
being haphazard andwild; statistically speaking, themeasurand is correlatedwith
itself to a certain extent.

One way of interpreting this assertion is that the future values of a measurand are, to
a certain extent, explainable in terms of the present, in the same way its present value is
explainable in terms of its past values. Perhaps the poet T.S. Eliot had this in mind when
he composed the opening verses of Burnt Norton in Four Quarters:

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.
If all time is eternally present
All time is unredeemable.
What might have been is an abstraction
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Remaining a perpetual possibility
Only in a world of speculation.
What might have been and what has been
Point to one end, which is always present.

To give a concrete example, the temperature in the city where I am living begins to
decline steadily towards the end of September all the way through to the end of March,
even though it goes up and down in between. Suppose, based on the knowledge I have up
to time t − 1 (whatever my source of knowledge may be), I predict the temperature for
time t with a certain degree of accuracy. Let us label this measurement as xp(t) (notice
the indices p and t; p stands for prediction, because I have not yet made a measurement
for time t; t indicates that the prediction is made for time t when I am at time t − 1).
When time t arrives, I make a measurement using a temperature sensor. Let’s label this
measurement as xm(t), where the indices m and t represent a measurement taken at
time t. Both my prediction and measurement are random variables on account of the
uncertainty stemming fromprediction andmeasurement errors. By carefully combining
xp(t) and xm(t) I can get x̂e(t), the uncertainty of which is less than if I were to rely on
either xp(t) or xm(t). Indeed, I can now even improve my prediction of the temperature
for time t + 1 due to my improved estimation of the temperature of t. This is illustrated
in Figure 12.27. Formally, the Kalman filter is described by two equations:

xm(t) = x(t) + v(t) (12.89)
x(t + 1) = x(t) + w(t) (12.90)

where x(t) is the randomvariable we are interested in estimating but will never be able to
directly measure, v(t) is themeasurement error at time t modelled as a random variable,
and w(t) is the error made in the prediction as a result of the inherent randomness in
the measurand (hence, the measurand is also regarded as a random variable).
To illustrate the above relations by example, suppose wewish to estimate the tempera-

ture variation of the city of Dresden for themonths between the beginning of September
and the end ofMarch; a total of 210 days. Each day exactly at noon wemeasure the tem-
perature of a particular location and predict the temperature of that same location for
the next day (at noon). Our aim is to improve our knowledge of the temperature of each
day by carefully combining the values of our prediction andmeasurement. Suppose that
scientific evidence shows that the temperature ofDresden falls about 2%daily in the time
period we are concerned with:

T(t + 1) = 0.98T(t) (12.91)

This is illustrated in Figure 12.28a. The scientific claim is, of course, very optimistic,
because the future temperature, even though it is to some extent correlated with the
present, entails also some randomness; otherwise we need not employ any sensor at all.
Suppose the actual temperature variation looks like the trace shown in Figure 12.28b.
The good thing about the correlation in the temperature variation is that we can include
a process error in Eq. (12.91) to accommodate the randomness in the temperature (pro-
cess) variation.

T(t + 1) = 0.98T(t) + w(t) (12.92)
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t – 2 t – 1 t + 1t

t – 2 t – 1 t + 1t

xm (t)

xp (t)

xp (t + 1)

xe (t) = xp (t) + Kt (xm (t) – xp (t))

xe (t)

Figure 12.27 The basic principle of a
Kalman Filter. The Kalman approach
combines two types of evidence: one
from knowledge of how the
measurand evolves in time (xp(t)),
the other frommeasurement (xm(t)).
The idea is to reduce the uncertainty
in the combined evidence x̂e(t) by
properly weighing xp(t) and xm(t). As
the bottom part illustrates, as our
uncertainty decreases, the
propagation of our belief into the
future further reduces our
uncertainty.
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Figure 12.28 An illustration of the temperature variation over time: (a) the temperature at t + 1
expressed as a function of the temperature at t, in other words, T(t + 1) = 0.98T(t); (b) the actual
temperature; (c) the process error modelled as a zero-mean, normally distributed random variable.
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The process error is shown in Figure 12.28c. At this point it should be noted that
Eq. (12.92) should not be confused with the prediction for the time t + 1, which we label
as Tp(t + 1). Equation (12.92) stems from the second assertion made at the beginning
of the chapter and repeated at the beginning of this section. Tp(t + 1), on the other
hand, depends on the knowledge oft the temperature of t, but this should become clear
in the subsequent explanation.
The measurement we take each day using a sensor contains the actual temperature,

but this is mixed with the inherent error of the sensor.Thus, we can express it as follows:

Tm(t) = T(t) + v(t) (12.93)

Notice that even though the temperature of the present as well as the future are scalar
quantities, due to w and v, they should be taken as random variables. If we let T̂(t) be
our estimation of the temperature for the time t, then the mean square error at time t is
expressed as follows:

P(t) = E[e2] = E[(T(t) − T̂(t))(T(t) − T̂(t))] (12.94)

The estimated temperature for time t can be expressed in terms of the predicted tem-
perature for time t and the measured temperature for time t using Eq. (12.32):

T̂(t) = Tp(t) + K(t)[Tm(t) − Tp(t)] (12.95)

Since Tm(t) = T(t) + v(t), Eq. (12.95) can be rewritten as:

T̂(t) = Tp(t) + K(t)[T(t) + v(t) − Tp(t)] (12.96)

Substituting Eq. (12.96) into Eq. (12.94) yields,

P(t) = E{([1 − K(t)][T(t) − Tp(t)] − K(t)v(t))2} (12.97)

The term E[T(t) − Tp(t)], denoted as Pp(t), quantifies the prediction error and is some-
times known as the error of the priori estimate. This error does not correlate with the
measurement error, since the prediction is made before the measurement is taken. Now
we can rewrite Eq. (12.97) in terms of the prediction error:

P(t) = (1 − K(t))2Pp(t) + K2(t)R (12.98)

where R = E[v2]. If the measurement error is a zero-mean error, then R = 𝜎2
𝑣 . If we dis-

tribute Eq. (12.98), it yields,

P(t) = Pp(t) − 2K(t)Pp(t) − K2(t)(Pp(t) + R) (12.99)

We are now in a position to choose the optimal K(t) that can minimise our estimation
error at time t. This can be done by differentiating Eq. (12.99) with respect to K(t) and
setting the result to zero. The result is:

K(t) =
Pp(t)

Pp(t) + R
(12.100)

Finally, substituting Eq. (12.100) into Eq. (12.99) reduces the expression for P(t) into:

P(t) = (1 − K(t))Pp(t) (12.101)
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One way to continuously improve our ability to predict is to propagate or project the
estimation error into the future. Hence our prediction of the temperature for time t + 1
based on the evidence we have at time t is:

Tp(t + 1) = 0.98T̂(t) (12.102)

The prediction error for time t + 1 is,

ep(t + 1) = T(t + 1) − Tp(t + 1) = 0.98T(t) + w(t) − 0.98T̂(t) = 0.98e(t) + w(t)
(12.103)

The MMSE of the predicted temperature for time t + 1, Pp(t + 1), is:

Pp(t + 1) = E[e2p(t + 1)] = (0.98)2E[e2(t)] + E[w2(t)] = 0.9604P(t) + Q (12.104)

where Q = E[w2(t)]. If the process error is a zero-mean error, then, Q = 𝜎2
𝑤. With Pp(t),

P(t), and Pp(t + 1) the Kalman Filter connects the past, the present, and the future, in
the same way the poet maintains:

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.

Consequently, we can now estimate step by step the temperature of each day. Suppose
we define:

Tp(t) = 0.75T̂(t − 1) + 0.25T̂(t − 2)

For the first time slot, we shall have no predicted value and therefore the estimated and
the measured data are equal:

T̂(1) = Tm(1)

We still do not have sufficient data to make a prediction that satisfies our definition of
Tp(t), but we can make a reasonable estimate using the evidence we have:

Tp(2) = 0.75T̂(1)

With Tp(2) and Tm(2) (which we have, because we can always measure them), we can
compute T̂(2), but for that we need K(2), which we do not have. Once again, we can
make a reasonable guess; as we don’t have any evidence to mistrust either the predicted
or the measured values, we can set K(2) = 0.5. Thus,

T̂(2) = Tp(2) + K(2)[Tm(2) − Tp(2)]

WithK(2) determined, we can also determinePp(2),P(2), andPp(2 + 1) using Eqs 12.100
–12.102. And with these we can move on to predicting and estimating the temperature
for the next time slot, and so on. Figure 12.29 lists the program code in R for computing
all the remaining values for each parameter we require for determining prediction and
estimations. Figure 12.30 displays the three important temperature values. Clearly, the
Kalman estimation is more accurate than either the predicted or measured values.
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# process noise modelled as a zero-mean normal distribution with a variance of 1
w <- rnorm(210, 0, 1)

# measurement noise modelled as a zero-mean normal distribution with a variance of 9
v <- rnorm(210, 0, 3)

# initialising the vector for the actual temperature
T <- rep(0, 210)

# The temperature of day one being 20 degree Celsius
T[1] <- 20

# The actual temperature initialised
for(t in 2:length(T) ) {
T[i] <- 0.98 * T[t - 1] + w[t]
}

# initialising the vector of the predicted temperature
Tp <- rep(0, 210)
# initialising the vector of the measured temperature
Tm <- rep(0, 210)
# initialising the vector of the estimated temperature
Th <- rep(0, 210)
# initialising the vector of the Kalman constants
K <- rep(0, 210)
# initialising the vector of the minimum mean square prediction error
Pp <- rep(0, 210)
# initialising the vector of the minimum mean square estimation error
P <- rep(0, 210)

# Tm as the addition of the actual temperature and the measurement noise
Tm <- T + v
# Th of day one is set to equal the measured temperature of day one
Th[1] <- Tm[1]
# the predicted temperature of day two is set as 0.75 times Th[1]
Tp[2] <- 0.75 * Th[1]
# setting K[2] = 0.5, because I initially trust Tm[2] and Tp[2] equally
K[2] <- 0.5
# with K[2] = 0.5, Pp[2] will equal to 1
Pp[2] <- 1
# The minimum mean square error of t = 2 is computed
P[2] <- (1-k[2]) * Pp[2]

# the temperature of t = 2 is estimated
Th[2] <- Tp[2] + K[2] * (Tm[2] - Tp[2])

# Computing all the parameters of the Kalman filter

for(t in 3:(length(Tm)-1)) {
Pp[t] <- P[i-1] * var(w)
K[t] <- Pp[i] / (Pp[i] + var(v))

# I compute Tp[t] by combining the last two estimated values
Tp[t] <- 0.75 * Th[t-1] + 0.25 * Th[t-2]
Th[t] <- Tp[i] + K[t] * (Tm[t] - Tp[t])
P[t] <- (1- K[t]) * Pp[t]
}

Figure 12.29 Code written in R to estimate the temperature fluctuation of 210 days using a Kalman
filter. Tp: Tp(t), Tm: Tm(t), Th: T̂(t), Pp: Pp(t), and P: P(t).



�

� �

�

334 12 Estimation

0 50 100

(a)

(b)

(c)

150 200

0
5

1
5

0 50 100 150 200

0
5

1
5

0 50 100 150 200

0
5

1
0

Figure 12.30 Application of the Kalman filter to estimate the temperature variation over time. (a)
difference between the actual variation and the measured values; (b) difference between the actual
variation and the Kalman estimation (which combines the predicted values and the measured values).
(c) difference between the measured and the Kalman estimated values.

12.5.5 The Kalman Filter Formalism

In Eq. (12.89), we assumed (implicitly) that the output of the sensor and the mea-
surand are one and the same type. But this is not generally the case. For the
temperature-to-voltage converter sensor, for example, the input is a temperature (T)
and the output is a voltage (V). Therefore, we need a more inclusive approach to
formally express the Kalman filter. If x is depicted as the measurand which we wish to
estimate and s is the out put of a sensor (the measurement), the relationship between
the present and future values of the measurand are related to one another as follows:

x(t + 1) = Φx(t) + w(t) (12.105)

where Φ is the state transition matrix, from t to t + 1, and is assumed to be statistically
stationary and w(t) is called the process error at time t. Likewise,

s(t) = Hm(t) + v(t) (12.106)

whereH establishes an ideal relationship between s (t) andm(t).With these adjustments
in mind, the estimated value of the measurand for time t can be expressed as:

x̂(t) = xp(t) + K(t)[s(t) − Hxp(t)] (12.107)

where Hxp(t) predicts the sensor output (no measurement is taken yet for time t). The
Kalman constant K(t) should have the appropriate unit so as to enable the addition of
the two terms on the right side in Eq. (12.107). In the same way, we can modify the
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expressions for the Kalman constant and the MMSE for time t as well as the prediction
error for time t + 1 as follows:

K(t) =
HPp(t)

H2Pp(t) + R
(12.108)

P(t) = (1 − HK(t))Pp(t) (12.109)

Pp(t + 1) = Φ2P(t) + Q (12.110)

In conclusion, the estimation of a measurand may deal with past, present, or future
values, depending on what we wish to do with the sensor data. In his original publica-
tion Kalman (1960) uses the term “estimation” to collectively describe the problem of
interpolation, filtering, and prediction. He describes the individual problems as follows
(I have made a slight adjustment to the parameter depiction to make the text readable):

We are given signal x1(t) and noise x2(t). Only the sum y(t) = x1(t) + x2(t) can be
observed. Suppose we have observed and know exactly the values of y(0),..., y(n).
What can we infer from this knowledge in regard to the (unobservable) value of
the signal at [time] t, where t may be less than, equal to, or greater than n? If t < n,
this is a data-smoothing (interpolation) problem. If t = n, this is called filtering. If
t > n, we have a prediction problem. Since our treatment will be general enough
to include these and similar problems, we shall use hereafter the collective term
estimation.

References

Gardiner CW 1985 Handbook of Stochastic Methods, vol. 3. Springer.
Grewal MS 2011 Kalman Filtering. Springer.
Kalman RE 1960 A new approach to linear filtering and prediction problems. Journal of

Basic Engineering, 82(1), 35–45.
Papoulis A and Pillai SU 2002 Probability, Random Variables, and Stochastic Processes.

Tata McGraw-Hill Education.
Ross SM et al. 1996 Stochastic Processes, vol. 2. John Wiley & Sons.



�

� �

�


