
Autonomous Participation in Cloud Services

Josef Spillner, Christian Piechnick, Claas Wilke, Uwe Aßmann, Alexander Schill
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

Email: {firstname.lastname}@tu-dresden.de

Abstract—A Cyber-Physical System (CPS) is a combination
of multiple physical devices connected and organised by a
central controlling infrastructure using a feedback-loop mech-
anism. In order to increase the autonomy of CPS they must
be connected to rich cloud services (e.g., social software and
elastic resource services) enabling more sophisticated decision
making. Traditionally, software agents are used in these sys-
tems to automate computational tasks by separating decision
making from routine execution and hence letting the systems
act autonomously. In this paper, the Advanced Autonomous
Participation Scheme (AdAPtS) is proposed that can selectively
cover autonomous computing on both the decision and the
execution level, thus enabling classical cloud services embedded
into CPS on a range from user-controlled devices to fully
autonomous robots.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are composed of physical
devices (i.e., stationary, mobile and embedded systems,
sensors) which are connected and organised by a logically
centralised controlling infrastructure. On the lower control
layers, the infrastructure is hierarchically segmented ac-
cording to the device and subsystem network topology or
functionality [1]. Since those systems depend on autonomic
self-management [2], they must be able to (1) sense and
(2) analyse the environment they are acting in, (3) plan
appropriate actions based on these findings and (4) perform
them. This kind of self-adaptivity is usually based on a
closed feedback-loop mechanism (e.g. MAPE-K Loop) [3].
Additionally, these systems are often restricted in terms
of communication, storage and network resources so that
performing complex tasks without support from external
services will be hard to impossible. Using cloud computing
facilities to realise the central controlling infrastructure
and discrete computation and storage tasks leads to nu-
merous advantages (e.g. scalability, reliability or location
transparency). Furthermore automated cloud computing and
service orientation introduces the capability to dynamically
publish and consume services that can be offered from and
integrated into the lifecycle of Cyber-Physical Systems on
demand. This way, the functionality of the overall system
can be extended at runtime when it is necessary. Yet, even
with capable cloud services available everywhere on the
Internet today, finding and using them is still a labour-
intensive and cumbersome effort, leading to a decreased

quality of experience for humans and service lock-out for
machines. Imagine, for instance, an autonomously acting
robot running out of storage which requires a migration or
extension of its storage capacity. Ideally, storage services
could be integrated or reconfigured for the robot’s appli-
cation automatically, solely based on the most differential
parameters such as cost or capacity to select most appropri-
ate services. Instead, nowadays, several heterogeneous and
manual web-based sign-up, confirmation and configuration
steps need to be performed. Likewise, imagine a mobile
phone which lets users take pictures and record videos
without requiring an explicit sign-up to certain photo storage
and retouching services. Instead, it just queries interactively
for the permission to do so using the user’s profile and the
desired service properties, for instance, a free service within
a certain country. This, too, is not possible with today’s cloud
integration and cloud service participation techniques.

In order to adaptively integrate cloud services into a CPS
at runtime, software systems must be able to autonomously
pass typical service consumption lifecycle steps: the se-
lection, sign-up and registration, configuration, usage and
authentication processes.

In this paper, we propose the Advanced Autonomous
Participation Scheme (AdAPtS) for cloud services, which
enables software agents to automatically select, sign up,
log in and use cloud services. We apply the scheme to
an example scenario, which shows the communication and
interaction of human and artificial participants via social
cloud services. Yet, the scheme is universally applicable to
all service-oriented environments with sufficient descriptions
and interfaces. As a result, the scheme leads to a decreased
effort for human participants with interactive devices as well
as already autonomously acting cyber-agents and robots.

The remainder of this paper is structured as follows:
First in Sect. II, we provide the scope of cloud services
and the automation potential for their lifecycle. Afterwards,
we give a short example for a CPS application based of
human and robot stakeholders interacting via cloud services
in Sect. III and present the main characteristics of AdAPtS in
Sect. IV. An automation framework for resource-constrained
cloud service controllers with respect to CPS is described
afterwards and concludes the article with an outlook in
Sect. V.

II. BACKGROUND

A. Cloud Service Model

Cloud computing is defined as the sum of the service
modelling paradigm Everything as a Service (XaaS) and
the service delivery paradigm Utility Computing, arising
from the different levels of the Cloud Computing Service
Model [4]. In the scope of this paper, cloud computing is
treated rather broadly as a combination of Internet and web
services (e.g., communication or social activity services)
and global resources reservation (e.g., cloud storage and
computing resources). To illustrate the proposed approach,
we have chosen three inter-dependent services with varying
characteristics which are quite typical in today’s use of cloud
services in private, community and business contexts: (1)
Social Network, (2) Cloud Storage and (3) Face Recognition,
along with their dependency web services E-Mail and Image
Processing.

The service dependencies results from the informal re-
quirements of providers to link the creation of a service us-
age account to the presence of existing service accounts. For
example, it is common to require a valid e-mail address to
sign up for a social network, or a social network account to
sign up for the image processing web service. Furthermore,
some web applications are using personal cloud storage to
persist application specific data which forces the user to
specify a cloud storage account when signing up to one of
those applications [5]. From a consumer perspective, cloud
services follow a mediated lifecycle: Services are selected,
configured and used through central management facilities.
Recent crashes and data leaks of the cloud computing infras-
tructure of some providers (e.g., Amazon’s and Dropbox’
cloud portfolio) have shown that today’s cloud computing
facilities are not necessarily reliable. Furthermore, privacy
issues are causing huge discussions because most users avoid
to give away personal data. To deal with those problems,
it is often advised to federate or to aggregate them from
several providers into service offering variations. In par-
ticular, optimal cloud storage with guaranteeable security
and availability properties can be achieved with redundant
data dispersion across multiple providers [6]. In this way,
stored data remains available, even if some cloud services
are temporarily unavailable. To ensure privacy, data can be
scattered and dispersed across several providers in a way that
none of them alone can reassemble the original information.
Hence, the proposed autonomous participation scheme con-
siders both lifecycle-phase-bound service dependencies and
service offering variations such as bundles and compositions.

The cloud service dependencies and service offering vari-
ants are shown in Fig. 1. Further invocation dependencies
which may exist during the service use within compositions
are not subject to our approach; existing comparisons of
these are well-known [7], [8].

E-Mail
Cloud

Storage
Social

Network

Other Web

Services

may require [phases]
Image

Processing

Face

Recognition

[sign-up]

[sign-up, usage]

[usage]

[usage]

[sign-up, configuration]

variation

union aggr.

Figure 1. Dependencies between cloud services with and without typical
offering variants

B. Related Work

Research agendas towards a closer integration of multi-
agent systems (MAS), service-oriented computing ap-
proaches and architectures (SOC/SOA) and autonomous/au-
tonomic computing techniques have been published widely
in the literature of their respective communities [9], [10].
Among the expected benefits are inter-agent communication
guarded by service level agreements (SLAs), enhancement
of agent knowledge and capabilities through services, and
agent code reuse. New challenges arising from this com-
bination include service procurement with uncertainty [11].
There are subtle differences between automation, increased
autonomic self-management and full autonomy which we
acknowledge in our work [2].

Early responses to the question of how to achieve au-
tonomous service participation favoured a protocol-level
connection approach between web services and software
agents [12]. However, they did not account for deterministic
service selection based on non-functional requirements and
they omitted a discussion of how to integrate the connection
into devices with a varying degree of autonomous operation.
More recent approaches such as MySIM [13] introduce
middleware-mediated spontaneous service selection via QoS
specifications in pervasive applications. MySIM assumes
users performing the service integration in a one-shot pro-
cess and has not yet been evaluated in a context of binding
existing cloud services to CPS. Another approach introduces
local registries to avoid the costly (both in the resource and
power consumption and in the financial sense) discovery
of services [14]. However, it assumes interactive Internet
devices controlled by humans in many decisions.

III. MOTIVATING EXAMPLE

As a motivating example for autonomous participation
of robots in cloud services and social networks, imagine
the following scenario (cf. Fig. 2): At a fair or exhibition
stand, a humanoid robot is responsible for taking pictures of
humans attending the exhibition and passing by the stand.
The robot is able to store the pictures using dynamically
selected cloud storage with a suitable configuration including
size and storage redundancy, as well as acting as a virtual
reporter by selecting pictures, adding comments and posting
them in a social network to document the exhibition day.
Besides, visitors can use their own social network accounts

to become friends of the robot. Afterwards, the robot will use
their information to filter interesting pictures from its picture
store (e.g., the robot is able to notify visitors, if it identifies
colleagues or friends of them attending the exhibition as
well). This scenario clearly summarises the requirements
for an autonomous participation scheme: Dynamic service
selection and variant handling, service dependency exertion
and service integration into a feedback loop to find out if the
chosen service combinations truly fulfil the requirements.

Image
Proc.

E-Mail

Robot Humans

Storage
Social

Network

Face Re-
cognition

store
pictures

search
friends become

friends

take pictures

Figure 2. Example for autonomous participation of robots in social
networks and other cloud services

IV. AUTONOMOUS PARTICIPATION

In order to autonomously participate in cloud services,
several automated support activities are required along the
cloud service consumption lifecycle. They encompass the
sign-up preparation, the sign-up execution, and the con-
tinuous service usage, which is not covered in this pa-
per. Software agents are leveraged to automatically exe-
cute each of the lifecycle steps autonomously and context-
dependent [15].

• Sign-up preparation. This includes the selection of an
identity and of requirements as bootstrap data followed
by the service discovery and selection.

• Sign-up execution. E-Mail is selected or signed up first;
other services like Social Network, Cloud Storage and
Image Processing follow.

• Continuous usage (not considered in this article). This
encompasses communication activities by E-Mail and
in Social Networks, data storage, backups and sharing
over Cloud Storage, as well as submission of relevant
camera data to the Image Processing.

To harmonise the software agent deployment with service-
oriented architectures dominant in cloud environments, we
propose to store the agent implementations or links to them
along with the service descriptions in a registry. At sign-
up time, the agents are parametrised with an identity and
with context information, which might be queried from
a user explicitly or taken from a device context, about
the desired service configuration. For cloud storage, an
essential property is the capacity; for social networks, the
privacy settings. Smart Application Grids (SMAGs) is an

approach to build component based systems that can dy-
namically be adapted to the external environment using
(object-)roles [16]. SMAGs put emphasis on dynamically
changing collaborations between components within one
and between several applications. In this way SMAGs are
suitable candidates to implement and execute agents, espe-
cially when a cooperation between them is instrumental in
achieving evolutionary adaptation of software and devices
with long lifecycles to changing cloud environments. A
feedback facility must be included for non-automatable sign-
up steps (e.g., for solving CAPTCHAs [17]).

Apart from human users, both digital and physical cyber
agents acting on behalf of or as substitutes of humans
benefit from the autonomous integration of cloud services.
These extended software agents represent the upper layer
of the autonomous participation scheme and lift the degree
of autonomy to the decision level. While humans typically
start with a given identity (real or pseudonym) and conscious
requirements, the cyber agents either need to be given this
bootstrap data or given the facilities to generate it. With
increasing capabilities of the agents, they can take over
participation tasks from humans, for instance in the case of
lost interest or death, as proposed by the Cyber-Individual
model [18]. In addition to the system’s sensors which trigger
certain participation events, cyber agents can do so without
a signal from outside, for instance in advance, by apply-
ing artificial intelligence, belief-desire-intent (BDI) patterns
and needs-based triggers. Eventually, eliminating reasons to
distinguish between humans and cyber agents will make
cloud participants candidates for passing the Turing test [19].
In fact, even reverse Turing tests like CAPTCHAs against
automation can be solved with properly coordinated automa-
tion, including automatic and human solvers at very low
cost [17]. Fig. 3 visualises the service participation scheme
AdAPtS including the relations between the autonomous
participation engine, which hosts parametrised automating
software agents, and the human and cyber participants which
directly or through AdAPtS access services in the cloud.

Human

Cyber

Agent/

Robot

Parametrised Software Agents Agent Agent

 Cloud Services
Social

Network
Storage

Other

Services

Identity take-over

Real identity or

pseudonym
Artificial identity

Automated execution

Signup and/or usage
Manual execution

D
e

c
is

io
n

E

x
e

c
u

tio
n

identity

requirements

descriptions

Figure 3. AdAPtS: Devices controlled by humans and cyber individuals
participating in cloud services with a high degree of autonomy

V. REALISATION AND OUTLOOK

A. Automated Service Integration

In order to demonstrate the usefulness of AdAPtS, we
have first developed an automation framework for the sign-
up to various semantically described cloud services [20]. All
service property descriptions are represented as XaaS on-
tologies in the Web Services Modelling Language (WSML)
and published into a semantic web service registry such
as ConQo which is used for dynamic service discovery at
runtime [21]. WSMO4IoS is an emerging public WSML
ontology collection for both fictional and real XaaS with
software, hardware and human implementation. We use its
contents as the baseline for our prototype because it already
allows us to differentiate early between suitable and unsuit-
able (e.g. expensive or mostly unavailable) services. The
essential properties for automated service integration include
the service name, either a fully qualified internationalised
resource identifier (IRI) or unqualified, and endpoints to
perform the service operations, starting with the sign-up. For
services with a representation as human-readable web pages,
the endpoints refer to those pages containing the forms to
initiate the operations. An excerpt from an actual e-mail
service description is contained in Listing 1. Its quantified
non-functional properties like Capacity are matched against
client requirements, whereas non-quantified ones like Url
just carry information.

Listing 1. Semantic service description
instance Capacity memberOf { email#Capacity,

qos#ServiceSpec }
qos#value hasValue 1.5
qos#unit hasValue qos#GB

instance GMXFreeMail memberOf { email#Email }
hasUrl hasValue "pop3://pop.gmx.de"
hasSignupForm hasValue "https://www.

gmx.net/mail/freemail/
registrierung/?0&mc=fm@hp@reiter.
fm"

hasCapacity hasValue Capacity

According to the registry model, each service entry can
reference arbitrary description and integration artefacts. Typ-
ically, these are SLA templates, user interface bindings or
functional interface descriptions (WSDL, WADL and similar
formats). The automation framework uses this feature by
referencing executable software agents for each phase of the
service lifecycle. When a service operation (sign-up, usage
etc.) is due, the agent description is parsed for dependencies
whose agents are then executed first within the context of the
framework before the agent for the relevant service itself is
executed. Each agent produces a result (account data, return
value etc.) which can be used by subsequent agents. The use
of ConQo offers the benefit of being able to incrementally
synchronise the local registry with a global one on demand

whenever appropriate, e.g. in maintenance windows, to avoid
costly runtime discovery processes.

B. Robotic demonstration platform

In our presented scenario, the sign-up automation frame-
work along with a local instance of the service registry
and further software tools is hosted on a humanoid robot.
We chose the Nao robotic platform, a popular standard
platform for international competitions and research projects
including autonomous behaviour and autonomic computing
[22]. We have extended the Nao software tools with a
custom installer for all of our software so that the following
observations can be reproduced1.

According to the scheme, the robot as CPS device needs
an identity and a requirements specification before it can
enact autonomous service participation. The Nao is hence
given an initial identity, and it derives the need for service
integration with all particular details through software and
hardware sensors. For instance, its need for storage capacity
is determined by measuring the occupancy state of the disk.
Other non-functional properties such as price (for free) are
still fixed but eventually be traded off for more capacity by
linking the identity to a payment scheme which is reflected
in the robot’s identity. By matching the requirements against
the services offered in the ConQo registry in a discovery and
matchmaking procedure which includes a functional domain
selection and unit normalisation, a ranked list of fitting
services is returned. The re-use potential for the agents on
just slightly varying services increases by applying SMAG,
hence lowering the manual effort for autonomous continuous
cloud service use.

Listing 2 is an example of an agent description for a
specific cloud storage provider. Each agent executable is pre-
scanned for a declarative list of requirements on the identity,
for instance, the presence of a full name and a postal address.
Hence, among all suitable agents for otherwise equivalent
services, the one with the highest privacy index will be used.
If on the other hand the identity is incomplete with regards
to all available agents, the missing fields will be queried
interactively or produced automatically by an incremental
invocation of the CPS control’s identity generator until a
certain privacy threshold. The framework keeps track of
all identity submissions. The data from such traces can
be analysed to estimate the system’s service activity and
footprint.

Listing 2. Agent description
<serviceagents service="SafeSync" iri="http

://localhost:8080/Matchmaker/ontologies/
CloudStorage/safesync.wsml#">

<framework name="osst">
<signup>

1Nao Cloud-Robotics installer: http://serviceplatform.org/cgi-
bin/gitweb.cgi?p=smartoffice;a=tree;f=cloudrobotics

<dependency domainiri="http://localhost
:8080/Matchmaker/ontologies/Email.
wsml#">

<agent>http://localhost/agents/SafeSync.
pm</agent>

</signup>
</framework>

</serviceagents>

C. Autonomic Behaviour

The upper layer of the participation scheme has been
realised with a needs-driven software brain for the robotic
device following Maslow’s theory of hierarchical needs
ranging from fundamental to self-actualisation. First, in case
the robot hasn’t been given an identity yet, it will use a tool
to generate and persist one which is indistinguishable from
a human one. Then, all essential needs such as sufficient
power supply are to be fulfilled, which partially relies on
non-service physical actions, for instance moving to the
closes power supply unit. Whenever this state is reached,
certain sensoring and actuation tasks are performed within
a control loop to ensure the system health and vividness.
In idle periods of this state, the highest state is reached in
which the robot could make up its own agenda based on the
offers on a service marketplace. Our work doesn’t cover this
final state.

On the implementation level, the scheme has been re-
alised with a high degree of re-use of existing software
and data formats. Service descriptions have been taken
from the public WSMO4IoS repository. The agents use the
Mechanize and Tesseract-OCR frameworks to automate web
page crawling and analysis tasks. The identity generation
tool builds on top of the Barnum generator which is able
to produce vCards for U.S. and German identities. Fig. 4
summarises the overall resulting architecture.

D. Summary and Outlook

Through the research presented in this article, we have
introduced a significant contribution to client-side service
management. In evolving and unstable environments with
various providers in the cloud, the solution minimises soft-
ware reengineering efforts. Our methodology joins topics of
high interest on the intersection of Autonomic Computing,
CPS, and Cloud and Service Science research: lifecycle-
phase-bound service dependencies, bootstrap data for the
service selection in autonomous cyber agents and the in-
teraction with the feedback loop through both client-specific
sensors and CPS control agendas. The resulting autonomous
participation scheme AdAPtS takes these concerns into
account and enables a range of devices with a selectable
degree of autonomy to access cloud services, such as self-
healing cloud storage gateways and zero-configuration smart
office applications. The AdAPtS components have been
implemented and a video of the robot demonstrator has been

made available2. Future work is scheduled to highlight the
adaptive client-side integration concerns through the SMAG
framework and long-term measurements of a continuously
running CPS regarding the degree of configuration stability
and self-determined recovery after service interruptions.

ACKNOWLEDGEMENTS

This work has received funding under project numbers
080949277 and 080951806 by means of the European
Regional Development Fund (ERDF), the European Social
Fund (ESF) and the German Free State of Saxony.

REFERENCES

[1] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr,
“Towards Self-Adaptation in Real-Time, Networked Systems:
Efficient Solving of System Constraints for Automotive Em-
bedded Systems,” in Proceedings of the 5th IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing
Systems, October 2011, pp. 79–88, Ann Arbor, Michigan,
USA.

[2] W. Truszkowski, L. Hallock, C. Rouff, J. Karlin, J. Rash,
M. G. Hinchey, and R. Sterritt, Autonomous and Autonomic
Systems. Springer-Verlag, 2009.

[3] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Software en-
gineering for self-adaptive systems,” B. H. Cheng, R. Lemos,
H. Giese, P. Inverardi, and J. Magee, Eds. Berlin, Heidel-
berg: Springer-Verlag, 2009, ch. Engineering Self-Adaptive
Systems through Feedback Loops, pp. 48–70.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010.

[5] A. Narayanan, S. Barocas, V. Toubiana, H. Nissenbaum,
and D. Boneh, “A Critical Look at Decentralized Per-
sonal Data Architectures,” February 2012, Position paper,
arXiv:1202.4503.

[6] J. Spillner, G. Bombach, S. Matthischke, J. Müller,
R. Tzschichholz, and A. Schill, “Information Dispersion over
Redundant Arrays of Optimal Cloud Storage for Desktop
Users,” in 4th International Conference on Utility and Cloud
Computing (UCC), December 2011, pp. 1–8, Melbourne,
Australia.

[7] R. Tolksdorf, “A Dependency Markup Language for Web
Services,” in Web, Web-Services, and Database Systems.
Proceedings of NODe 2002, Web- and Database-Related
Workshops, ser. Lecture Notes in Computer Science, October
2002, pp. 129–140.

[8] D. Retkowitz and S. Kulle, “Dependency Management in
Smart Homes,” in Distributed Applications and Interoperable
Systems, 9th IFIP WG 6.1 International Conference (DAIS),
ser. LNCS, vol. 5523, June 2009, pp. 143–156, Lisbon,
Portugal.

2Autonomous cloud service participation video: http://www.youtube.
com/watch?v=NDlN0fG9Okk

Autonomous Participation

Service Registry (ConQo)

Cloud Service

Description (WSML)

Agent Description

(XML)

Online/

Cloud Service

Provider

Agent Code (Perl

Mechanize, Tesseract OCR)

Agent Tool

(Perl SOAP::Lite)

Identity

(vCard)

Requirements

(WSML goal)

CyberBrain AI

(Python w/ plugins)

Needs

Remedies

sense

perform

analyse & plan

perform: selection

Service Marketplace / Broker

Identity

Generator

Service

Client

perform: sign-up, use

Client

Application

Client-specific

Configuration

Watcher

Configuration,

SLA Conditions

Service Hosting

User and

Device

Context

sense

trigger

invoke

agent-less query

invoke

Automation

Figure 4. Automation and autonomous participation components added to a typical brokered service architecture

[9] F. M. T. Brazier, J. O. Kephart, H. V. D. Parunak, and
M. N. Huhns, “Agents and Service-Oriented Computing for
Autonomic Computing: A Research Agenda,” IEEE Internet
Computing, vol. 13, no. 3, pp. 82–87, May 2009.

[10] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri, “The
IEEE FIPA Approach to Integrating Software Agents and
Web Services,” in Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), May 2007, pp. 1412–1418, Honolulu, Hawai’i,
USA.

[11] E. Gerding, S. Stein, K. Larson, A. Rogers, and N. R.
Jennings, “Scalable Mechanism Design for the Procurement
of Services with Uncertain Durations,” in Proceedings of the
9th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), May 2010, pp. 649–656,
Toronto, Canada.

[12] D. Greenwood and M. Calisti, “Engineering Web Service
- Agent Integration,” in IEEE International Conference on
Systems, Man and Cybernetics (SMC), vol. 2, October 2004,
pp. 1918–1925, The Hague, The Netherlands.

[13] N. Ibrahim, F. L. Mouël, and S. Frénot, “MySIM: a sponta-
neous service integration middleware for pervasive environ-
ments,” in Proceedings of the ACM International Conference
on Pervasive Services (ICPS), July 2009, pp. 1–10, London,
United Kingdom.

[14] H. J. La and S. D. Kim, “A Service-Based Approach to
Designing Cyber Physical Systems,” in IEEE/ACIS 9th Inter-
national Conference on Computer and Information Science
(ICIS), August 2010, pp. 895–900, Kaminoyama, Yamagata,
Japan.

[15] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Develop-
ing multiagent systems: the Gaia Methodology,” ACM Trans-

actions on Software Engineering and Methodology, vol. 12,
no. 3, pp. 317–370, July 2003.

[16] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. A. mann,
“Using Role-Based Composition to Support Unanticipated,
Dynamic Adaptation - Smart Application Grids,” in Proceed-
ings of ADAPTIVE 2012, The Fourth International Confer-
ence on Adaptive and Self-adaptive Systems and Applications
(To appear), July 2012, Nice, France.

[17] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.
Voelker, and S. Savage, “Re: CAPTCHAs – Understanding
CAPTCHA-Solving Services in an Economic Context,” in
19th USENIX Security Symposium, August 2010, pp. 435–
462, Washington, DC, USA.

[18] J. Ma, J. Wen, R. Huang, and B. Huang, “Cyber-Individual
Meets Brain Informatics,” IEEE Intelligent Systems, vol. 26,
no. 5, pp. 30–37, September/October 2011.

[19] A. M. Turing, “Computing Machinery and Intelligence,”
Mind, vol. 59, no. 236, pp. 433–460, October 1950.

[20] C. Master, “Online Service Signup Tool,” Software project,
online: github.com/cloudmaster/osst, 2012.

[21] J. Spillner, A. Kümpel, S. Uhlig, I. Braun, and A. Schill,
“An Integrated Provisioning Toolchain for the Internet of
Services,” in Proceedings of IADIS International Conference
WWW/Internet, November 2011, pp. 566–570, Rio de Janeiro,
Brazil.

[22] T. Niemüller, A. Ferrein, G. Eckel, D. Pirro, P. Podbregar,
T. Kellner, and C. R. und Gerald Steinbauer, “Providing
Ground-Truth Data for the Nao Robot Platform,” in RoboCup
2010: Robot Soccer World Cup XIV, ser. Lecture Notes in
Computer Science, vol. 6556, 2011, pp. 133–144.

