
Dynamic Power Management in a Heterogeneous

Processor Architecture

Frehiwot Melak Arega, Markus Haehnel, and Waltenegus Dargie

Faculty of Computer Science, TU Dresden, 01062 Dresden, Germany
Email:{frehiwot_melak.arega, markus.haehnel1,

waltenegus.dargie}@tu-dresden.de

Abstract. Emerging mobile platforms integrate heterogeneous, multi-
core processors to e�ciently deal with the heterogeneity of data (in mag-
nitude, type, and quality). The main goal is to achieve a high degree of
energy-proportionality which correspond with the nature and �uctua-
tion of mobile workloads. Most existing power and energy consumption
analyses of these architectures rely on simulation or static benchmarks
neither of which truly re�ects the type of workload the processors han-
dle in reality. By contrast, we generate two types of stochastic workloads
and employ four types of dynamic voltage and frequency scaling (DVFS)
policies to investigate the energy proportionality and the dynamic power
consumption characteristics of a heterogeneous processor architecture
when operating in di�erent con�gurations. The analysis illustrates, both
qualitatively and quantitatively, that knowledge of the statistics of the
incoming workload is critical to determine the appropriate processor con-
�guration.

Keywords: Dynamic Power Management, DVFS, multicore processor,
heterogeneous processor architecture, workload

1 Introduction

The volume of data generated and processed by mobile platforms has shown a
rapid and sustained increment in the recent years, and evidence suggests that
the trend will continue so in the near future. The driving forces behind this
development are the introduction of advanced processor architectures and an
improving communication infrastructure. At the same time, however, the com-
plexity of the applications which run on the mobile platforms, generating and
consuming some of these data, and their corresponding power consumption are
increasing with comparable proportion. The implication is that both to meet
users' requirements and provide sustainable services, there is a need for e�cient
resource management strategies which take the peculiar aspects of emerging
mobile platforms (speci�cally, processor architectures) into consideration. One
of these resources which should be managed is the energy consumption asso-
ciated with the computation and communication demand of mobile platforms.
Indeed, the research community is endeavouring to improve energy e�ciency in



di�erent ways, including noble dynamic voltage and frequency scaling, dynamic
thermal management, workload-aware task scheduling, e�cient thread-to-core
mapping, and seamless runtime task migration [1], [2], [3], [4], [5]. Complemen-
tary to the runtime adaptation strategies, e�ort is also being made both by the
academia and the industry to develop energy-e�cient and energy-proportional
processor architectures including (1) the e�cient integration of multicore and
heterogeneous processors, (2) fast and e�cient simultaneous multi-threading,
(3) non-uniform cache architecture, and (4) advanced branch prediction strate-
gies, among others. The energy-proportionality (the ratio of consumed energy to
work done) of these architectures has in general been improving at each genera-
tion, as their power consumption can be managed at core, processor, socket, and
platform levels. The purpose of this paper is to qualitatively and quantitatively
analyse the energy proportionality of runtime or dynamic power management
strategies in emerging heterogeneous processor architectures. Most existing ap-
proaches rely on either simulation or static benchmarks neither of which truly
re�ects the type of workload these architectures process in reality. In contrast,
we make an extensive and experimental investigation using stochastic workload
(video transcoding) and four types of dynamic voltage and frequency scaling
policies. The rest of the paper is organised as follows: In Section 2, we sum-
marise related work; in Section 3, we introduce our experiment setup; in Section
4, we present and discuss experiment results and share the insight we obtained
from the experiment results. Finally, in Section 5, we give concluding remarks
and outline future work.

2 Related Work

Improving the performance and energy consumption of emerging heterogeneous
processor architectures is an active research area. Some of the proposed ap-
proaches target one of the following goals: (1) Determining the optimal task-to-
processor assignment strategy, (2) identifying e�ective and workload sensitive
dynamic voltage and frequency scaling strategy for a speci�c processor con�g-
uration, and (3) managing the heat dissipation of processors by adapting op-
eration frequencies to workload. Julio et al. [6] propose a model for estimating
the execution duration of individual tasks under a speci�c clock frequency in a
heterogeneous processor architecture without the need for analysing any source
code or hardware speci�cation. The resource consumption characteristics of a
task is analysed at runtime during the �rst �hyperperiod� of the execution of
a task using performance monitoring counters, computation time, waiting for
memory, and �overlapping time� between computation and memory access. An
overlap time is de�ned as the time the processor is executing non-dependent
instructions while a memory request is being served. Petrucci et al. [7] propose
a mechanism for (a) the optimal mapping of threads to speci�c cores in a het-
erogeneous architecture during task allocation and (b) periodic reassignment of
threads with the aim on improving the runtime energy consumption while meet-
ing performance requirements of application threads. The resource consumption



characteristic and the di�erent execution phases of running threads is analysed
using performance monitoring counters (Instructions Per Cycle (IPC) and Last
Level Cache (LLC) miss rate). Similarly, Liu et al [8] propose a generic approach
to formulate the map of threads to cores in a heterogeneous architecture using
Integer Linear Program (ILP) for any number of threads, cores, and types of
cores. Their main goal is to maximise throughput while keeping total power un-
der a given budget. The approach �rst assigns threads to cores such that the
assignment can achieve the highest possible throughput and, then, it performs
virtual swapping of threads between adjacent core types. Pricopi et al. [9] in-
vestigate the relationship between the performance and power consumption of
a heterogeneous architecture by using a large number of performance monitor-
ing counters. Their approach focuses on accounting the way this relationship is
a�ected when executions are migrated from one type of cores to another within
the same processor architecture. Hanumaiah [2] aims to minimise the e�ects of
high thermal design power (TDP) by combining di�erent approaches such as
performance-per-watt e�ciency as a trade-o� between performance and power
consumption, DVFS, thread migration, and active cooling. Maiti et al. [1] inves-
tigate the consequences of con�guration mismatch between core frequencies and
core states and propose a framework for core selection, thread-to-core mapping
and DVFS. The aim is to select the best distribution of jobs and the appropriate
DVFS. Unlike the approach in [2], here optimisation serves one of the two pur-
poses: either the energy of a server is minimised under performance constraints
or its performance is maximised under power constraints. Likewise, Singla et al.
[10] and Prakash et al. [11] propose thermal management strategies as a mecha-
nism to minimise the energy consumption and to maximise the performance of
emerging processor architecture. In both cases, the temperature of a processor
is determined as a function of its power consumption and maximum operation
frequency. From this relationship it was possible to determine the maximum
operation frequency which sets the temperature of a processor below a set limit.

Complementary to state-of-the-art, this paper presents a comprehensive in-
vestigation of the power and energy consumption characteristics of di�erent pro-
cessor con�gurations and dynamic voltage and frequency scaling possibilities in
a heterogeneous processor architecture given that the incoming workload of the
processor architecture is of stochastic nature.

3 Experiment Setup

Processor Architecture. We employ the Odroid-XU41 processor architecture
with Ubuntu 14.04 operating system installed for our experiment which consists
of eight �big.LITTLE� cores. Four of these are energy-e�cient ARM Cortex-A7
cores which are suitable for executing non-time-critical workloads. So they are
denoted as �LITTLE� cores. The other four, which are high performance ARM

1http://www.hardkernel.com/main/products/prdt_info.php?g_code=

G143452239825



Cortex-A15 cores, are suitable for executing compute intensive and time criti-
cal workloads. They are denoted as �big�. The performance di�erence between
the two types of cores is a result of their di�erence in peak operation frequency
(which is 2.0GHz for the Cortex A15 whilst it is 1.4GHz for the Cortex-A7)
as well as in size. We supplied one and the same task (transcoding the same
video) for the two types of cores and let them process the task at di�erent
frequencies. On the same Cortex the transcoding duration is more or less in-
versely proportional to the frequency. But when we compared the transcoding
duration between processor types for comparable operation frequency, the di�er-
ence is considerable. For example, a given transcoding took 33 s on a Cortex-A7
core when it was clocked at 1.4GHz but it took 20 s with a smaller frequency
(1.2GHz) on the Cortex-A15. The additional performance improvement comes
from a higher degree of out-of-order execution as well as a large L2 cache (2MB
of Cortex-A15 vs. 512 kB of Cortex-A7). The little cores have only one in-order
execution pipeline. In contrast, the big cores have an out-of-order three-way ex-
ecution pipeline, so that they can reorder the necessary instructions to utilise
the subsets of logic more e�ciently.

Table 1: The transcoding time of a single test video �le on di�erent cores with di�erent frequencies.

Cortex-A7 68 s @ 600MHz 33 s @ 1.4GHz

Cortex-A15 20 s @ 1.2GHz 13 s @ 2.0GHz

The performance gain of the Cortex-A15 cores comes at a price of high power
consumption because of its more complex and larger circuit architecture (pipeline
and caches, for instance). The big cores consume approximately four times more
power than the LITTLE cores. On the other hand, the Cortex-A15 are not four
times faster (as can be seen in Tab. 1); therefore, they should be used only when
their performance is really needed. Since the Cortex-A7 and Cortex-A15 cores
have a di�erent clocking range and separate phase-locked-loops (PLLs), their
bias voltage and clock frequency can be set independently. Nevertheless, as cores
of the same type share one and the same PLL, they run at the same frequency.
Because an idling core consumes a certain amount of energy, it may be reasonable
to prolong the execution of tasks to minimise idle durations. Alternatively, the
load of an underutilised core can be migrated somewhere in order to switch it
o� entirely. But the wake-up latency of a disabled core is signi�cant in case of
load balancing.

Workload. The power consumption characteristic of a processor depends on the
workload characteristic. Most existing power consumption analysis techniques
[9], [10] rely on static benchmarks which, in reality, do not re�ect the workload
of typical mobile platforms. Since the magnitude of the workload of mobile plat-
forms experiences �uctuation over time, we generated stochastic workloads in
order to re�ect this �uctuation.

The process can be described as follows: First of all, using the Python statis-
tical tool, we generated random numbers of predetermined probability density
functions, means, and variances. Then for each random number belonging to a



given probability density function, we generated a video the size of which corre-
sponds to the random number (hence, the distribution of the video size follows
the distribution of the random numbers). Secondly, we picked up the longest
video from each probability density function and transcoded it using FFmpeg2

and registered the time a processor core requires to complete the task. A pro-
cessor core is 100% utilised when it undertakes a transcoding task and becomes
idle when it completes its task. Thirdly, we divided time into slots. The duration
of a time slot equals the time the processor required to complete the longest
video. Fourthly, at the beginning of each time slot we randomly picked up a
video for each activated core from a known probability density function and
transcoded it. Notice that now the time the processor requires to transcode this
video is random, as the size of the video is random. As a result, the processor
experiences a random idle duration in each slot. Furthermore, the interference
of several tasks within a time slot as a result of the competition for L2 cache
and memory bandwidth is included. The reason is that they run concurrently
on di�erent cores of the same type (L2 cache) as well as di�erent types (memory
bandwidth). An example is illustrated in Fig. 1 where the maximum transcoding
time and, therefore, the slot duration is 30 s. Thus, we produced the following
workload distributions:

� Exponential � E (λ = 15MB): 3.6% of the videos have the maximum video
size, which is 50MB for all the experiments.

� Uniform �U (0, 30): The size of the videos assigned to a core varies uniformly
between 0 and 30 MB.

4 Frehiwot Melak Arega, Markus Haehnel, and Waltenegus Dargie

each random number belonging to a given probability density function, we gen-
erated a video the size of which corresponds to the random number (hence, the
distribution of the video size follows the distribution of the random numbers).
Secondly, we picked up the largest video for each probability density function
and transcoded using (FFmpeg2) and registered the time a processor core re-
quires to complete the task. A processor core is 100 % utilised when it undertakes
a transcoding task. Thirdly, we divided time into time slots. The duration of a
time slot equals the time the processor required to complete the longest video.
Fourthly, at the beginning of each time slot we randomly picked up a video of
a known probability density function and transcoded. Notice that now the time
the processor requires to transcode this video is random. As a result, the pro-
cessor experiences a random idle duration in each slot. This is illustrated in Fig.
2.

0 s 30 s 60 s

core 1 . . .

core 2 . . .

core 3 . . .

core 4 . . .

p
a
c
k
a
g
e
2 core 5 . . .

core 6 . . .

core 7 . . .

core 8 . . .

p
a
c
k
a
g
e
3 core 9 . . .

core 10 . . .

core 11 . . .

core 12 . . .

p
a
c
k
a
g
e
4 core 13 . . .

core 14 . . .

core 15 . . .

core 16 . . .

0 s 30 s 60 s

Fig. 1. Exemplary workload/video size for each 30 s interval and core when three pack-
ages are used.

As can be seen, a transcoding task is given to the cores every 30 s. But the
size of a video assigned to a core is randomly selected from a known distribution
(normal, exponential, uniform). Consequently, when regarded along the time
axis, the idle time of a single core has random duration; likewise, when regarded
across multiple cores, the idle time has a random duration. The duration of a
single time slot is determined by the time required to complete the transcoding
of the longest video.

Thus, we produced the following workload distributions:
[nosep]Exponential – E (λ = 15 MB); 0.5 % of the videos have the maximum
video size, which is 80 MB for all the experiments. Normal – n (µ = 15 MB, σ = 7.5 MB);

2 https://www.ffmpeg.org/

Fig. 1: An example of the workload distribution in a given time slot. A request to transcode videos
of di�erent size arrives in the beginning of each time slot; a time slot, for this example is 30 s.

Dynamic Voltage and Frequency Scaling. Most existing dynamic power
management strategies aim to minimise the idle states of computing resources,
because they consume a signi�cant amount of power even when they are idle. In
general, a computing system enters into an idle state due to two stochastically
independent phenomena: (1) the interval between the arrival of any two com-
pute tasks is a random process, and (2) there is a discrepancy between the time
allocated by a scheduler to process a task (which is usually over-provisioned)
and the time the processor requires to complete this task. The idle state can be
minimised by either putting a computing resource into a deep sleep mode (or
by turning it o� altogether) whenever it is idle, by deliberately slowing down its
processing speed so that the idle interval is minimised, or by adaptively varying
its execution speed, so that execution speed and task completion deadline can
overlap. Each approach has its own merits and demerits. One of the merits of
the deep-sleep and the slow execution strategies is a signi�cant reduction of idle

2https://www.ffmpeg.org/ (version 2.6.2)



time, but for both strategies this comes at a potential cost of increased execu-
tion latency. The adaptive execution frequency strategy foresees the potential
change in the interval between the time a task is completed and the arrival of
the next task and, therefore, is able to estimate the optimal execution frequency,
but for that it requires su�cient task execution and task arrival statistics, as a
result of which the gain in power consumption may not be appreciable. For our
investigation we selected four types of DVFS policies, namely, power-save, on-
demand, conservative, and performance policies [12], [13]. The power-save policy
operates cores at the lowest frequency while the on-demand and conservative

policies adapt the clock frequency to the change in the workload of the servers.
The last two policies estimate the utilisation of the processor using a moving av-
erage prediction technique, predict its future workload for the next time slot, and
scale-down or scale-up the processor's speed accordingly. The essential di�erence
between the two is that the on-demand policy scales up the CPU frequency to
the maximum whenever an increment in the core's activity is predicted whereas
this is done gradually in the conservative policy. But both strategies scale down
the clock frequency gradually whenever they perceive the future workload as
decreasing. The performance policy operates a core at its maximum clock fre-
quency. The aim is to complete a task as fast as possible and to put the core
into a deep sleep state. On the system side, the frequency of the LITTLE cores
can be varied between 200MHz and 1.4GHz in step of 100MHz whereas the
frequency of the big cores can be varied between 200MHz and 2GHz in step
of 100MHz. Nevertheless, the frequency of an individual core in either group
cannot be managed independently, as all the cores in the same group share the
same phase-locked loop which generates the clock frequency of the group. Con-
sequently, the frequency estimated by a DVFS policy for a particular core and
the frequency assigned to the same core can be di�erent.

Measurement. Our analysis involves three di�erent con�gurations for the two
groups of processors, four DVFS policies, and two types of stochastic workloads.
Altogether we conducted 24 experiments. We run each experiment for 1 hour and
employed Yokogawa WT210 digital power analysers3 to measure the power
consumption of the Odroid-XU4 board at a rate of approximately 10Hz. To get
statistics pertaining to the CPU utilisation of each core, we used dstat4.

4 Evaluation

In order to carry out reproducible experiments, we generated the workloads
based on underlying probability density functions (uniform and exponential).
These workloads are then processed in di�erent con�gurations: LITTLE, big,
and big.LITTLE con�guration. In the LITTLE con�guration we deactivated the
A15 cores and transcoded videos only with the LITTLE cores. Likewise, in the
big con�guration, we deactivated the A7 cores. In the big.LITTLE con�guration,

3http://tmi.yokogawa.com/
4http://dag.wiee.rs/home-made/dstat/



all cores are activated. In each experiment, a speci�c DVFS policy determines
at any given time a suitable operation frequency for all cores sharing a single
PLL. For each experiment, we specify time intervals (the duration) which is
determined by (1) the largest video which should be transcoded and (2) the
speed of transcoding this video under the DVFS policy we selected for that
particular experiment. Tab. 2 shows the time required to transcode the longest
video for the three con�gurations under the di�erent DVFS policies. This latency
determines the task arrival interval during video transcoding. Except for the
power-save policy, we discovered that the time required to transcode the longest
video in a given processor con�guration is almost the same for all the scaling
policies. At the beginning of each interval, each active core is supplied with a
video to transcode. The video is chosen randomly from a pool of videos; hence,
a processor may not spend the entire time slot transcoding a video, in which
case, it may spend some time idling. The idle time statistics is used by a DVFS
policy to estimate the appropriate clock frequency of the core.

Table 2: Transcoding latency (in seconds) to determine task arrival interval.

Con�guration Conservative On-demand Performance Power-save

LITTLE 45 45 45 105
big 30 30 30 90
big.LITTLE 45 45 45 -

Since the task arrival time is approximately equal for all the DVFS policies
(excepting the power-save policy) in a speci�c processor con�guration, the num-
ber of videos which should be transcoded within a �xed experiment duration is
the same as well for all the policies. This enables to compare the power consump-
tion characteristics of the di�erent policies given the same workload statistics.
In all our analysis we employ the cumulative (probability) distribution function
which expresses the probability that the value of a given quantity (x) is equal
to or below a speci�ed value (x): F(x) = P{x ≤ x} = p, where F (x) is the
cumulative distribution function(CDF), and p is the probability associated with
F (x).

CPU Utilisation vs. Power Consumption. The power vs. CPU utilisation
of the three processor con�gurations exhibit distinct features. In order to plot
the relationship between the two quantities, we normalised the CPU utilisation
by the maximum CPU utilisation. Likewise, the overall power consumption is
normalised by the maximum power consumption. This way, both quantities have
values ranging from 0 to 1. Fig. 2 displays an example of the CDFs of the nor-
malised power and the normalised CPU utilisation for the LITTLE cores under
the ondemand DVFS policy. As can be seen, the CDF of the power consumption
remains more or less una�ected by the change in the statistics of the CPU utili-
sation. In terms of the diversity of CPU utilisation (following the change in the
statistics of the size of transcoding workload), the conservative and performance
policies show responsiveness whereas the other two policies do not appear to be
responsive, which indicates that the latter are slow to adapt to change. Fig. 3



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ondemand

power/max(power) vs CPU/max(CPU)

C
D

F

CPU utilisation power consumption

Fig. 2: Normalised CPU-Utilisation vs.
Power for the LITTLE cores under on-

demand DVFS policy for an exponential
workload.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conservative

power/max(power) vs CPU/max(CPU)

C
D

F

CPU utilisation power consumption

Fig. 3: Normalised CPU-Utilisation vs.
Power for the big cores under conserva-

tive DVFS policy and for an exponential
workload.

displays the CDFs of the normalised power and the normalised CPU utilisation
under the conservative DVFS policy as an example for the big cores. Unlike
the case with the LITTLE cores, here there is an almost ideal linear relationship
between the two quantities. An exception is observed with the power-save policy
which is not unexpected, as this policy operates the processors with the lowest
frequency all the time. An interesting feature we observed is the pattern of the
relationship. The CDF of the power consumption is always below or on the right-
side of the CDF of the CPU utilisation which indicates that the probability of
consuming more power is always slightly larger than the probability of utilising
a corresponding amount of CPU (which we understand as an indication of en-
ergy disproportionality). The di�erence in pattern is bigger for the performance
policy; since this policy operates the CPU with the maximum frequency, it is to
be expected that it is not the most adaptive policy. Fig. 4 displays an example

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conservative

power/max(power) vs CPU/max(CPU)

C
D

F

CPU utilisation power consumption

Fig. 4: Normalised CPU-Utilisation vs. Power for the big.LITTLE con�guration under conservative
DVFS policy for an exponential workload.

of the CDFs of the normalised power and the normalised CPU utilisation un-
der conservative DVFS policy for the big.LITTLE con�guration. We excluded
the power-save policy for this con�guration because the completion time for the



0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential

power (W)

C
D

F

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform

power (W)

C
D

F

conservative ondemand performance powersave

Fig. 5: Comparison of the power consumption of LITTLE cores under di�erent DVFS policies.

transcoding task becomes too big. The rest demonstrate the features that can be
inherited from both types of cores when the system operates in a hybrid mode.
The almost linear relationship between the two quantities is visibly inherited
from the big cores, but the pattern of the relationship is taken from the LIT-
TLE cores, for the CDF of the normalised CPU utilisation is always below or on
the right-side of the CDF of the normalised power (it is the other way round for
the big cores). This indicates that power can be saved in this mode, but it must
be recalled from Tab. 2 that the performance (in terms of transcoding latency)
of this con�guration is comparable to the performance of the LITTLE cores.

Power Consumption vs. Workload. Figs. 5-7 display the CDFs of the power
consumption of the three con�gurations under the four DVFS policies for the
two di�erent types of workloads. In Fig. 5 the usefulness of DVFS is apparent,
because the two graphs in the middle show the adaptiveness of the conservative

and on-demand policies to a change in the workload statistics whereas the two
extremes show the cost of operating the processors at �xed frequencies. While the
reduced power consumption of power-save is a consequence of a lower throughput
(more time is needed to complete transcoding all the video �les), the higher
power consumption of the performance policy is unjusti�able, for there is no
improved throughput. Both the conservative and on-demand policies completed
transcoding all the video �les within the same time period as the performance

policy.For the big con�guration, all except the power-save policy performed compar-
atively the same for both types of workloads, showing a broader range of values
(from 1.8W to 12W) which suggests that they were comparatively adaptive to
the �uctuation in the workloads. For both types of workloads the conservative

policy was the most e�cient policy (the gradual scaling up of clock frequencies
in response to a perceived workload). The CDFs of the power consumption of the
big.LITTLE con�guration (as a trade-o� between increased transcoding latency
for reduced power consumption) can be seen in Fig. 7. For example, in Fig. 6
the probability that the overall power consumption of the A15 cores is equal to
or below 6W for all workload types and for all DVFS policies is approximately



0 2 4 6 8 12

0.
0

0.
4

0.
8

Exponential

power (W)

C
D

F

0 2 4 6 8 12

0.
0

0.
4

0.
8

Uniform

power (W)

C
D

F

conservative ondemand performance powersave

Fig. 6: Comparison of the power consump-
tion of the big cores when they processed dif-
ferent workloads under di�erent DVFS poli-
cies.

0 2 4 6 8 12

0.
0

0.
4

0.
8

Exponential

power (W)

C
D

F

0 2 4 6 8 12

0.
0

0.
4

0.
8

Uniform

power (W)

C
D

F

conservative ondemand performance

Fig. 7: Comparison of the power consump-
tion of the big.LITTLE con�guration when
processing di�erent workloads under di�erent
DVFS policies.

0.2whereas for the heterogeneous con�guration the �gure is approximately equal
to or even greater than 0.4. Indeed, for the uniform workload, the performance

policy in this con�guration yields a probability of approximately 0.8.

Power Consumption vs. Processor Con�guration. Figs. 8 and 9 com-
pare the CDFs of the power consumption of the three con�gurations for the two
types of workloads using ondemand and conservative DVFS policies as example.
Both �gures consistently place the big.LITTLE con�guration's power consump-
tion between the LITTLE and the big con�guration, regardless of the type of
DVFS policy which manages the runtime power consumption of the processors.
Moreover, both �gures indicate that a wide range of dynamic power can be
achieved in the big and big.LITTLE con�gurations by DVFS whereas this is not
the case with the LITTLE con�guration. This characteristic is more visible with
the exponential workload.

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ondemand

power (W)

C
D

F

little_cores big_cores big.LITTLE_cores

Fig. 8: An example of comparison of the
power consumption characteristics of the
three processor con�gurations (LITTLE, big,
big.LITTLE) when they process a uniform
workload under ondemand DVFS policy.

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conservative

power (W)

C
D

F

little−cores big−cores big.LITTLE−cores

Fig. 9: An example of comparison of the
power consumption characteristics of the
three processor con�gurations (LITTLE, big,
big.LITTLE) when they process an exponen-
tial workload under conservative DVFS pol-
icy.

Energy. Except for the power-save policy, the number of videos which can be
transcoded in a speci�c amount of time for a speci�c processor con�guration is
�xed. Since the workload statistics is the same for all the DVFS policies for a



speci�c con�guration, it is possible to make an objective comparison between
the energy consumption of the di�erent policies for a given con�guration. Tab. 3
and 4 display the energy consumption (energy as the integration of power con-
sumed with respect to time) of the di�erent con�gurations. Interestingly, the
conservative policy, which gradually scales the clock frequency of the processors
as a function of the perceived change in the workload, performed best for all the
con�guration yielding the minimum amount of energy consumption. Exception
to this is the big.LITTLE con�guration where the performance policy produces
the minimum energy consumption.

Table 3: Cores energy consumption (in Watt-hour) under uniform workload with di�erent DVFS

Con�guration Conservative Ondemand Performance Powersave

LITTLE 3.01 3.11 4.27 2.15
big 6.89 7.78 8.23 2.41
big.LITTLE 5.92 6.55 4.56 -

Table 4: Cores energy consumption (in Watt-hour) under exponential workload with di�erent DVFS

Con�guration Conservative Ondemand Performance Powersave

LITTLE 2.95 3.05 4.21 2.07
big 6.69 7.17 7.31 2.40
big.LITTLE 5.54 6.23 6.63 -

5 Conclusion

In this paper we experimentally investigated the energy-proportionality and the
variation in the dynamic power of a heterogeneous processor architecture con-
sisting of two quad-core CPUs. The CPUs are di�erent in capacity as well as
in the range of operation frequencies they support. We generated two stochastic
video transcoding workloads (uniformly and exponentially distributed) and im-
plemented four di�erent types of dynamic voltage and frequency scaling policies.
The processor architecture can be con�gured as LITTLE, big, and big.LITTLE.
In the LITTLE con�guration only the smaller and the slower of the two quad-core
processors is active; in the big, only the bigger and the faster quad-core processor
is active, and in the big.LITTLE all the processors can be active. The experiment
results show that the three con�gurations have distinct energy-utility character-
istics. The LITTLE con�guration has the minimum average power consumption,
but the range of its dynamic power is narrow and does not mirror the variation in
the workload. The big con�guration, on the other hand, exhibits a wide variation
in its dynamic power and mirrors the variation in the workload. The dynamic
power of the big.LITTLE con�guration mirrors the dynamic power characteristic
of the big con�guration, but the magnitude of variation is smaller than the big
con�guration. When it comes to dynamic scaling of frequency and voltage, the
conservative policy, which gradually increases and decreases the clock frequency



of a processor in response to a perceived change in the workload, consistently pro-
duces the best performance in the big con�guration, regardless of the workload
type. The same scaling policy was the best policy for the exponential workload in
the big.LITTLE con�guration. For the LITTLE con�guration, the conservative

and the on-demand policies have comparable performance whereas in the other
two no conspicuous saving or consumption of power can be observed without
a corresponding sacri�ce or gain in the job completion time. In general, it can
be concluded that the implementation of a dynamic power management policy
makes sense if the processor architecture has a wide range of dynamic power and
the workload statistic is known. The latter can be estimated by taking samples
at runtime. Hence, knowledge of this statistics can be used by a scheduler to
determine both the con�guration of the computing platform and the suitable
DVFS policy.

References

1. S. Maiti, N. Kapadia, and S. Pasricha, �Process Variation Aware Dynamic Power
Management in Multicore Systems with Extended Range Voltage/Frequency Scal-
ing,� in MWSCAS, pp. 1�4, 2015.

2. V. Hanumaiah and S. Vrudhula, �Energy-e�cient operation of multicore processors
by DVFS, task migration, and active cooling,� in IEEE Transactions on Computers,
vol. 63, pp. 349�360, 2014.

3. C. Möbius, W. Dargie, and A. Schill, �Power consumption estimation models for
processors, virtual machines, and servers,� IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 6, pp. 1600�1614, 2014.

4. W. Dargie, �A stochastic model for estimating the power consumption of a proces-
sor,� IEEE Transactions on Computers, vol. 64, no. 5, pp. 1311�1322, 2015.

5. W. Dargie, �Analysis of the power consumption of a multimedia server under dif-
ferent dvfs policies,� in CLOUD, pp. 779�785, IEEE, 2012.

6. J. Sahuquillo, H. Hassan, S. Petit, J. L. March, and J. Duato, �A dynamic execution
time estimation model to save energy in heterogeneous multicores running periodic
tasks,� Future Generation Computer Systems, vol. 56, pp. 211�219, 2016.

7. V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and S. Gobriel,
�Energy-e�cient thread assignment optimization for heterogeneous multicore sys-
tems,� ACM Trans. on Embeded Computing Systems, vol. 14, no. 1, p. 15, 2015.

8. G. Liu, J. Park, and D. Marculescu, �Dynamic thread mapping for high-
performance, power-e�cient heterogeneous many-core systems,� in ICCD, pp. 54�
61, IEEE, 2013.

9. M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin,
�Power-performance modeling on asymmetric multi-cores,� in CASES, sep 2013.

10. G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, �Predictive dynamic thermal
and power management for heterogeneous mobile platforms,� in DATE, 2015.

11. A. Prakash, H. Amrouch, M. Sha�que, T. Mitra, and J. Henkel, �Improving mo-
bile gaming performance through cooperative CPU-GPU thermal management,�
in DAC, 2016.

12. V. Pallipadi and A. Starikovisky, �The ondemand governer,� in Proceedings of the
Linux Symposium (volume two), 2006.

13. A. Brihi and W. Dargie, �Dynamic Voltage and Frequency Scaling in Multimedia
Servers,� in AINA, pp. 374�380, 2013.


