
Authoring Processing Chains for Stream-based
Internet Information Retrieval Systems

P. Katz1, M. Feldmann1, T. Lunze2, S. Sprenger1, and A. Schill1

1 Technische Universität Dresden, Fakultät Informatik, Deutschland,
philipp.katz@tu-dresden.de

2 Communardo Software GmbH, Dresden, Deutschland,
torsten.lunze@communardo.de

Abstract. Nowadays, Web-based information systems, such as web feeds
or enterprise microblogs produce a seemingly continuous and endless
stream of messages. Unfortunately, especially information workers cur-
rently experience an information overload. Thus, system support is re-
quired that enables a reduction of information load based on an automatic
preprocessing of these streams. This paper presents an innovative ap-
proach to author IIR (Internet Information Retrieval) processing chains
applicable for these stream-based business information systems. It is
based on a novel system architecture named Spectre for realising highly
scalable systems. Using a dedicated authoring tool, concrete systems
can be developed efficiently and adapted to specific requirements. The
solution has been validated using a prototypical implementation within a
concrete business information system.

Key words: Enterprise 2.0, System Architecture, Information Aggrega-
tion, Information Retrieval, Component Architecture, Stream Processing

1 Overall Background and Motivation

In 2007, for the first time ever, more information was generated in one year than
had been produced in the entire previous five thousand years – the period since
the invention of writing. [1]

The biggest part of this information is not published via books and stored
in libraries but via the Web. Due to the rise of the Web 2.0, a change in the
way of gathering and accessing information took place. It is a very widespread
approach, that information is not fetched by users but users are subscribed to
information sources. This approach is reflected by RSS and Atom web feeds, by
microblogs such as Twitter and by activity streams offered e. g. by Facebook.
During the last years, this trend has reached the external as well as internal
communication means of companies. Nowadays, companies offer various news and
social media streams to communicate to customers or deploy internal systems
such as enterprise microblogging systems, instant messaging solutions or Wikis
to increase the transparency and efficiency of internal communication. As a
result, many employees in such companies have to be subscribed to a variety of



2 P. Katz, M. Feldmann, T. Lunze, S. Sprenger, and A. Schill

information sources generating a potentially huge amount of information. This
situation leads to a predicament: On one hand, a specific amount of information
is highly relevant for their daily work. On the other hand, in many cases it is
impossible to follow all the information flowing to the user.

It is obvious, that the problem of information overload is ubiquitous – cov-
ering the private as well as and especially the business related usage of current
communication means. Thus, system support is absolutely essential to weaken
the resulting problem of missing important information. A desired system should
process the information automatically and present it in an efficiently accessi-
ble manner e. g. by grouping and ranking information or by proposing highly
relevant information. Therefore, messages incoming from various stream-based
information sources have to be routed through processing chains. A processing
chain can be seen as a workflow description with specific IIR preprocessing and
processing steps such as tokenization, token filtering, frequency calculation, part
of speech (POS) tagging, named entity recognition (NER), text classification,
keyword extraction, etc. As a result of our research and development efforts, we
have created a novel approach simplifying the overall task from definition to
deployment of such processing chains. This paper intends to provide a detailed
overview of this approach.

The remainder of this paper is structured as follows. Section 2 discusses a
use case to clarify the application area and gives an outline of our approach.
In Section 3, an overview of the state-of-the-art is provided. In a further step,
Section 4 introduces a highly scalable component-based platform for realizing
IIR systems and discusses its characteristics in detail. Based on the information
provided in Section 4, the novel authoring approach for developing stream-based
IIR systems is discussed in Section 5. Section 6 concludes the paper and gives an
outlook on future work.

2 Use Case and Approach Overview

The PRISMA information system has already been introduced in [2] and should
be familiar to the reader, in order to get a better understanding of the following
content. PRISMA forms a novel approach for enterprise communication. It
allows its users to subscribe to various heterogeneous information sources as
described in Section 1. To help the users to cope with the massive amount of
incoming information, data gathered from these sources need to be processed by
various IIR tasks that help to rank, group and interconnect gathered data. The
illustrated steps take place in Phases 1 and 2 of the processing chain depicted
in Figure 1. The system part carrying out the aggregation and preprocessing of
incoming messages is named the system’s backend while the part realizing the
user interaction and user management is named frontend. The frontend interacts
by sending subscription requests to the backend via a well-defined interface.

While the use case presented in [2] describes PRISMA from a end user’s
perspective interacting with PRISMA’s frontend (see Figure 2), the following use
case will focus on the backend part, and thus the distributed infrastructure and



Authoring Stream-based IIR Systems 3

Heterogeneous
Messages

Homogeneous
Messages

Enriched
Messages

Personalized
Messages

Personalized
Presentation

1 2 3 4

Focus of Spectre

Fig. 1. Processing Chain (modified version of Figure 1 in [2])

the necessary processing steps for acquiring and processing information. Besides
discussing the system architecture, this work will focus on the development
methodology of such systems by IIR experts and developers as depicted in
Figure 2. For this purpose an easy to use authoring tool is proposed which applies
a dedicated authoring methodology discussed in Section 5. It empowers domain
experts to specify IIR processing chains without programming skills using existing
IIR components.

The following application scenario will be used to illustrate our work: ACME is
a fictitious software company with 150 employees using PRISMA [2] to aggregate
all relevant information streams. The individual knowledge workers at ACME
use the system for consolidating and filtering information from various sources,
providing them with a personalised information stream in the system’s frontend
with relevant information tailored to their individual interests. It is evident that
the computation intensive IIR tasks applied to the messages gathered from the
information sources result in problems in regards to the system’s scalability.

After the processing chain of IIR tasks used by a system such as the mentioned
one has been defined by IIR experts, it has to be implemented, configured and
deployed. As we have made the experience during the development of various
IIR systems, such as the mentioned prototype of the PRISMA research project,
composing and setting up such a processing chain is highly time consuming and
needs a very detailed understanding not only of the IIR domain but especially of
building scalable software systems. Besides the huge effort that has to be taken
for an initial development of an IIR processing chain, modifications and updates
after deploying such a chain are currently labour-intensive. Due to these issues,
we developed an overall solution to create and run processing chains within
stream-based IIR systems, which consists of two core contributions:

1. A component-based software framework named Spectre used to run the
processing chain in the form of a highly-scalable distributed system (discussed
in Section 4).

2. An authoring tool named Spectre Cockpit used to define the processing
chains, to configure the applied IIR components and to deploy the chain
using the mentioned software framework (discussed in Section 5).



4 P. Katz, M. Feldmann, T. Lunze, S. Sprenger, and A. Schill

Frontend

document
stream

Infrastructure

Node

Node

Authoring Tool

deployment

monitoring

Processing chainConfig

IIR expert Developer PRISMA users

+
Heterogeneous Information Sources

Node

subscriptions

Fig. 2. Overview Spectre Infrastructure

The overall approach is depicted in Figure 2. Using the lightweight framework
Spectre, the different IIR tasks are encapsulated into software components which
are distributed to a set of available Nodes, each of them constituting a virtual
or physical machine. The interaction between these components is realized by
the Spectre framework as discussed in Section 4. The information determining
the execution order of messages by the logic embedded into components and the
configuration options for the embedded IIR logic is provided during deployment
time by the authoring tool. This information can be updated at any time after the
deployment of the components took place. Furthermore, the set of available IIR
tasks can be extended, for example when new requirements to the preprocessing
results arise.

3 State of the Art

After providing an overview of our novel approach, existing systems and solutions
for creating processing chains for information streams from various heterogeneous
sources are presented. Furthermore, graphical authoring tools for composing
information processing and extraction workflows will be presented. Although,
NLP toolkits and libraries such as OpenNLP or LingPipe provide basic building
blocks, our considerations will focus on architectural aspects enabling a flexible
composition and modelling of IIR workflows.

KNIME Desktop is an Eclipse-based platform which offers a component-based
workbench for connecting different processing components using a so called pipes
and filters approach. It can be used for information integration, data mining and
analysis, and machine learning. Though its origins are in the area of bioinformatics,
it can also be applied for exploring and experimenting with various data mining
tasks in the field of IIR. KNIME Server is a solution to deploy and integrate
such KNIME workflows within an existing company’s infrastructure by providing
the ability to access workflows using SOA paradigms [3]. A similar apporach is
RapidMiner1.

1 http://rapid-i.com/content/view/181/190/



Authoring Stream-based IIR Systems 5

UIMA (Unstructured Information Management Architecture)2 provides an ar-
chitecture for processing, analyzing and extracting information from unstructured
data sources such as text, audio, video and images. UIMA-based systems consist
of a number of single components, which can be combined to an analysis workflow.
Each component provides an isolated, independent task in the workflow to have
a clear separation of concerns, thus allowing a strong modularity, recombinability
and reusability [4]. UIMA uses a pipeline concept, where each component acts
as an Annotator enriching segments in the processed information with specific
metadata. UIMA AS (Asynchronous Scaleout) is an architectural approach for
achieving scalability for UIMA workflows. Single analysis steps may be replicated
and distributed among different logical or physical units. For exchanging data
between components, a queue concept is being followed. Data between different
nodes is exchanged using Apache ActiveMQ3 JMS implementation, which pro-
vides rudimentary means for monitoring the individual queues’ load by using
JMX (Java Management Extensions).

AdaptIE [5] provides a language for Information Extraction (IE) tasks allowing
to define extraction rules. AdaptIE provides a graphical user interface based on
Eclipse focussing on two target groups, supplying each of them with an individual
graphical interface: IE experts which are characterized by their fine grained
knowledge in e. g. NLP and domain experts who contribute their domain-specific
coarse-grained knowledge and build on the IE expert’s knowledge.

The MapReduce [6] concept has gained significant attention over the last
years, allowing parallel processing of so called big data. However, typical fields of
application in the IIR domain are limited to tasks which can be well parallelized,
like creating search indices for huge amounts of data, instead of establishing
pipeline-based architectures.

None of the aforementioned approaches targets the complete lifecycle of set-
ting up processing chains for IIR tasks. This starts with non-existent solutions
which provide the ability to acquire data from various heterogeneous sources of
different types of protocols and formats and integrating them into a common
processing model with minimal manual effort. While the presented graphical
tools such as KNIME Desktop or RapidMiner provide good means for initially
prototyping concrete processing workflows, they lack the possibility of transferring
such workflows to distributed and scalable infrastructures. Approaches focussing
onto the architectural aspect such as UIMA only target parts of the scalability
problem, especially do they provide no graphical tool support to set up and
extend processing pipelines. Although rudimentary mechanisms for controlling
the whole system’s load exist, UIMA lacks elaborate techniques for automati-
cally distributing an IIR system’s components and to provide dynamic scaling
properties of running systems, e. g. by deploying new or additional components
to an existing infrastructure if needed.

2 http://uima.apache.org/
3 http://activemq.apache.org/



6 P. Katz, M. Feldmann, T. Lunze, S. Sprenger, and A. Schill

4 System Architecture

In this section the architecture of the Spectre framework is discussed. This discus-
sion builds the fundament for providing details about the authoring approach in
Section 5. As mentioned in Section 2, the backend offers an interface which allows
subscriptions to various types of information sources. Thus, a system frontend
sends subscriptions to the backend and receives messages from the associated
information source which are then processed and enriched with metadata by
Spectre’s components. In the following, the central characteristics of this scalable
backend will be discussed.

The central idea of the architecture is the distribution of processing chains
over various nodes. For every subscription (e. g. an RSS feed or a Twitter account),
an associated processing chain is determined through which messages resulting
from this subscription are routed. Thus, every subscription is associated with one
route through available processing components – these routes are named Channel
in the Spectre terminology. For creating, updating and deleting subscriptions, a
centralized system component is responsible which additionally determines an
optimal processing chain. With this architecture, the management is centralized
while the message streaming is decentralized. Due to this, the architecture is
lightweight and easily understandable while highly scalable. The component-based
system architecture consists of four core entity types:

1. A set of Nodes used as execution environment for Spectre’s components.
Every node may be a physical or virtual machine hosting a container in which
the Spectre components can be deployed.

2. The system entity named Coordinator is responsible for scheduling a pro-
cessing chain for messages associated with a specific subscription. Furthermore,
it serves as point of interaction with a system frontend, thus offering an
appropriate interface for subscribing to and unsubscribing from different
information sources. Besides these tasks it monitors the overall system state
and realizes component replication and distribution to achieve scalability.

3. A set of Processing Components per node which offer different IIR-specific
functionalities such as stemming, stopword removal, tagging or relation
detection. Besides IIR algorithms, logic for accessing information sources
is encapsulated in Processing Components, called Adapter Components.
Spectre offers a predefined set of Adapter Components for example for RSS
feeds or Twitter which can be extended easily using Spectre Cockpit.

4. One Hub per node that manages the interaction between the components
deployed on the associated node in accordance to the schedule provided by
the Coordinator. Furthermore, the Hub realizes the interaction with further
nodes and transfers messages to these nodes using a queue concept.

Figure 3 and 4 visualize the interaction between these entity types within a
concrete example. The overall interaction is divided into three phases. During
Phase I, the setup phase, components are initially distributed to nodes, instanti-
ated and registered at the local Hub (Steps 1—3). Furthermore, the available
Hubs register at the centralized Coordinator, providing information about the



Authoring Stream-based IIR Systems 7

Cmp3

Cmp4

Coordinator Hub1

Cmp1

Frontend CockpitHub2

Cmp2

deploy
Components

«create» deploy
Components

register

register

subscribe

determine
Schedule

configure

configure

«create»

«create»

«create»

register

register

Node1 Node2

configure

Ph
as

e 
I

Ph
as

e 
II

1
2

2
1

2

2

3

3

4

4

3

3

Fig. 3. Setup and Configuration Phase in Spectre

locally installed components (Step 4). Due to this procedure, every Hub can
validate which components are available locally and the Coordinator can verify
that all components and Hubs are correctly installed and can participate in
processing chains.

After this setup phase, subscriptions can be accepted from a frontend in Phase
II, the configuration phase. This phase is started by a frontend transmitting
a subscription request to the Coordinator. Every subscription consists of an
information source type, such as RSS or Twitter, and further source-specific
data, such as authentication information. For every supported type, a specific
Adapter Components is offered. It accesses the source and forwards the gathered
information to the IIR processing chain. This chain needs to be specified for every
subscription. Based on processing information specified by the system author,
the processing steps needed for a particular source type are available within the
Coordinator. These processing steps determine the order of the component types
in the pipeline for each source.

Considering this processing chain, the Coordinator creates an optimal sched-
ule based on the current system state and the capacity utilisation of different
processing component instances of the necessary type. In regards to the steps
depicted in Figure 4 it is e. g. determined, that incoming messages are processed
by the components in the following order: Cmp1, Cmp2, Cmp3 and Cmp4. Due to the
components’ distribution with ids Cmp1 and Cmp2 to Node1 and with ids Cmp3 and
Cmp4 to Node2, the determined schedule is communicated to the appropriate Hubs
having the particular components under their local control. This configuration
step is repeated for every subscription sent to the Coordinator.

After the configuration information has been distributed for one subscription,
messages coming from the associated information source can be routed through the
components. Every incoming message is processed by the respective component



8 P. Katz, M. Feldmann, T. Lunze, S. Sprenger, and A. Schill

and forwarded to the local Hub. Based on the processing chain description
received by the Coordinator, the Hub forwards the message either to a further
local component or transfers it to a remote Hub. In regards to the presented
scenario, the message is forwarded to the Hub of Node2 after it has been processed
by component Cmp2 so that it can be processed by Cmp3 next. After having passed
the whole processing chain, it is forwarded to the frontend.

During runtime, efficiency and capacity utilisation measures, like throughput
and load of components are collected. These values are transferred to the local
Hub in a first step. It analyses the collected values and in case, the Hub detects
an overloaded component, the Coordinator takes care of rescheduling some
of the established channels. The new schedules for the affected subscriptions
are distributed to the infrastructure as described in Figure 3. Updates and
modifications can be realized seamlessly. By extending or modifying the processing
chain or component configuration using Spectre Cockpit, required changes can
be transferred to the Coordinator and the participating nodes in the same
manner as the initial setup (Phase I) described above. In case of extending
processing flows, the additional components are made available ad-hoc to the
infrastructure, the affected subscriptions are determined by the Coordinator and
the changes are transmitted to the appropriate hubs. Thus, in sum, Spectre allows
a transparent modification and extension of processing flows without stopping
the processing and with no manual effort except the information provisioning via
Spectre Cockpit.

The system architecture has been implemented and technically validated based
on OSGi4 as component execution environment using Apache Felix5. To simplify
the development of the components, iPOJO6 has been applied. Furthermore,
XMPP7 was used as a mechanism for inter-Node and Node-to-Coordinator
communication. The different components implement a common Java interface
which defines the API for controlling the components’ lifecycles, for monitoring
their workloads and for transferring messages.

5 Authoring Approach

After the Spectre framework used for deploying IIR processing chains has been
discussed, the associated approach for authoring these chains is presented. As
introduced in Section 2, the so called Spectre Cockpit provides an all-embracing
authoring tool. It provides IIR experts with the possibility to create and adapt
existing workflows when new requirements need to be considered. The authoring
process thereby covers the following core areas:

1. New Adapter Components (see Section 4) can be created which are
then used to acquire data from specific sources and integrate them into

4 Open Services Gateway initiative
5 http://felix.apache.org/site/index.html
6 http://felix.apache.org/site/apache-felix-ipojo.html
7 Extensible Messaging and Presence Protocol



Authoring Stream-based IIR Systems 9

Cmp3 Cmp4Coordinator Hub1 Cmp1Frontend CockpitHub2Cmp2

submit

get
Messages

submit

submit

Node1 Node2

Ph
as

e 
III

submit

submit
process

process

process

submit

submit

submit

submit

determine
next

determine
next

determine
next

determine
next

Fig. 4. Processing Phase in Spectre

Spectre’s processing model. As described in Section 4, ready-to-use Adapter
Components exist for a range of different source formats. When new types
of sources need to be integrated, Spectre Cockpit supports experts with
authoring new Adapter Components. This authoring process is realized fully
visually without any need for programming. Using a data scheme or message
instance from an external information source, the mapping of a source’s data
model to the Spectre data model is defined. Furthermore, protocol specific
parameters are specified via Spectre Cockpit such as HTTP GET parameters.
Based on this visually provided information, Adapter Components can be
generated fully automatically.

2. New Processing Components for IIR tasks which perform subsequent
steps after acquiring source data can be created. These usually carry out
typical IIR specific tasks as outlined in Section 1. Similar to the described
annotation concepts of state-of-the-art approaches (see Section 3), each
Processing Component enriches the documents with specific metadata. Cre-
ating Processing Components for IIR tasks is the only step in the authoring
methodology for which programming skills are required.

3. Existing components can be configured and combined to Composite Com-
ponents and Workflows. Each single Processing Component performs a
highly specialised and isolated task. Certain components might thereby
require, that specific annotations are already supplied by the incoming docu-
ment (e. g. a component performing a token filtering which requires an already
tokenized document), other components depend on certain configuration pa-
rameters (like a language setting for a removal of stopwords). Spectre Cockpit
provides the user with an intuitive, worflow-based interface for setting up
processing chains and configuring each processing step.



10 P. Katz, M. Feldmann, T. Lunze, S. Sprenger, and A. Schill

4. Testing of components and workflows constitutes an important part of
Spectre Cockpit. The authoring tool allows an incremental, experimental
approach for creating sophisticated processing chains. Each component in
the Workflow can be executed directly within the authoring tool to provide
an efficient and error-free development methodology to the IIR expert.

5. After finishing the development process, Spectre Cockpit aids in the Deploy-
ment of the created workflows. The involved components are distributed to
the available nodes and the necessary configuration options are distributed
to the Spectre infrastructure.

6. Work on mechanisms for Monitoring workflows, nodes and their hosted
components is currently in progress. Future versions of Spectre Cockpit will
allow to monitor the measures of running systems and allow the user to control
and influence strategies for replication and distribution of components.

The components and workflows defined by Spectre Cockpit are transferred to a
specific repository from where they can be imported by further Spectre Cockpit
instances or shipped to the Spectre execution infrastructure. The authoring
tool has been implemented as Eclipse RCP (Rich Client Platform)8 application,
using Eclipse GEF (Graphical Editing Framework)9 as foundation for the visual
workflow editor. The current state of Spectre Cockpit is depicted in Figure 5.

To illustrate the potential of this tool, we build on the given scenario in
Section 2. Imagine, CEO Bob decides, that ACME should use the existing
PRISMA system to perform opinion mining tasks, monitoring various social
media sources for positive and negative user feedback about ACME’s products.
Mary, responsible as an IT and IIR expert for administrating PRISMA, therefore
initially needs to integrate new source types into the processing chain.

Both, Twitter and Facebook are currently not supported by the existing
deployment, which means, that new Adapter Components need to be created
by using Spectre Cockpit’s facilities. Furthermore, Mary requires additional
Processing Components for achieving her goal. To detect, which products are
mentioned in the processed documents, Mary needs an NER, which is already
available as component for Spectre. Additionally, Mary decides to use a text
classification algorithm in order to detect the customers’ sentiments in the
documents. In the described example, such a component is not yet available.
Therefore, Mary asks programmer Joe for assistance. Using the Spectre Cockpit,
Joe is able to integrate a text classification implementation as new component
into Spectre. From his code, a new component which can be integrated into
Spectre’s pipeline is generated.

After the necessary prerequisites have been fulfilled, Mary can start with
creating a new workflow using Spectre Cockpit. It acquires data from Facebook
and Twitter using the dedicated components. The incoming data is then piped
through various Processing Components like a tokenizer, token remover, etc.
After that, a NER is performed by the respective component to detect text

8 http://wiki.eclipse.org/index.php/Rich_Client_Platform
9 http://www.eclipse.org/gef/



Authoring Stream-based IIR Systems 11

Fig. 5. Processing chain visualized in Spectre Cockpit

occurrences of ACME’s products. Using the newly created text classification
component, users’ sentiments are detected for each document, assigning metadata
to each document describing the sentiment detection’s results.

To summarize, the result of the authoring process consists of the following
integral parts: A set of specialized Processing Components performing specific
tasks (like the NER and the text classification components in the given exam-
ple), the configuration options of these components and a workflow description
connecting the respective components. This workflow is finally deployed to an
existing infrastructure. Spectre takes care of an ad-hoc deployment, distributing
the involved components transparently to the available nodes as discussed in Sec-
tion 4. With this we have provided a detailed overview of the Spectre authoring
approach for defining processing chains for stream-based information systems
which has been validated by a prototypical implementation applied to real world
scenarios in the course of the PRISMA project.

6 Summary and Outlook

This paper introduced a novel approach for authoring and executing stream-based
IIR systems. The system is based on an easy to apply component-based structure.
The core idea is to distribute different IIR tasks using specialized components



12 P. Katz, M. Feldmann, T. Lunze, S. Sprenger, and A. Schill

over various nodes. Using the dedicated authoring tool Spectre Cockpit, concrete
processing flows can be authored and distributed to an infrastructure consisting
of various physically distributed nodes. Spectre Cockpit allows efficient modelling
of processing workflows for IIR experts by resorting to preexisting Processing
Components. Users are isolated from technical aspects, such as deployment and
configuration of these components on a sophisticated, distributed architecture.
Furthermore, IIR experts are isolated from implementation specific details by
providing them an easy-to-use interface for settings up complex processing chains
using a visual authoring tool. This paper presented the overall approach. We plan
to focus on details of the single aspects and mechanisms used in our approach in
several follow up papers.

In future work we will focus on enhancing the scalability of the system
by improving the algorithms and means for IIR component distribution and
replication. This includes especially the optimization and evaluation of the
rescheduling algorithm mentioned in Section 4. Furthermore, an essential aspect
in regards of the decentralization of messages will be addressed. The messages
are streamed via different ways through the system. Some IIR algorithms need a
global perspective on the available data (e. g. for learning models or corpora). It
has to be analysed how data or core characteristics of this data can be spread via
the components in an efficient manner in order to achieve this global perspective.

Besides these research related issues, it is planned to publish Spectre as an
open source project until the third quarter of 2012.

Acknowledgments. The contributions presented in this paper are results of
the research project PRISMA which is developed in a cooperation between the
Technische Universität Dresden and the Communardo Software GmbH. The
PRISMA project is funded by the Free State of Saxony and the EU (European
Regional Development Fund).

References

1. J. Bloem, M. van Doorn, S. Duivestein. Me the media – Rise of the Conversation
Society, VINT editions (research institute of Sogeti), 2009, p. 270.

2. P. Katz, T. Lunze, M. Feldmann, D. Röhrborn, A. Schill. System Architecture for
handling the Information Overload in Enterprise Information Aggregation Systems,
BIS 2011; Poznan, Poland; 6/2011.

3. M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C.
Sieb, K. Thiel, B. Wiswedel. KNIME: The Konstanz Information Miner, Studies in
Classification, Data Analysis, and Knowledge Organization (GfKL 2007).

4. D. Ferrucci, A. Lally. UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment, Natural Language Engineering,
2004.

5. W. M. Barczyñski, F. Foester, F. Brauer, D. Schuster. AdaptIE – Using Domain
Language concept to enable Domain Experts in Modeling of Information Extraction
Plans, 12th ICEIS; Funchal, Madeira, Portugal; 2010.

6. J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters,
OSDI’04; San Francisco, CA, 2004.


