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ABSTRACT 

Current tools and methods for measuring packet-based end-to-end network connections are facing two problems. First, no 

tool or concept covers all characteristics that are necessary to describe such an end-to-end connection. Second, even 

specialized tools and concepts lack the required accuracy when used in scenarios with network emulators.  Therefore, 

we developed our own cooperative and active network measurement tool called NORA based on existing and well-

established concepts and published it as open-source software. Our evaluation shows that NORA covers all relevant 

network parameters and exceeds existing tools in terms of accuracy, especially when used with network emulation. In 

this paper we describe the general concepts, implementation and evaluation of NORA, which has the ability to analyze 

rates relating to bandwidth, packet delay, loss, duplication and reordering in a single measurement for UDP and TCP. 
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1. INTRODUCTION 

Much research has been done in the area of network measurement in the last decades. It is still required to 

perform network measurements in many scenarios, for example for quality of service verifications and traffic 

engineering. In our use case we need accurate measurements for testing and verifying network simulation and 

emulation environments to evaluate their accuracy and performance [Lübke et al, 2014]. 

The research community and industry have developed several methodologies to measure certain 

characteristics of a network connection. Existing approaches are usually classified according to the following 

aspects. Network measurement can either be performed on the link level or end-to-end. Link level 

measurements are used to characterize direct connections between two network nodes. The results are mostly 

very accurate, but it also requires access to the corresponding routers. With end-to-end measurements, one 

can describe the characteristics of a whole network path. Another aspect is the way the measurement is 

performed. Active methods insert additional traffic into the inspected network. Passive methods do not inject 

probe packets, but they only observe the existing traffic. The third possibility is inline measurement. These 

methods only use existing traffic but they modify it, for example by putting additional measurement 

information into the header fields of IPv6 packets that pass by. Then, other network nodes can read and 

evaluate this data. The last criterion is the number of used measurement points. Cooperative methods require 

multiple measurement spots that access the probe packets. Non-cooperative methods, however, do not need 

any counterpart for the measurement. They mostly use ICMP messages or TCP SYN packets as probe traffic. 

Many specialized tools that implement these concepts have been developed. Therefore, it is possible to 

determine all relevant parameters in a network experiment. However, no current tool is able to determine all 

relevant parameters of end-to-end network connections in one measurement. Currently network 

experimenters have to use several tools to find out the complete network characteristics. This is tedious work, 

especially if the measurements are repeated for multiple network technologies. Furthermore, we found that 

the accuracy of some of the existing tools is not sufficient if used with network emulators like in our test bed.  

We therefore developed an own cooperative integrated tool named NORA (Network-Oriented Rates 

Analyzer) and present it in this paper. In conclusion, the main contributions of this paper are: 



 We developed the open-source active network measurement tool NORA that covers all relevant 

network metrics in one single measurement for UDP and TCP packets. 

 We used and adapted established measurement concepts, but also developed new methods for 

measuring packet loss, duplication and reordering within TCP traffic. 

 NORA achieves good accuracy compared to established network measurement tools, especially 

when used with network emulators. 

The requirements of a network measurement tool depend on the scenario where it should be used. In our 

use case of evaluating the accuracy of network emulators and simulators we analyzed the following 

requirements. First of all, the network measurement tool must cover all relevant parameters and metrics (see 

Section 2). The determination of these metrics should be done in one single measurement. This facilitates the 

experimental setup and allows the repetition of experiments in a time-saving manner. Furthermore, the 

measurement results must be accurate enough to allow comparisons between the different network emulators 

and simulators. A good configurability is also required. This includes setting the measured metrics, the used 

ports, the measurement type (one-way, round trip, bidirectional), the packet sizes and intervals as well as the 

used transport protocols (TCP or UDP). Also, the tool must be usable on any platform and it should be easy 

to install and use. 

In the remainder of this paper we first discuss relevant metrics of end-to-end network connections and 

then analyze existing research work and measurement tools for these metrics according to the stated 

requirements. We then present the concepts of our measurement tool called NORA. The evaluation section 

discusses the accuracy of NORA compared to existing solutions. The last section concludes the paper. 

2. RELEVANT NETWORK METRICS 

There are six relevant network parameters that form the characteristics of each end-to-end network 

connection. These parameters and their metrics are discussed in the following. 

Obviously one of the most important parameters of a network connection is the bandwidth as it 

determines how much data can be transferred per time unit. The capacity C is a metric for the maximum 

bandwidth. It depends on the physical medium of the transmission channel, but neither on time nor on the 

current traffic. In contrast to C, the available bandwidth A depends on the background traffic (utilization u 

with 0 ≤ 𝑢 ≤ 1) that is currently sent in parallel over the same connection. The available bandwidth can be 

determined with 𝐴 = 𝐶 ∙ (1 − 𝑢). Regarding end-to-end connections one often wants to find out how much 

payload can be transferred in a given amount of time. This can be specified with the bulk TCP thoughput 

BTT that is based on the transport protocol TCP. 

The packet delay specifies the time between sending and receiving a message. One-Way Delay OWD is 

used for measurements of only one communication direction whereas Round Trip Delay RTD is the time 

between sending a message and receiving the corresponding answer. The overall delay of a packet in an end-

to-end connection consists of the routing delay 𝐷𝑅 (processing and queueing inside the router), the 

transmission delay 𝐷𝑇  (placing the packet onto the link) and the propagation delay 𝐷𝑃 (passing the packet 

from one end of the link to the other). [Crovella and Krishnamurthy, 2006] In real networks packet delay is 

usually not constant. The variability of packet inter-arrival times is often called packet jitter ∆𝑂𝑊𝐷. Based 

on the definition of packet delay of two subsequent packets (j and j-1) ∆𝑂𝑊𝐷𝑗 can be determined as follows: 

∆𝑂𝑊𝐷𝑗 = (𝐷𝑅
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over the same path the transmission and propagation delays of packets j and j-1 equalize. In this case ∆𝑂𝑊𝐷 

only depends on the different routing delays and therefore on the varying load and queue sizes of the routers 

due to parallel traffic. Packet jitter consequently occurs in all non-exclusively used computer networks. 

Packet loss can occur for multiple reasons. Especially in error-prone transmission channels packet 

contents can get changed. If these bit errors are detected by error recognition mechanisms (e.g. checksums) 

and cannot be corrected, the whole packet is discarded and counted as loss. Another reason is congestion of 

the involved network elements. If the queue of the output link of a router is full, the scheduling algorithm 

either has to drop incoming or already queued packets. [Crovella and Krishnamurthy, 2006] Depending on 

the direction there are two metrics for packet loss: One-Way Loss Rate (OWLR, [Almes et al, 1999]) and 

Round Trip Loss Rate (RTLR). OWLR is more accurate because it considers asymmetric connections. It is 

computed with the number of sent packets 𝑃𝑠𝑒𝑛𝑑 and actually received packets 𝑃𝑟𝑒𝑐  over a given 



measurement period as shown in the following equation: 𝑂𝑊𝐿𝑅 = 1 − 𝑃𝑟𝑒𝑐 𝑃𝑠𝑒𝑛𝑑⁄ . If the network changes 

the order of two packets, this is called packet reordering. Reasons for this effect are parallelism within the 

routers, load sharing between multiple paths and path changes during transmission. The One-Way Packet 

Reordering Rate (OWRR) specifies the ratio of packets that arrive in wrong order and all sent packets. Packet 

duplication occurs if a packet that was sent once reaches the receiver multiple times. It can also be seen as a 

special form of reordering [Jaiswal et al, 2007], but in the following we discuss duplication as a separate 

effect. The One-Way Duplication Rate (OWDR) specifies the ratio of duplicated packets that reach the 

receiver and all sent packets. 

3. RELATED WORK 

The integrated measurement of multiple metrics was already investigated in two research areas. On the 

one hand there are network measurement frameworks like NetQuest [Song et al, 2009] and Atmen 

[Krishnamurthy et al, 2005]. These systems provide architectures for distributed measurements in large-scale 

networks. As these systems should be publicly available for network experimenters, they focus on 

architectural aspects like security and prevention of attacks. The measurement methodology itself is not the 

main scope. On the other hand there are network monitoring systems like Anemos [Danalis and Dovrolis, 

2003] and Flame [Anagnostakis et al, 2006]. These systems focus on the observation of changing parameters 

in a whole network. Users are able to create monitoring rules that can trigger alarms. 

Although most of the mentioned systems follow a flexible scripting approach, no system supports all 

relevant metrics that were discussed in the previous section. Furthermore these systems are not easy to use 

for comprehensive end-to-end measurements, because they focus on how to perform the measurement in 

whole networks and not on the methodology itself. Therefore, we further investigated on established active 

measurement methods that could serve as a basis for our integrated measurement tool. 

Bandwidth: Existing techniques for estimating the capacity C of a path are Variable Packet Size (VPS) 

probing and Packet Train Dispersion (PTD). VPS probing estimates C of each single link inside a network 

path. The tool Pathchar implements the VPS approach. It measures the round-trip delay from the source to 

each link with the help of the time-to-live (TTL) field inside the IP header and uses this delay as a function of 

the size of the probe packets. PTD estimates C for the complete path with the limitation, however, that there 

must be no cross-traffic. PTD is implemented in Pathrate [Dovrolis et al, 2004]. This tool analyzes the 

distribution of the inter-arrival times of long packet trains and uses statistical methods to estimate C. 

Commonly used principles for available bandwidth estimation are the Probe Gap Model (PGM) and the 

Probe Rate Model (PRM) [Guerrero and Labrador, 2010]. An example of a PGM tool is abing [Navratil and 

Cottrell, 2003] which sends packet pairs with a known initial dispersion and determines u by measuring the 

final dispersion of the received packets. PRM is based on the exploitation of self-induced congestions and 

relies on the fact, that one-way delays of probe packets increase, if their sending rate is higher than A. To find 

the turning point at which delay starts to increase, several techniques were developed, differing in structure of 

the probe stream and the way A is derived from the received stream. Example implementations are Pathload 

[Jain and Dovrolis, 2002], Yaz [Sommers et al, 2006] and Assolo [Goldoni et al, 2009]. Pathload uses a 

technique called Self-Loading Periodic Streams (SLoPS) and tries to find the exact turning point by sending 

constant bit-rate streams at varying rates. After each stream, Pathload changes the sending rate based on a 

one-way delay trend analysis at the receiver. Assolo uses the same technique, but it sends variable bit-rate 

streams consisting of variously spaced packets to test a wide range of rates with one stream. 

The BTT metric can be determined with Iperf. It measures the amount of sent TCP payload for a fixed 

period of time and calculates the BTT. 

OWLR, OWRR and OWDR: The IP Performance Metrics Working Group defines the One-way Active 

Measurement Protocol (OWAMP, [Shalunov et al, 2006]) that is able to determine loss, duplication and 

reordering. Other tools covering these metrics are Iperf and QoSMet. Instead of OWDR, they only provide 

OWRR; duplicated packets are treated as reordered. The measurement concept for all three metrics is simply 

based on the analysis of the packet sequence numbers. A packet is deemed as lost, if its sequence number is 

not recorded by the receiver. It is duplicated if its sequence number was already recorded. Finally, it is 

marked as reordered, if its sequence number does not equal the expected value. 



RTD and ∆𝑶𝑾𝑫: Techniques determining RTD are often based on ICMP echoes, the protocol behavior 

of TCP SYN-ACK/RST pairs or on cooperative processing similar to client-server systems. Tools 

concentrating on the first two techniques operate without the need to access the remote station. Ping belongs 

to that category and uses timestamps within ICMP echoes. Other tools like hping or tcpping can also measure 

the RTD with the help of the TCP SYN-ACK/RST mechanism, in which the sender times the outgoing SYN 

packet and the incoming ACK (or RST) packet. However, firewalls usually block that behavior to avoid 

SYN-ACK attacks. The principle of the third technique works in a similar way to that, but requires access on 

both endpoints of a connection. In this way the RTD can be measured under even more realistic conditions. 

Abing uses exactly this technique. It consists of a reflector running on the remote machine and a main 

program which sends UDP probe packets to the reflector and analyzes the received packets. The computation 

of ∆𝑂𝑊𝐷 can be done in different ways. Tools like QoSMet measure the arrival time of all packets in a 

stream and calculate the inter-arrival time of each consecutive packet pair. Other tools extend this approach 

by applying additional filters. An example is Iperf which implements the jitter calculation of RTP (Real-Time 

Transport Protocol). 

After the discussion of related work we conclude that no current network measurement tool covers all 

presented metrics in one single measurement as it is required in our scenario. Although, there are many 

established measurement concepts and methods that can serve as a basis of an integrated measurement tool. 

In the following we discuss our own concepts and their implementations that match the stated requirements. 

4. NORA MEASUREMENT TOOL 

Building on the preceding sections, the main concepts and also some implementation details of our 

measurement tool NORA will be explained in this section. NORA is a client-server based multiprocessing 

and multithreading tool which includes mostly active but also some passive measurement methods. Its 

general structure is illustrated in Figure 1. The architecture of NORA is designed in such a way, that it can 

act either as a server or as a client. The measurement server sends the probe streams to the requesting clients. 

Measurement parameters like the amount of streams, the period of time and the source probe port are sent 

through the control port. If a client connects to the server towards the control ports, the server sends the probe 

streams towards the measure port to the client and the measurement takes place. 

 

Figure 1. Structure of NORA and its use as server and client 

The sender (Tx) represents the active part regarding the measurement methods and sends probe streams of 

precisely crafted packet trains through the probes port. Timing is a decisive factor inside the sending process. 

To get accurate results, especially for bandwidth estimations, the compliance of the inter-departure time 

between consecutive packets, trains or streams has to be as accurate as possible. To achieve this NORA 

implements busy sleep with state-of-the-art timers and sets itself to high priority for Unix-like platforms. The 

used timers are based on the timestamp counter and provide high time stability with accuracy in the range of 

microseconds. 

On the receiver-side the packet capturing represents the passive measurement part. It captures the probe 

streams through the measure port and extracts the needed packet information. For this purpose it uses libpcap 

on Unix-like systems and WinPcap on windows based systems. This gives NORA the advantage of capturing 

a timestamp of a packet when the network interface’s device driver handles it. With an accuracy in the range 

of microseconds these timestamps are more precise than timestamps created at application level. Another 

advantage of the passive method is its ability to capture the behavior of TCP directly on the network 



interface, without the flow control. NORA captures each packet at OS kernel level and can therefore detect 

reordering and duplication of TCP packets. Normally, the OS kernel covers all TCP mechanisms and user 

level applications cannot observe such packet effects. 

As a last step, the computation instance gets all information from the sniffer, calculates the required 

values and sends them to the controller, who in turn shares these results with the server and/or client. So both 

sides get all results. The computation instance can also detect and handle interrupt coalescence. 

In the following we describe how NORA measures and obtains the values for the different metrics. 

Bandwidth: The values of BTT and A can be estimated for each one-way measurement. By definition 

BTT is based on TCP traffic and calculated according 𝐵𝑇𝑇 = (∑ 𝐿𝑗
𝑝
𝑗=2 ) (𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡)⁄ , where 𝐿𝑗 is the size 

of the j-th packet without the TCP overhead and p is the amount of packets received between the timestamps  

𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑. A timestamp is taken after receiving the last bit of a packet. Duplicated packets are included 

in the calculation, whereas lost and control packets are not taken into account. Thus, only the received 

payload will be summed up. 

In contrast to BTT, the values of A will be estimated with the help of UDP packets. The estimation 

consists of two phases. In the first phase, a slightly modified PTD technique is used. The original PTD rate is 

calculated without the consideration of UDP packet fragmentation. At the end of this phase, NORA uses the 

PTD result as a starting rate for the second phase, which is based on SLoPS and follows the principles of 

Pathload with some alterations. NORA also iterates over different rates to find an upper and lower bound of 

A. As described in Section 3, the basic idea behind this technique is to find the turning point, where the one-

way delay starts to increase at a given data rate. NORA uses packet pair dispersions (PPD) to analyze 

increasing trends (I-trend) or non-increasing trends (N-trend). The algorithm starts by sending a stream of 

packet trains from the server to the client. To derive an I-trend from PPD our tool analyzes each packet train 

in a stream with the help of Pathload’s Pairwise Comparison Test (PCT) and a modified version of its 

Pairwise Difference Test (PDT). Both test procedures are used, because there are cases in which only one of 

them can detect an I-trend. To determine the final trend of a train, NORA considers both, PCT and PDT. If 

both approaches have complementary results or show ambiguous trends, the train is discarded. 

As a next step NORA counts all I-trends and N-trends in a stream. If one of them is in the majority, 

NORA marks the stream accordingly. Otherwise the stream will be discarded. So, in contrast to Pathload, 

NORA makes hard decisions and has no need of a “grey region” [Jain and Dovrolis, 2002]. Further 

improvements like a variable threshold for packet loss and an alternative adjustment of the next probe rate 

make NORA more robust and let it return results more quickly. 

OWLR, OWRR and OWDR: The computation of these rates is based on sequence numbers and is 

different for UDP and TCP. As UDP has no acknowledgements, the concepts for UDP measurements are 

quite simple. The algorithm starts by sending a stream of packet trains. After Tx has finished and has waited a 

predefined period of time, it sends an additional control message to the receiver (Rx). Reordered, lost and 

duplicated packets can be found by analyzing the sequence numbers of the received packet train. The 

corresponding rates OWLR, OWRR and OWDR are then calculated with the size of the packet train. 

Using TCP for the measurements requires consideration of lost, reordered and duplicated 

acknowledgements. Hence, we developed an adapted measurement version. The main difference is that Rx 

and Tx maintain complete lists of all sent and received packets. After the actual measurement is performed by 

sending multiple packet trains, these lists are exchanged and both sides use them to analyze which packets 

got lost, reordered and duplicated and to calculate the corresponding metrics. 

RTD and ∆𝑶𝑾𝑫: The RTD values are computed at sender-side with the help of timestamps of outgoing 

and incoming packets captured by the sniffer. Therefore, a packet will be sent to Rx and the sniffer at sender-

side captures the timestamp of the outgoing packet. Also, a timer will be started. If the time-out is reached, 

the packet counts as loss. Immediately upon the receiving of a packet, the sniffer at receiver-side recognizes 

that packet and sends a copy of this back to the sender through the same port. The sniffer at sender-side 

recognizes the returning packet and captures its timestamp as well as its sequence number. If the sequence 

number is the expected one, Tx subtracts both captured timestamps. The result is the RTD of a packet and its 

copy. The measurements with UDP and TCP packets do not differ significantly. To measure the RTD of TCP 

traffic, NORA uses only packets carrying payload, so control packets (e.g. ACK, FIN) are discarded. 

The values for ∆𝑂𝑊𝐷 are again obtained using the list approach. This time Tx maintains a list of all sent 

packet numbers and the corresponding timestamps. After the measurement, the list is transferred to Rx, 

where the ∆𝑂𝑊𝐷 values are calculated by subtracting the inter-arrival times of consecutive packets (j and 



j-1) from their inter-departure times: ∆𝑂𝑊𝐷𝑗 = |(𝑡𝑠𝑒𝑛𝑡
𝑗

− 𝑡𝑠𝑒𝑛𝑡
𝑗−1

) − (𝑡𝑟𝑒𝑐
𝑗

− 𝑡𝑟𝑒𝑐
𝑗−1
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packets are skipped and reordered packets are sorted for these calculations. 

5. EVALUATION 

To evaluate our concepts and their implementation within NORA we show that all analyzed requirements 

(see Section 1) are fulfilled. In Section 2 we discussed the characteristics of end-to-end network connections 

and found the corresponding metrics: available bandwidth A, bulk TCP throughput BTT, one-way delay 

OWD and its variation ∆𝑂𝑊𝐷, packet loss OWLR, reordering OWRR as well as duplication OWDR. All of 

these metrics are supported by NORA and it can also determine these characteristics in one single 

measurement. As NORA is a command line tool, it is configured via command line parameters. Among 

others the user can define the measured metrics, the measurement type, the used ports, the packet sizes and 

intervals as well as the employed transport protocols. Thus, NORA also matches the requirement of good 

configurability. Due to its implementation in Python, NORA can be used on any platform that can provide a 

Python interpreter. Despite all configuration possibilities NORA is still easy to use, because all parameters 

are optional and have reasonable default values and no additional installation step is required. In the 

following we want to proof that NORA also provides the required accuracy of the measurement results. 

In order to evaluate our tool, we use a testbed consisting of two low-cost computers running Debian 6.0 

(Kernel 2.6.32), which are connected through a "Linktropy 7500pro" hardware network emulator 

manufactured by Apposite. The hardware emulator enables us to configure all of the relevant network 

characteristics with a high precision and it can also emulate cross traffic. 

Each metric describes a single network characteristic. In the context of the evaluation of NORA, we 

preferred to examine them separately. Additionally, we compared NORA with well-known tools specialized 

on the specific metric. The measurement methodology and the corresponding results for the different 

metrics are discussed in the following. 

Bandwidth: Experiments of A and BTT were performed in 12 different testbed configurations, whereby 

one configuration stands for a predefined capacity C with one of three fixed utilizations u. The values of C 

(384 kbps, 7.2 Mbps, 54 Mbps and 120 Mbps) are inspired by known technologies that provide Internet 

access. The fixed values of u were 10 %, 25 % and 60 %. For each configuration we measured 100 samples. 

Also, we compared NORA's results with Yaz, abing and Assolo for A and with Iperf for BTT. These tools 

were chosen, because they produced the best results from all discussed tools in Section 3. 

Table 1. Predefined values for the bandwidth and measured values for the Available Bandwidth A at different utilization 

levels as well as for the Bulk TCP Throughput BTT without utilization 

 

Table 1 shows the results of our bandwidth experiments for the metrics A and BTT. Regarding the 

available bandwidth the first obvious finding is that only NORA was able to measure the small bandwidth of 

384 kbps. All other tools either got stuck during the measurements or produced completely inapplicable 

results. Furthermore, it can be seen that abing measures the same values for all three utilization values. Our 

explanation for this behavior is that abing does not work with the artificially created background traffic of 



our hardware network emulator. NORA, Yaz and Assolo mostly match the expected values with a relative 

error of about ±3 %, while NORA shows less outliers than the other tools. Regarding BTT we compared 

NORA with Iperf, because it also measures BTT with TCP payload. This comparison ends even, because 

both tools approximately deliver the same appropriate results. Only for the highest bandwidth of 120 Mbps 

NORA seems to determine a BTT value that is too small. We did not explicitly calculate the expected BTT 

values because of the unknown number and sizes of the TCP acknowledgments and protocol headers. 

OWLR, OWDR and OWRR: To be able to measure rates with a precision of 0.01 %, we measured 

these metrics with trains of 10,000 packets. The respective metric was analyzed with two different settings, 

whereby we gathered 100 samples for each setting. The rates for these settings were 0.01 % and 1.95 %. The 

first one reflects a typical value and the second should show the precision of NORA. 

Loss, reordering and duplication results are shown in Figures 2a and 2b. The mean of each rate and used 

protocol is nearly identical with the predefined value (expectation). Outliers can be found when using TCP. 

The hardware emulator and of course a real end-to-end connection do not differentiate between control 

packets and payload packets on which NORA focuses. The inner statistic of the hardware emulator also 

counts acknowledgements. Thus, the rates based on TCP streams are often under the expected values. 

 

Figure 2. The left side shows the results for OWLR, OWRR and OWDR measurements based on UDP/TCP packets in 

comparison with Iperf with a presetting of 0.01 % (a) and 1.95 % (b) for each rate. The right side (c) shows the frequency 

distribution of 10,000 RTD measurements based on UDP. 

RTD and ∆𝑶𝑾𝑫: The delay values were measured with 1,000 samples on a connection modelled with a 

normal distribution. The minimum value and the mean value of this distribution were 0.2 ms or rather 

2000 ms with a standard deviation of 5 ms. The high mean value is based on the default time-out for round 

trip measurements in NORA. 

The frequency distribution (see Figure 2c) of our UDP RTD measurements is very close to the predefined 

normal distribution (dashed line). The values of the standard deviation σ and the mean µ are equal to the 

predefined settings. So, also for this case NORA shows its high reliability. Results for measurements with 

TCP are similar to that. The concrete results regarding OWD are left out for this paper, because they are 

similar to the results of RTD. NORA shows the right tendency of the packet delay distribution function. 

Findings: The estimations and measurement results in comparison with well-known tools show the 

reliability and accuracy of NORA. In some cases NORA is even more precise than the established tools and 

its results are closer to the expected values. 

6. CONCLUSION 

In this paper we argue that current tools for network measurement mostly specialize in measuring one or 

maybe a few network parameters, but no solution covers the overall characteristics in one measurement. We 

have tackled this issue and contribute with our integrated network measurement tool NORA that covers all 

relevant parameters of end-to-end network connections. Its development was driven by the analyzed 

requirements of our scenario in which we measure the accuracy of current network emulators. But the 



resulting concepts and their implementation are so generic that it can be used in multiple other use cases by 

other researchers as well. 

The implemented measurement concept for the estimation of A is mostly based on existing and well-

established methods, which we adapted and improved. As a result the estimation becomes faster, more robust 

to packet loss and can handle a larger range of bandwidth. But we also contribute with newly developed 

concepts mainly for measuring TCP traffic. In short, we implemented a pcap-based solution to detect OWLR, 

OWRR and OWDR at kernel-space. New methods are implemented for their computations. Also the captured 

timestamps are more precise than those taken with conventional timing methods. 

The discussion of related work and our evaluation showed that existing solutions have deficits in accuracy 

when used with network emulators and simulators. This emphasizes the third main contribution of our work 

that is NORA's good accuracy especially in these scenarios. 

Nevertheless, some open issues are remaining for future work. NORA could for example be enhanced 

with support of inline measurements (IPv6), a separation of control and measurement traffic or some kind of 

visualization of the measurement results. Although all important network characteristics are already 

supported, NORA could easily be extended to also meet future requirements. Due to the component-based 

design the measurement methods could also be replaced by other algorithms. 

The NORA project is released as open-source software1 and we encourage other researchers to not only 

use it for their own experiments, but also to collaborate with us in improving NORA for future releases. 
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