Federated Product Search with Information
Enrichment Using Heterogeneous Sources

Maximilian Walther!, Daniel Schuster', Alexander Schill'

ITU Dresden, Department of Computer Science, HelmholtzstraBe 10,
01062 Dresden, Germany
{walther, schuster, schill} @rn.inf.tu-dresden.de

Abstract. Since the Internet found its way into daily life, placing product
information at the user’s disposal has become one of its most important tasks.
As information sources are very heterogeneous concerning the provider as well
as the structure, finding and consolidating the information for generating an all-
embracing view on a product has become an important challenge. An
auspicious approach for resolving the emerged problems are federated search
techniques enriched with Information Extraction and Semantic Web concepts.
We investigate possibilities for federated product search combining
heterogeneous source types, i.e., structured and semi-structured sources from
vendors, producers and third-party information providers. The developed
approach is evaluated with a Ruby on Rails implementation.

Keywords: Federated Search, Information Extraction, Ontology, Product
Information Management.

1 Introduction

Since the permeation of daily life by the WWW, product information search has
become one of the central tasks carried out on the Internet. Producers increasingly
realized the importance of presenting their products and associated information in an
appealing and informative way online. Additionally, several types of online malls
have emerged which today are widely used by consumers as starting points for
collecting product information. Due to the fact that providing information on the
Internet has become cheap and feasible, also average Internet users have started to
enlarge the basis of information by adding so-called user-generated content. As a
consequence the Internet now holds many different information sources created by
different authors and structured in many different ways. Regarding the amount and
the heterogeneity of product information on the Web, the task of information retrieval
for one special product involves extensive research including the usage of different
vendor, producer and 3"-party websites.

Unfortunately most sources hold assets and drawbacks considering information
quality. For instance, producer websites provide complete and correct information,
but use advertising text for promotion purposes. Lexica like Wikipedia contain goal-
oriented and fresh information, but are not immune to biased product
characterizations.

As per description there are a lot of criteria for information sources to be called
ideal. Table 1 presents all conditions that an ideal information source should fulfill.

Table 1. Requirements for an ideal product information source.

- Completeness All available information is included.

- Correctness All included information is correct.

- Freshness All included information is up-to-date.

- Neutrality The information is not biased.

- Goal Orientation All included information is relevant.

- Comparison Information from similar products is available.

- Verification Information is backed by corresponding references.

Obviously no current product information source on the Internet is able to fulfill all
of these criteria. Instead a combination of data from many different product
information sources could provide an opportunity for satisfying them.

Federated search is the keyword in this context, as it allows the user to gain an
integral overview for the product of interest without requesting each information
source separately. Additionally, the federation enables access to information sources
the user would not have been searching himself. Current providers of applications for
simultaneous search already allow the access of structured information sources
typically offered by Web Services. However, important additional information for a
special product is to be found in semi-structured and unstructured sources like
producer websites and websites consisting of user-generated content.

We contribute a reference architecture for the heterogeneous federated consumer
product search as well as methods for the extraction of semi-structured information
from different information source types. The introduced architecture consolidates
information from these sources to offer an all-embracing product view to the user.

The Fedseeko system is a research platform, which implements the described
architecture. It uses multiple vendors for building a searchable information basis and
enriches the given information automatically by details from other sources, such as
producer websites or 3™-party information providers using information extraction (IE)
methods. Experimental results show the feasibility of the developed approach.

2 Related Work

In the field of federated product search, Shopbots [1] emerged already in the mid 90’s
and were the first step towards integration of multiple vendors in a federated product
search using screen scraping. Scraping vendor websites caused a number of problems
because it is error-prone and delivers incomplete information. The IPIS system [2]
overcomes these problems as it uses Web Service interfaces and ontology mapping as
key technologies. The user creates a semantic product query with the help of product
categories. Those categories are organized in ontologies to enable an easy mapping
between different information providers. As a main drawback, this approach relies on

the assumption that each shopping mall has Web Service interfaces and is able to
process semantic queries. A more lightweight approach is the shopinfo.xml standard
[3]. Shop operators may define a shopinfo.xml that can be downloaded by any
shopping portal easily, providing both RESTful Web Services as well as downloading
an XML product file for shop federation. Unfortunately, information relevant for
buying decisions is not restricted to multiple vendors, but also comprises information
on producer websites as well as third-party information, additional data, knowledge or
services [4].

The approaches pictured above offer means to consolidate vendor product
information, i.e., information provided by online malls like Amazon. Concerning the
vendor sources, our approach combines and dilates these works, as we extend the
federated product search from integration of different shops with similar interfaces to
federation of heterogeneous vendor sources. An adapter-like approach offers the
possibility to integrate sources accessible by Web Services as well as Web front ends.
Therefore we introduce a generic wrapper adopting specific Web information
extraction techniques. Additionally we allow the integration of 3™-party websites by
offering means of information extraction from these sites.

Product information on producer websites often is presented in a semi-structured
manner. Extracting and modeling this information is subject to many research
approaches as well. Wong et al. [5] describe an unsupervised framework enabling
both the extraction and normalization of product attributes from web pages containing
semi-structured product information. A number of algorithms are adopted to
categorize extracted text fragments and map found attributes to corresponding
reference attributes depending on the current product domain. Lermann et al. [6] also
picture techniques for extracting semi-structured product information from websites.
The developed algorithms are based on AUTOCLASS [7] and ALERGIA [8] and are
able to identify page templates and detect table structures to extract information from
any semi-structured web page, if only some pages using the same template were given
before. Unlike [5], table contents are not directly normalized, that is, the extracted
attributes are not matched with reference attributes. Brunner et al. [9] present
possibilities to overcome the problem of redundant data management. They describe
an architecture for integrating general business object information in ontology entities
using different layers of the MOF-model. A highly performant maintenance of
ontology information in databases is described as well.

The described approaches offer different possibilities to extract and normalize
product information from websites. We introduce alternative methods, especially for
the extraction of semi-structured information from producer websites, enabling the
extension of the user’s product information base with highly relevant and precise
information directly from the manufacturer.

The federation of heterogeneous sources using different types of information
extraction described in this paper is first presented in [10], providing enrichment of
information from online shopping malls with information from product detail pages of
producers. We extend this approach to a more generic architecture in this paper.
While [10] is restricted to structured vendor information and semi-structured producer
information, the work presented in this paper is able to integrate structured as well as
semi-structured information from vendors, producers and 3"-parties in the federated
search process.

3 Architecture

Fedseeko’s general system architecture is shown in Figure 1. As can be seen on the
right side of the figure, Fedsecko is able to query three different types of information
sources. These sources are offered by vendors, producers and 3"-parties. Vendors are
online malls like Amazon.com or Buy.com that are able to deliver some basic
information about products. Producers are the corresponding manufacturers of the
investigated product. They deliver technical specifications of products with a high
degree of credibility. 3"-parties are information providers delivering product
information that is often generated by average Internet users. This includes forums,
blogs, and test pages. 3™-party providers also include any dynamic source of product
information that is not maintained by vendors or producers, such as search engines.
Thus 3™-parties offer content of varying structure and quality.

search/look_up Fedseeko |
1 ﬁl
Vendor HTML Vendor
Adapter Pool AP|
| o)
Webserver Adapter Producer
Adapter Ontology HTML 3rd-Party
3rd-Party ﬁ
. » API| WS 3rd-Party
index/detail_page L™ | 5calization APl T

Search Engine

Fig. 1. Architecture of Fedseeko.

Consumers access the system through a browser mostly asking for a product list or
a product detail page. These requests are executed using the “search” and the
“look_up” method respectively. The search method allows providing appropriate
parameters, such as a search string, a category, a sort type, etc. The look up method
depends on a corresponding product ID that must be delivered to find the product in
the current vendor catalogue. For executing these methods Fedseeko queries one or
more adapters that translate the query into a request, which can be understood by the
respective vendor.

Using the vendor API the request is sent. When the vendor response arrives, the
information is mapped to an internal model and presented to the user. Fedseeko then
automatically tries to enrich the vendor information with producer and 3™-party
information. Therefore the Localization API finds out product pages on producer
websites using search engines. The information from these pages is extracted, mapped
to an internal model using mapping ontologies and added to the user’s information
base. All tied 3"-party sources are also queried and available information is presented
to the user as well.

The most convenient way for retrieving information is querying Web Services
provided by the information sources. As not all sources offer a Web Service,
Fedseeko alternatively uses a web scraping wrapper to extract vendor, producer and
3"_party information. The following chapters will explain the query mechanisms in
more detail.

3.1 Integration of Vendor Information

The vendor adapters have to define the before mentioned methods “search” and
“look up” to be included into the system. Then, Fedseeko automatically realizes the
integration of a new source and extends the user interface with additional tabs to
make the new vendor information accessible. Thus, adding a vendor that provides its
product information through a Web Service is made as comfortable as possible, as the
adapter is the only thing that has to be created by a user.

An example for a substantial Web Service providing vendor information is the
Amazon Associates Web Service (AAWS) [11]. Fedseeko includes the AAWS by
providing an adapter that integrates the information through mapping mechanisms
allowing the consistent access to product information by controller and model.

Web Scraping Wrapper. For all sources that do not offer Web Services, like
Conrad.com or ELV.com, a powerful wrapper was designed that allows Fedseeko to
access online malls through web scraping mechanisms. A general purpose adapter for
querying these vendor sources offers the functionalities described above. Different
parameter values of this special adapter allow the dynamic integration of scraped
vendor sources into Fedseeko. These values are saved to the database and consist of
details like the structure of the online mall’s URL, the parameters available for the
product information source and where to add those parameters to the source URL.
The database also holds information about the structure of the result page, which is
described by regular expressions, that are better suitable for scraping online malls
than XPath-queries, as the HTML-code of online malls is not always 100% clean.

Every user should be able to extend the system’s vendor source pool by adding
additional vendor descriptions. As the users cannot be expected to be well versed in
the exposure to URL structures and regular expressions, the web interface offers an
easy modality to describe the layout of new vendor URLs and result pages. The
process is presented in the following.

To create a generic URL for querying a particular vendor, the user has to provide
four different values. The first two values consist of URLs generated by the vendor
when querying the corresponding web page for a product with a product name
consisting of two words, e.g. “ipod nano”. The provided URLs must differ in the page
number, e.g. page one and two. The other two values are the used query words, in this
case “ipod” and “nano”. Then, by comparing the provided URLs and query words,
Fedseeko is able to generate a generic request URL with special flags at all points of
interest, being the page spot (where to add the page number), the product spot (where
to add the product query) and the separator (used for separating query words in the
URL). This generic URL is saved to the database for later use.

The result page is described by regular expressions. To create the regular
expressions, the user has to provide some attribute values. These values consist of the
attribute name (e.g. “price”), a unique string in front of the attribute value (e.g. “<td
class=\"imageColumn\" width=\"123\">") and a unique string behind the attribute
value (e.g. ""). Additionally the block containing the total
set of attributes for one result product has to be described in the same way. Holding
these values, Fedseeko creates a set of regular expressions that enable the system to
extract all product information from result pages as long as the vendor’s layout is not
changed. However, studies showed that the description of vendor layouts by regular
expressions makes the system more resistant to layout variations than for instance
XPath queries would.

3.2 Integration of Producer Information

After fetching the vendor information from an arbitrary information source, the
product can be presented to the user. As the vendor information only consists of few
details, Fedseeko is able to enrich this data with details from producer websites.

For dynamically locating additional information sources like product information
pages on the websites of corresponding producers, the following algorithm was
implemented in the Localization API:

producer page = query(producer name + " site:com") [0].root domain
product page = nil
while (!product page) do

product page = query(product name + " site:" + producer page) [0]
product name.vary
end

In the first step a search engine is queried for the producer’s website by using its
name, which is known from the vendor information, and a restriction to the domain
“com”. For instance, if searching for a Nikon camera, the query would look like
“Nikon site:com”. The first result in this case is “http://www.nikonusa.com”. The
system then removes all parts of the URL except the root domain, resulting in
“nikonusa.com”. In the second step the search engine is queried for the product name
using the previously retrieved producer website to make a hard restriction on the
search results. For instance a query for a Nikon camera could look like this: “Nikon
D40 6.1MP Digital SLR Camera Kit with 18-55mm site:nikonusa.com”. By this
means the system finds the product website among all the producer’s websites. As the
product title may not be spelled correctly, Fedseeko tries out different variations of
the title elements until it discovers the right page. The producer homepage as well as
the product presentation page from the producer are delivered to the user interface.

Now the producer adapter tries to extract product information from a list or table in
the product page using the scRUBYt!-API [12]. For being able to do this,
corresponding XPath-queries are required. The query set consists of an absolute base
query for locating the table in the page and several relative queries for each column of
the table. Most producers present their products in a uniform manner. Thus a set of
queries is only required once per producer. To generate the XPaths, Fedseeko

demands one set of example data for a random product of this producer from the user.
For example, if the user examines a Nikon camera, he follows the product page link
provided by Fedseeko to go to Nikon’s detail page. There he extracts the items
“Image Sensor Format” and “DX” from the website and posts this information
together with the address of the producer’s mapping ontology into a form provided by
Fedseeko. Then the system analyzes the page and finds the provided strings.

<ol : equivalentProperty
rdf:resource="35fed ;sensorFormat" /=

o Image Sensor Format = inagefensorF ormat

23.7%15.6mm imageSensorFormat = &fed; sensorFormat

6.24 million

<sensorFormat>DH< fsenso rFormat>

Fig. 2. Extracting and mapping product information.

To avoid problems of different encodings between example data in the website and
Fedsecko, the Levenshtein distance [13] is used to compare the extracted data with
the different elements of the examined website. After the example data set was found,
Fedseeko calculates the corresponding set of XPath-queries and saves them to the
local database.

The next time a user investigates a product from Nikon, Fedseeko automatically
finds the table information and extracts it. If no table is found (structured product
information is often presented in an extra tab of the product page) the system is able
to follow some links from the found product page to increase its hit rate. The
procedure is displayed on the left side of Figure 2.

For having a consistent view on all product features from different producers, a
mapping ontology is used to map Nikon’s terminology to Fedseeko’s terminology.

The ontology holding this mapping information can reside anywhere on the Internet,
preferably on the respective producer website. It consists of a taxonomy of product
types with corresponding attribute names. Every attribute is extended with a
“owl:equivalentProperty”-clause that describes how to map found attribute names to
the internal terminology defined by Fedseeko’s product ontology. After providing the
address of the mapping ontology to the program, Fedseeko translates the producer’s
attributes into ontology-compliant terms. In a third step the attributes are translated
into Fedseeko’s terminology and finally used for creating an ontology containing all
extracted product information in a consistent format. The described algorithm is
shown on the right side of Figure 2. The created product ontology is stored in a public
folder to be used by external information systems such as search engines. It is also
analyzed by Fedseeko to include the generated product information in the web
interface (Figure 3).

Key Features Tech Specs Flashes Accessories Software |

Image Sensor Format DX
Image Sensor Type CCD
Sensor Size 15.6 x 2| .
Nikon
Total Pixels 524 mif AL L
Total Pixels: 6.24 million
Effective Pixels 6.1 mu| LMage Sensor: CCD

Shooting Speed: 2.5 frames per second

Shutter Type: Electromagnetic and mechanically controlled wertical-travel
focal-plane

DX-forn| Monitor Resolution: 230,000 Dots

(L) 300} Monitor Type: TFT-LCD

(M)2,25 z 4 -
(e)1.50] Effective Pixels: 6.1 million

Monitor Angle Of View: 170-degree wide-viewing angle

Top Continuous Shooting 25fan] IMage Sensor Size: 23.7 x 15.6mm

Speed at full resolution Monitor Size: 2.5 in. diagonal
http://nikonusa.com/Find-Your-Nikon/ProductDetail.page?pid=25420

Image Area (L) DX Format

Fig. 3. Product information on nikonusa.com and Fedseeko.

3.3 Integration of 3"-Party Information

The 3"-party API enables Fedseeko to scrape static websites as well as querying and
scraping dynamic websites. Similar to the adapter pattern for vendor information
providers, a 3™-party information adapter can be added for every source to query. The
adapter has to provide a method called “query” that accepts a product name, a
producer name and a category name, which then can be used in the adapter’s sole
discretion. The adapter should finally return a list of hashes with the query results that
is provided to the view. The view tries to extract a hash value with the key “url” for
every list element, which is visually put in the end of each data set. All other hash
keys are used as titles for their corresponding values. 3"-party information adapters
can make use of the web form poster, which is a component to automatize the
retrieval of information from dynamic web pages. Like the producer information
adapter, the web form poster uses scRUBY! to enable efficient web scraping.

As an example, TextRunner [14] was tied to Fedseeko. TextRunner is a facts-based
search engine that is able to deliver assertions stated on different websites all over the
Web. These assertions often belong to field reports submitted by users that already
possess the product of interest. Thus, Fedseeko uses the adapter to provide the current
product’s name to TextRunner, which then generates a corresponding list of
assertions related to the product. The assertions as well as their source URLs are
extracted and put into the results list. As the TextRunner adapter defines that every
contained hash has the two elements “review” and “url”, one data set presented in the
view consists of a description and a specifically marked source URL (Figure 4).

Nikon Coolpix $550 10 MP Digital Camera with 5x Opticg
Amazon
Price at Amazon: $199.95
nikon s550 All ~ | Search Description:
10-megapixel effective recording * 5X optical
[All | Amazon |[Amazon_web |[Fedseeko || Otto I * 2-1/2" color LCD screen * 35mm equivalen|
Products from Search Index All Page 1 of 24 (Next Page) JPEG resolution: 3648 x 2736 * face priority ay
Order by: Reviews:
& nikon Coolpix S55{ Nikon Coolpix $550 10 MP Digital Cam) Review 1: Product Listing has incorrect featurd
| Nikon P ron Review 2: BAD image quality >>
=4 5$199.95 Price at Amazon: $19 Review 3: Not so good ==
SR ARy DESCI’IPtm":‘ et Review 4: A HUGE disappointment >
Nikon Coolpix S55 iu'zinle/ngpgjuf LECE“:: Review 5: Terrible ==
1 Nikon IPEG resolution: 3648 Producer: Nikon (Provide Examples)
ol 5T e Reviews: http://www.amazon.com/Nikon- Coolpix-Digital
Review 1: Product Listi
nikon Coolpix S55i Review 2: BAD image q il
Nikon Review 3: Not so good Nikon ’
caurce: Amazon Review 4: A HUGE disaj Product Details:
Review 5: Terrible >> Image Sensor: CCD
s “oolpix S55| :E;d:;'fﬁ:fwr“fizz(::’:‘ Total Pixels: 10.34 million
OM Shooting Speed: 1 frames per second
> pa Nikon Monitor Type: TFT-LCD
= ce: Amazon
Ll T ;uad\;‘/g Pwduit Detail Effective Pixels: 10 million
e o] Monitor Size: 2.5 in. diagonal
Nikon Coolpix S55! 'COOLPIX-S550.html 5 e
= NEkZQ E b " Monitor Resolution: 230,000 Dots
iﬁj $229.99 Google Image Sensor Size: 1/2.3 in.
B Source: Amazon Loading Google Informa) http://www.nikonusa.com/Find- Your-Nikon/Prdf
/COOLPIX-S550.html
Nikon EN-EL11 Li- Text Runner
Nikon Loading Text Runner In| T
N Review: |
Mikon launches Coolpix S550 and S600 Image
5600 Image
http://www.pocket-lint.co.uk/news/news.phtr
Review:
Tue , 29 Jan 200& 05 :00:00 +0000 : Nikon
Smallest 10MP compact with a 5x zoom lens a
http://www.centralpcrepairs.co.uk/rssdemo/nd
>>

Fig. 4. Screenshot of Fedseeko.

3.4 Incremental Page Reproduction

Fedsecko was implemented as a prototype providing all features described in this
paper. A screenshot of the current system is shown in Figure 4. The figure
demonstrates that the different steps of information consolidation are noticeable to the
user, because intermediate data is directly inserted into the web interface using Ajax
technologies. This way a consumer does not need to wait for the completion of all
tasks before examining the additional information.

In Figure 4 five vendor adapters are plugged into Fedseeko, which caused the
system to generate five tabs for accessing each vendor respectively. Additionally the
all-tab offers the possibility to query all vendor information providers simultaneously.

The final product detail page shows producer information, which was extracted from
Nikon’s website using the generated XPath queries. Below are additional information
snippets from 3™-party sources. Like the vendor adapters, Fedseeko automatically
detected all 3"-party adapters and queried them for product information.

4 Evaluation

To get an idea of the system performance, the success rate of the information
extraction from producer websites was evaluated (Table 2). To generate significant
test results, Fedseeko was used to query over one hundred products from the Amazon
catalogue. A gold standard was created for the whole product set to be able to
benchmark the results generated by the system. The gold standard consisted of sets
each containing a product name, the corresponding producer name, the address of the
producer’s website, the websites presenting the product (if available) and a flag
describing the existence of a semi-structured element on this website presenting
product details. For instance, if talking about digital cameras, a gold standard set
consists of the product name “D40”, the producer name “Nikon”, Nikon’s website
“http://www.nikonusa.com”, the product detail page address
“http://www.nikonusa.com/Find-Y our-Nikon/ProductDetail.page?pid=25420” and a
flag set to “true”, as the page contains a table presenting technical information about
the D40. The categories analyzed in this evaluation were “Technical” (e.g. Digital
Cameras), “Leisure” (e.g. Bicycles), “Body Care” (e.g. Shampoos) and “Media” (e.g.
Books). All information was gathered by hand. Then we queried Fedseeko for each of
the products and checked, if the gold standard could be fulfilled. The implemented
algorithms showed good results, as 71% of existing product information tables could
be found and analyzed. Details of the evaluation are presented below.

Table 2. System performance concerning product information.

aw l.loca_lize a% rextra_ct rto_tal rlocalize*rextract
Technical 93% 82% 89% 84% 58% 69%
Leisure 83% 76% 68% 94% 41% 71%
Body Care | 99% 70% 40% 100% 28% 70%
Media 75% 87% 40% 100% 26% 87%
All 88% 78% 64% 91% 40% 71%

Following data was evaluated: the product page availability a,,.., which describes
how many products have a presentation page; the localization recall 1c1ie, Which
describes how many of the existing product pages were found by Fedsecko; the
product table availability ayye, which describes how many of the existing product
pages own semi-structured information; the extraction recall reyye, Which describes
how many of the existing information tables the system was able to analyze.

For system users it is interesting to know, in how many cases the system is actually
able to enhance the product information basis with information extracted from

producer pages. Thus, the total recall r,y, of the extraction procedure was calculated
using the following formula:

— * % k
Tiotal = apage Tiocalize =~ table = Textract - (1)

Obviously technical products are most appropriate for extending their information
base with the Fedseeko system (i = 58%), while only 40% of randomly chosen
products can be enriched with producer information. This is mainly rooted in the high
amount of available product pages and semi-structured data for products of this kind.
Hence the system performance would receive a strong boost, if more producers
offered product pages and product information tables. This is proven by the value
Tlocalize Textracy Which describes the system performance independent from the
immutable values a,,,. and ayy.. Here Fedseeko shows a noticeable performance, as
more than %/5 (71%) of available producer information is found and extracted.

The remaining errors (29%) are caused by the system’s algorithms. For example,
the product’s producer website is not always localized correctly. This especially
happens when retrieving web pages of relatively unknown producers or companies
with ambiguous names. In this case the product page cannot be localized as well. If
the producer’s website could be localized correctly, sometimes the localization of the
product page still fails, as other websites on the producer’s domain may contain the
product title and are ranked higher by the queried search engine. Improvements in the
localization algorithm would meliorate the success rates considerably as the
extraction process already shows excellent results.

Nonetheless the evaluation shows that the overall recall is high enough to offer
valuable information to the user. Fedseeko is able to facilitate the creation of an all-
embracing view on a product of interest and thus supports the user in taking his
buying decision.

5 Conclusions

We have investigated an approach for federating multiple resources of disparately
structured types for consolidating product information from all over the Web. Design
patterns for integrating vendor information sources of different kinds were shown as
well as methods for the dynamic extension of this information by finding and
querying information sources from producers and 3"-parties at runtime to create an
all-embracing view for the user. Evaluation showed the success of the approach.
Considering the criteria for an ideal information source mentioned in the beginning
of this paper, we have facilitated a noticeable improvement in the field of product
information search. The system is not yet delivering complete information about any
product of interest, but it collects a high amount of information from different
sources. The collected information can be seen as correct in the sense that enough
sources are queried to enable the user of the system to compare the retrieved
information and filter out conflicts. The information is fresh, as all sources are queried
at runtime. Still caching functionalities are envisioned for future versions to allow a
better performance when many users access the system simultaneously. The

information in its whole is neutral, as information snippets from different sources can
be compared with each other. The information is goal-oriented, because no
advertisement is included in the view. The comparison of viewed products with
automatically retrieved alternative products is not possible yet, as the system needs to
be able to identify exact product types for offering this feature. Verification in turn is
given, because every information snippet is delivered along with its source URL.

Future works should concentrate on the improvement of the localization algorithm
to gain a higher recall concerning the producer information. Additionally, the
algorithm for extracting information from product pages should be further
automatized. Another important feature would be the personalization of Fedseeko to
increase the usability of the system. At the moment an arbitrary amount of
information sources can be offered to the user, which could overcharge his
receptivity. Instead, the system should suggest some relevant information sources to
first-time users and provide the possibility to add and remove information sources in a
simple manner for registered users. A fair enhancement would also be the automatic
adoption of source suggestions according to recorded usage statistics.

6 References

1. Fasli, M.: Shopbots: A Syntactic Present, A Semantic Future. IEEE Internet Computing
10(6): 69-75 (2006)

2. Kim, W., Choi, D., Park, S.: Intelligent Product Information Search Framework Based on
the Semantic Web. 3™ ISWC, Hiroshima, Japan (2004)

3. Wolter, T., Schumacher, J., Matschi, M., et al.: Der shopinfo.xml-Standard. XML-Tage,
Berlin, Germany (2006)

4. Hepp, M.: The True Complexity of Product Representation in the Semantic Web. 14™
ECIS, Goteborg, Sweden (2006)

5. Wong, T., Lam, W., Wong, T.: An Unsupervised Framework for Extracting and
Normalizing Product Attributes from Multiple Web Sites. 31* SIGIR, Singapore City,
Singapore, (2008)

6. Lermann, K., Knoblock, C., Minton, S.: Automatic Data Extraction from Lists and Tables
in Web Sources. IJCAI, Seattle, USA (2001)

7. Cheeseman, P., Stutz, J.: Bayesian Classification (AUTOCLASS):

Theory and results. Advances in Knowledge Discovery and Data Mining, AAAI/MIT
Press, Cambridge, USA (1996)

8. Carrasco, R., Oncina, J.: Learning Stochastic Regular Grammars by Means of a State
Merging Method. 2™ ICGI, Alicante, Spain (1994)

9. Brunner, J., Ma, L., Wang, C., et al.: Explorations in the Use if Semantic Web
Technologies for Product Information Management. WWW, Banff, Canada (2007)

10. Schuster, D., Walther, M., Braun, 1.: Towards Federated Product Search From
Heterogeneous Sources. WWW/Internet, Freiburg, Germany (2008)

11. Amazon: Associates Web Service. http://www.amazon.com/E-Commerce-Service-AWS-
home-page/b?ie=UTF8&node=12738641 (2008)

12. Szinek, P.: scRUBYt! - A Simple to Learn and Use, yet Powerful Web Scraping Toolkit
Written in Ruby. http://scrubyt.org (2008)

13. Sulzberger, C.: The Levenshtein-Algorithm. http://www.levenshtein.net (2008)

14. Banko, M., Cafarella, M., Soderland, S., et al.: Open Information Extraction from the Web.
IJCAI, Hyderabad, India (2007)

