
Algorithms for Dispersed Processing
Josef Spillner, Alexander Schill

Faculty of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
Email: {josef.spillner,alexander.schill}@tu-dresden.de

Abstract—Highly scalable computing environments demand a
parallelisation and distribution of processing tasks. Consequently,
the data being processed is redundantly distributed to benefit
from data locality characteristics, but also to increase safety,
privacy and security objectives. Such distributed processing is
coordinated by message passing or map-reduce programming
styles. For partially replicated and dispersed data, however, the
distributed processing poses new challenges because the required
input data elements are not wholly available anymore to the
processing tasks. Novel and adjusted processing algorithms which
work under restricted assumptions thus become an important
part of distributed infrastructures. We review, propose and
analyse algorithms which align with split and dispersed data
structures. Subsequently, we contribute and evaluate our imple-
mentations thereof in order to assess possible future applications
on top of dispersed storage and multipath transmission of data.

I. PROBLEM STATEMENT AND SCOPE

Cloud providers typically offer data storage and transmis-
sion services along with proximity-aware processing services.
Commercial providers as well as research and educational
networks offer such combinations. To increase the reliability,
full data replication can be used although there is a clear trend
towards using partial redundancy due to decreased capacity
requirements for the same availability guarantees [1], [2].
A downside of such coding schemes is that the resulting
data fragments cannot easily be used in isolation for any
meaningful computation. Some parts are missing and the
remaining parts may be completely scrambled. This leads to a
presumed necessity to retrieve the data over a network before
processing it which can be both time-consuming and costly in
a Cloud setting. A better alternative would be a smart local
processing of fragments with limited coordination overhead.

One could argue that the expected slowdown is not worth
the saved transmission cost. However, the Cloud compute
services co-evolve with computing-enabled storage and net-
working hardware which bring processing capabilities closer
to the data. Application-controlled disks are already available
with network-connected drives (e.g. Ethernet HDDs, Kinetic)
which alleviates the need for intermediary storage servers. It
can be expected that future disks ship with programmable
controllers which offer functionality beyond the current status
detection and bad block trimming. Likewise, network equip-
ment is made increasingly programmable by applications (e.g.
software-defined networking, onePK) and network-attached
FPGAs are increasingly used for number crunching without
the need to shuffle data from and to the CPU [3].

These hardware and service trends support algorithms which
explicitly benefit from the resulting fine-grained local data
processing design. Nonetheless, existing algorithms in parallel
and distributed computing are mostly working on coarse-
grained units of data with zero-delay random access, in-
cluding whole numbers and strings. Examples for popular
algorithms are distributed event processing, message pass-
ing and map-reduce computations [4]. Only few approaches
explicitly consider partial primary data structures or partial
replication, especially in combination with privacy-preserving
encryption schemes. Furthermore, most assume homogeneous
grids, clusters or high-performance compute nodes rather
than dynamic Cloud resources with arbitrary characteristics,
including trust and resource (un)certainty [5]. Fig. 1 gives a
high-level comparison of the proposed dispersed processing
algorithms with conventional processing over dispersed data
and other distributed processing techniques. f thereby denotes
the function that would be computed locally, having the whole
data as its input. m and r describe the typical map and reduce
functions found in larger homogeneous cluster environments,
working over distributed data. The fragment-aware mapper
m∗ are operating over different fragments of the data in a
dispersed computation setting, e.g. a database for in-situ data
or an event processing engine for in-transit data. Depending
on the availability of compute nodes, algorithms benefit from
a higher grade of distribution due to less data transmissions.

Fig. 1. Comparison of computing models: (a) central computation over
distributed data after retrieval; (b) distributed mapping with subsequent
reduction; (c) undesired central computation after retrieval and reconstruction;
(d) dispersed mapping with subsequent reduction

Therefore, we argue for a smart splitting of small data
units and variables into even smaller but still meaningful
fragments and their dispersion according to the infrastructure
properties. Whereas in reliable distributed data storage the
coding and subsequent splitting is optimised for read and
write performance, especially with erasure coding [6], we
point out data processing tasks for which a type-dependent

bit splitting is crucial. Such techniques have been proposed
before in application-specific contexts, for instance for bit-
split intrusion detection [7] and column-oriented databases [8].
Reaching a more wide-spread use of reliable infrastructure ser-
vices however requires a foundational view on type-dependent
dispersion algorithms.

This paper contributes generic and type-dependent algo-
rithms in the next section. Of special interest are search,
calculation and statistical analysis algorithms. The algorithms
presentation is followed by a description of implementations
and practical evaluation results, a summary of limitations
and finally an outlook towards future dispersed processing
applications.

II. ALGORITHMS

The literature knows about a lot of general-purpose algo-
rithms. Among the most well-understood ones are searching
and sorting [9] which apply to general-purpose data structures,
matching applicable to string data types, and mathematical
calculations which apply to numerical data types. Furthermore,
there are graph, combinatorial, lexical and a vast number
additional algorithms, some of which could be of relevance
but will require future analysis [10]. There are also algorithms
which do not apply to existing large data structures but instead
they deterministically generate data based on initial seeds, such
as the Fibonacci function and random number generators, and
are therefore excluded from our analysis.

The following subsections report about precise algorithms
which have successfully been applied to dispersed and poten-
tially secured data. Compared to their holistic (non-dispersed)
relatives, the run-time behaviour differences range from unno-
ticeable and predictable to severe and hard to estimate.

A. Search

The data type considered here is text, i.e. text characters and
human-readable strings, in combination with binary character
sequences. The input is a search pattern (substring) and a text
body, and the output is a list of match positions or the empty
list in the absence of any matches.

Existing single-pattern string searching algorithms as-
sume the presence of the entire text: list(positions) =
search(text, pattern). Representatives are the naïve search,
Boyer-Moore search, Knuth-Morris-Pratt search, Bitap and
(as special case of the otherwise set-of-pattern) Rabin-Karp
search. Some of these algorithms furthermore assume prior
treatment of either the text and/or the pattern, e.g. through the
creation of hashes, position tables or indexes.

In contrast, search over dispersed data occurs in paral-
lel over k significant parts of the data: list(positions) =
search(text1, pattern1)∩...∩search(textk, patternk) These
parts or fragments texti result from splitting the data which
is a common operation in distributed storage applications. In
contrast to simple chunking, which would allow the re-use of
existing search algorithms save for a few corner cases like
pattern wraps around the chunk ends, a per-byte or per-word
split requires more sophisticated techniques.

1) Search over split data: If a text or text stream is split, the
result is a set of fragments or fragment streams. Each element
of the set needs to be searched separately. The search key is
equally split into fragments for this technique to work. Each
node performs the search function on its fragments and returns
a probabilistic search result list which is guaranteed to contain
all actual results, but also a number of false positives due to
the information uncertainty which results from the missing bits
per fragment. Eventually, the set of search results (positions)
needs to be cross-correlated into an intersection set in order
to eliminate the false positives and to achieve the final result.

When a greedy handling of the probabilistic search results
is acceptable, follow-up functions for each result can also be
offloaded to the nodes for increased performance, thus avoid-
ing the cross-correlation bottleneck. Sometimes, the offloading
even works in case a degraded, non-reconstructible state is
reached. This technique is closely aligned to the working
principle of Bloom filters and other probabilistic data struc-
tures. An example for such acceptable greedy functions is the
aggressive deletion of cache entries which tolerates additional
(false-positive) deletions apart from the risk of having to repeat
retrievals. In the context of Cloud computing, another example
is an optimistic reservation of resources based on presumed
events, leading to improved application behaviour (no missing
scale-outs and scale-ups due to false negatives) at the expense
of potentially higher than necessary cost.

Fig. 2 compares the well-known naïve search algorithm
with search over split data in the simple case of units of 8
bits being split into two times 4 bit fragments (k = 2). The
notation format is position:half-byte, where position refers to
the occurrence in the original data and half-byte specifies the
higher (hi) and lower (lo) 4 bit, respectively. The algorithm
gains complexity by having to look for the lower and upper 4
bit portions, respectively, in both the upper and lower 4 bits
(grey arrows) in each fragment stream.

This technique can be generalised to splitting into k frag-
ment streams with variable width bk in bits per stream.
For dispersal algorithms beyond simple splitting, for instance
erasure coding or secret sharing, it is not applicable due to
the lack of structure preservation. However, in order to not
gain searchability at the expense of security and privacy, the
splitting may be combined with homomorphic encryption per
fragment which itself exhibits a structure-preserving property
for a number of target algorithms [11]. Furthermore, in order
to maintain the reliability of data, fault-tolerance schemes from
RAID-like systems can be adopted. They take k data fragments
and add m parity fragments to reconstruct data for up to
(including) m simultaneous erasures [12]. Search with both
encrypted and redundant data will be explained after giving a
syntactic example of simple search over dispersed data.

Listing 1 contains the entire search algorithm in Python
notation for the case of k = 2. The variable LS refers to the
last state and SC to the second choice repetition. The input
data are the haystack H , the needle N , as well as a start
position idx and a padding indicator for texts with an odd
original length.

Fig. 2. Full text and split text search in comparison

Listing 1. Search over dispersed data
def findbits(H, N, idx, padding):
bitfilter = [0xF0, 0x0F]
for i in range(idx, len(H)):
k = i
j = 0
ctr = 0
offset = 0
SC = False
reset = False
LS = -1
while True:
next = False
if ctr % 2 == 0:

if (H[k] & 0xF0) == (N[j] & 0xF0) and
not (SC and ctr == 0) and LS != 1:

LS = 1
elif (H[k] & 0x0F) == ((N[j] & 0xF0) >>

4) and LS != 0:
LS = 0
offset = 1
next = True

else:
if not SC:
reset = True

else:
break

else:
if (H[k] & 0x0F) == (N[j] & 0x0F) and

not (SC and ctr == 0) and LS != 0:
LS = 0
next = True

elif (H[k] & 0xF0) == ((N[j] & 0x0F) <<
4) and LS != 1:

LS = 1

else:
if not SC:

reset = True
else:

break
if reset:
k = i
j = 0
ctr = 0
offset = 0
SC = True
reset = False
continue

ctr += 1
if next:
k += 1

if ctr % 2 == 0:
j += 1

if ctr + padding == len(N) * 2:
return i * 2 + offset

if j >= len(N) or k >= len(H):
break

return -1

2) Search with redundant data: The aforementioned algo-
rithm is defined for n = k/m = 0 schemes. In practice,
however, most distributed storage strategies include redundant
data for failure detection and recovery. With dominant disk
array parity schemes, the redundant data is either moved to
a dedicated node or interspersed diagonally. For search, the
dedicated node scheme has the disadvantage of excluding this
node from processing due to the nature of redundant data.
Furthermore, when one node fails, the data can be recovered
but the search will not be possible until the point of recovery.
Diagonal schemes work well and are preferred for wear-
levelling. But they lead to non-elegant processing algorithms
due to the rotating combination of nodes depending on the
search position. Therefore, we introduce a simple new scheme
with horizontal parity rows. We call the scheme R-Code due to
its similarity to X-Code, S-Code and further deviations thereof
[13]. Compared to those, R-Code accepts an arbitrary number
of failing nodes (m > 0) and does not impose restrictions on
the overall number of nodes except for a reasonable minimum
(n ≥ 3). It is technically applicable to n = 2 although this
would lead to the ability for each node to fully reconstruct the
data of the respective other one. R-Code divides each chunk
of data into n − m stripes which are then dispersed into n
fragments onto a (n−m,n) matrix.

The first parity is calculated as the XOR parity over n −
m data values. All remaining parities are linear combinations
of these n −m data values with coefficients taken from the
mx(n−m) Vandermonde matrix, exactly as defined in [12].
A single storage node must never have a parity value that
depends on a data values this node actually holds and further
there must be no two parity values on this node which rely on
the same data value. Having fulfilled these requirements, the
vertical scheme from [12] can be transformed into a horizontal
scheme having the same properties.

We suggest the notation (n,R) with n = k significant nodes
and m = 0 redundant nodes, but R redundant stripes per chunk

across all nodes. In terms of redundancy, an (n,R)-R-Code
thus corresponds to a (k = n−m,m = R) erasure code.

Fig. 3 compares a conventional redundant storage config-
uration, akin to RAID-4 with parity codes as redundant data
across all nodes stored in a dedicated node, with the simplified
R-Code scheme for R = 1. For distributed fragment search
applications in the Cloud, R-Code offers a 1

n performance
boost over (k, 1) conventional coding. Given the same amount
of data, a higher distribution will however result in more
false positives which depending on the network and processing
characteristics may offset this performance gain.

Fig. 3. Storage with redundancy: (a) parity or erasure coding in extra node
for k > 1 and m = 1; (b) R-Code for k = 2 and R = 1

3) Search with encrypted data: As all k data fragments
are constructed by simple splitting of the original data,
confidentiality might by a concern when storing critical or
personal information. Privacy preservation for stored data is
typically achieved by application of some sort of encryp-
tion mechanism. The issue with classical encryption in our
case is the lack of structure within the ciphertext which we
need to perform our dispersed search algorithm and evaluate
the offloaded functions. Therefore a structure preservation,
e.g. some sort of homomorphism between the unencrypted
plaintext and the encrypted ciphertext is needed. Depending
on the desired functionality homomorphic encryption [14],
homomorphic hashes [15], symmetric ciphers in a pseudo-
one-time-pad mode (OFB or CTR mode) and order preserving
encryption [16] are possible candidates. A homomorphism
would therefore exist regarding addition or multiplication
within a finite field, addition modulo 2 (XOR) or regarding
a function evaluating the order of two elements.

B. Calculation

The data types considered here are both integer numbers
and fixed-point numbers. Variable floating-point dispersion
with data inspection before the splitting takes place is subject
to future work. Alternatively, floating point numbers can be
converted into fixed-point representations [17].

In dispersed calculation, a client node splits the numbers to
be operated on. Server nodes (called processors) perform their

operations on partial numbers and return partial results. The
client node then reconstructs the full result. As opposed to
working on chunks of data, dispersed calculation either needs
to restrict or to modify the semantics of operations depending
on the dispersion. This is similar to homomorphic encryption
operations which work on encrypted data without distribution.
Dispersed calculation is clearly an open research topic as it
presents additional challenges.

A suitable classification of dispersed calculation is driven
by the types of data to be worked on and by the combi-
nation of splitting with further data modification, including
encryption and compression. In our work, we consider plain
and encrypted split integer arithmetic, fixed-point arithmetic
(which through transformation also applies to floating-point
numbers), and statistical functions which are commonly used
in data analysis domains.

1) Calculation on integers: Table I gives a simple example
of a dispersed 71 + 19 addition operation. Two operands are
split into a higher and lower 4-bit fragment each. Both pairs of
fragments can be independently summated. Afterwards, both
sums are accumulated again at the client. This scheme intro-
duces both network overhead and two additional summation
function calls compared to a non-dispersed summation.

TABLE I
ADDITION OF TWO NUMBERS WITHOUT REDUNDANCY

Number (decimal) Number (binary) Fragments
71 01000111 a1: 0100; b1: 0111
19 00010011 a2: 0001; b2: 0011
71+19=90 01011010
Partial results are a1+a2: 0101; b1+b2: 1010
Computed result is (a1+a2 « 4) + b1+b2: 01011010 ∧

= 90

For k ≥ 2, x summands and the word size w, the
scheme can be generalised into the map-reduce form sum =∑k

i=1(
∑x

j=1 fragmentij � w/k).
More generally, if two integers a and b are split into k

fragments fai (fbi) (1 <= i <= k) with fa1 (fb1) being
the lowest order bits and fak (fbk) having the highest order,
fragment i of both splits is having bi bits. We compute the
dispersed sums si = fai+fbi with si having again bi bits and
ci being the carry-bit of the si computation and c0 = 0. The
overall final result s is then given by s =

∑k
i=1(si + ci−1) ·

2

∑
j
=1i−1bj .

For multiplication, a two-node distribution does not suffice
anymore. Instead, the data needs to be dispersed to four nodes
at the minimum. Table II gives the example for 71 ∗ 19. No
node has full access to either of the factors. Furthermore, this
strategy introduces both network overhead, three additional
multiplication function calls, and one additional summation at
the client.

Both arithmetic functions are schematically shown in Fig.
4 for a second example of 23 + 24 and 23 ∗ 24, respectively.

2) Calculation on encrypted integers: When the confi-
dentiality of data is high, the need to protect numbers in
remote calculation scenarios rises as well. As outlined in the

TABLE II
MULTIPLICATION OF TWO NUMBERS WITHOUT REDUNDANCY

Number (decimal) Number (binary) Fragments
71 01000111 a1: 0100; b1: 0111
19 00010011 a2: 0001; b2: 0011
71*19=1349 10101000101
Partial results are a1 ∗ a2: 4; a1 ∗ b2: 12; a2 ∗ b1: 7; b1 ∗ b2: 21
Computed result is (a1 ∗ a2 « 8) + (a1 ∗ b2 « 4) + (a2 ∗ b1 « 4)
+ b1 ∗ b2: 10101000101 ∧

= 1349

Fig. 4. Schema and example for (a) dispersed addition, (b) dispersed
multiplication and (c) alternative visualisation for (a)

introduction, there are classes of homomorphic encryption
algorithms which for a certain set of functions allow for
performing these functions on encrypted input and obtaining
an encrypted output [11].

In the Paillier cryptosystem, for example, additions and
multiplications can be performed which combines nicely es-
pecially with the need to protect whole numbers for dispersed
multiplication. In this cryptosystem, the formula (1+1)∗2 = 4
results in, for instance, (15351 + 8856) ∗ 3504 = 8616
with the 8-bit encryption key parameters n = 143 and
λ = 60. Applying these transformations leads to about twice
the amount of data compared to the non-encrypted variant and
a higher computation time due to the need to encrypt and
decrypt locally in the map-reduce paradigm.

Fig. 5 shows the interesting intersection point between
processing over dispersed data and processing over homomor-
phically encrypted data.

3) Statistical functions: There are a number of statistical
and data analytics functions which can be broken down into
a combination of isolated simple calculation functions. Due
to this relation, a number of statistical operations can be
performed directly on distributed fragments without the needs
to retrieve and combine them.

Counting can be performed on a single node. Summation
with any number of summands, i.e. value aggregation, can be
performed as generalisation of the addition and subtraction

Fig. 5. Classification of dispersion and encryption options and the intersection
between both for individual processing tasks

already presented. Average values can also be calculated, as
shown by example in Table III, assuming the proper handling
of rational numbers or the tolerance of rounding errors.

TABLE III
AVERAGE OF TWO NUMBERS WITHOUT REDUNDANCY

Number (decimal) Number (binary) Fragments
71 01000111 a1: 0100; b1: 0111
19 00010011 a2: 0001; b2: 0011
ø(71,19)=45 00101101
Partial results are ø(a1,a2): 2.5; ø(b1,b2): 5
Computed result is (ø(a1,a2) « 4) + ø(b1,b2): 00101101 ∧

= 45

On the other hand, a number of statistical moments cannot
easily be determined without full access to all numbers.
Among them are minimum, maximum, median and spread,
which can only be determined among the higher-bits fragments
with a certain likelihood and fuzziness. For them, using a
handover protocol is necessary.

4) Calculation on fixed-point numbers: Smart data coding
and splitting strategies beyond just bit and byte positions are
useful for special-purpose calculations. For instance, a fixed-
point number can be split at the point in order to tolerate the
unavailability of a particular fragment - the fractional part - at
the cost of losing the precision, which is still preferred over
losing the number entirely. Fuzzy calculation and estimation
with error tolerance can be performed with imprecise numbers
resulting from large volumes of data dispersed across multiple
nodes.

Fig. 6 shows the mapping from data fragment availability to
numerical precision for a k = 2,m = 1 dispersion. The three
fragments are called (i)nteger, (f)ractional and (r)edundant,
respectively.

This splitting strategy can be applied to any combination of
multiple-of-2 k and m. The fractional part range is (0..1). It
is mapped to the range of the fragment capacity (e.g. 8 or 16
bit) and thus turned into a floating point number whose integer
part is used as fragment. The resulting deviation occurs even
when all fragments are available. Using a reasonable fragment

Fig. 6. Numerical precision depending on the availability of data fragments

size prevents a significant loss of precision.

C. Handover algorithms

The previous calculation schemes all assume a full isolation
of all nodes, which in a Cloud context is often a desired
property due to privacy concerns. On the other hand, a number
of algorithms depend on an underlying handover protocol in
which the master node extends the map-reduce pattern into
map-carry-reduce by taking some result from a node and pass-
ing them as additional data to the subsequent one. Handover
protocols are required for bit shifting (left and right carry
bits), sorting, as well as many statistical moments including
the minimum, maximum, median and spread. Furthermore,
they are required for strictly fixed-size numbers. One intrinsic
design property is that they are iterative rather than parallel;
a second one is that they lower the confidentiality of data to
some degree.

The general handover protocol is shown in Fig. 7. At the
first node, a set of candidate fragments is determined. Together
with their positions, the resulting list of tuples of cardinality
|α| is aiding the calculation at the second node. Its result is a
subset of α and its cardinality |β| is equal to or less than |α|.
The final list of fragments is X̂ which represents complete
numbers. Usually 1 ≤ |X̂| ≤ 2 for statistical moments.

Fig. 7. Scheme for the map-carry-reduce handover protocol over dispersed
fragments

III. IMPLEMENTATION RESULTS

Our splitting, searching, calculation and statistical analysis
implementations are structured into modules, both figuratively
(as logical collection of functions) and literally (as Python
modules and optimised C libraries). All implementations and
associated measurement scripts, results and plots are publicly

available from the Dispersed Algorithms Git repository1. In
this section, we concentrate on the local calculation perfor-
mance; the repository also contains fully networked examples.

A. Splitter

We have developed a Python splitter for a fixed fragment
size of 4 bits each (k = 2) and a corresponding C splitter
which reimplements the Python splitter but also allows for
different configurations. It offers a byte-aligned bit splitting
over streams of data both with redundancy-less schemes, e.g.
3/3/2 bits (k = 3), and with single parity redundancy (m = 1).

Fig. 8 compares the splitting performance by measuring
the throughput. All measurements were conducted on an Intel
Core i7 M620 CPU with 4 cores @ 2.67GHz and 6 GB
of free memory. In order to exclude the disk performance,
1 GB was reserved for a RAM disk (via tmpfs) on which
a 382 MB video file was stored and then split into k = 2
parts with and without redundancy. One can clearly see the
miserable performance of the Python implementation, which
in addition also caused a larger than planned consumption of
memory, requiring us to interpolate the Python results with
half of the video files to avoid an out-of-memory error. Our
implementations are compared against Jerasure 1.1A codecs
for both ReedSolVan and CauchyGood coding.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Bitsplitter/C Python* JerasureCG JerasureRSV

T
h
ro

u
g

h
p

u
t

(M
B

/s
e
c)

Configuration

Splitting Performance

k=2/m=0
k=2/m=1

Fig. 8. Data splitting performance comparison

B. Search module

Similar to the splitting, we have implemented distributed
search over multiple fragment streams in both Python and C.
The two search invocations involved a book text, Jules Verne’s
Marco Polo, and looking for both a unique single-occurrence
word (Cai-ping-fu) with 0% false positives due to its length
and a rather common word (Polo) with 167 occurrences and
a medium false positive rate of 46.98%. The performance
comparison is shown in Fig. 8. One can clearly see the order
of magnitude penalty from the non-dispersed search function
in Python (which is actually implemented in C) to our C
implementation, and the even higher relative penalty from the
C search to the dispersed Python search. Interestingly, the

1Dispersed Algorithms: git://serviceplatform.org/git/dispersedalgorithms

deviation between the search times of two words is minimal
in the C implementation, which makes it a good candidate for
random search tasks with predictable performance.

 0.01

 0.1

 1

 10

 100

Python/MT Python/ST C Non-dispersed

C
o
m

p
u
te

 t
im

e
 (

s)

Search Function Performance

Polo
Cai-ping-fu

Fig. 9. Data searching performance comparison

C. Calculation module

The calculation experiment compares a native addition
of one million randomly generated 8-bit numbers with the
equivalent of k dispersed additions (2 ≤ k ≤ 9) followed
by a central aggregation of all k fragment sums. Fig. 10
shows how the overall single-thread performance is severely
affected by the introduction of dispersion but how it degrades
linearly with every additional node. In practice, multi-threaded
implementations and a real parallelisation across several nodes
will regain much of this degradation which is shown as a
convergence towards the optimum boundary in the figure.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

1/nosplit 2 3 4 5 6 7 8 9

T
h
ro

u
g

h
p

u
t

(A
d

d
it

io
n
s/

se
c)

Configuration

Calculation Performance

Numbers/s
Optimum/s

Fig. 10. Integer addition performance comparison

In addition, we were interested in the practical implications
of using fixed-point arithmetics. Fig. 11 is the result of
comparing 10000 randomly generated floating point numbers
in the range [0..1] with their (1,1)-fixed-point equivalents, i.e.
one byte for the integer and another byte for the fractional
part. The deviation is in per mille relative to the numerical
space of 256 distinct values. One can clearly see that for
practical purposes, the deviation can often be ignored even
when choosing a compact encoding.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Fr
e
q

u
e
n
cy

Deviation (‰)

Deviation between floating point and (1,1)-fixed-point representation

Fig. 11. Distribution function of (1,1)-fixed-point precision deviations

D. Handover module

We have simulated 1000 additions of dispersed 32-bit
integers with an R script and the general multiple precision
arithmetic library (GMP). The average number of rounds for
the carry-bit propagation remains relatively low, not more than
two, even when using 16 fragments. The associated risk for
carry-bit errors rises up to 20%, but is generally less than half
of this for the first round. Fig. 12 shows the simulation results.

2 4 6 8 10 12 14 16

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Errors and rounds for dispersed sum over 32-bit integers

Number of fragments (k)

M
ea

n
ro

un
ds

 fo
r c

ar
ry

-b
it

pr
op

ag
at

io
n

0
20

40
60

80
10

0

Rounds for carry-bit propagation
Carry-bit error
Carry-bit error (1 round)

Fig. 12. Number of rounds and mean errors for the carry-bit propagation
for addition

Fig. 13 visualises the performance of another simulation
of statistical moment calculation which requires the handover
protocol. One million numbers in a small range (sr, 0-100)
and a large range (lr, 0-1000000) were produced randomly,
producing a normal distribution. Of each set, the minimum,
maximum and median values were determined. Up until 6
nodes there is no noticeable performance drawback. With
higher node numbers, the drawback grows significantly.

IV. LIMITATIONS

In this section, the limitations across all algorithms shall be
summarised and consolidated.

Fig. 13. Performance measurement of the handover algorithm for three
statistical moments

According to our findings, some algorithms are apparently
non-implementable under the isolated dispersed processing
scheme. One prominent example is sorting. If fragments
change their position relative to other fragments on one node,
the resulting order has no relationship with sorted fragments on
another node. Some of these algorithms can be piggy-backed
by a handover protocol, but more work is needed to fully
explore its usefulness and its downsides concerning trust and
privacy.

Some algorithms benefit from a non-uniform distribution
of data across heterogeneous nodes. For instance, in the R-
Code scheme, the last parity fragment is involved in any write
operation and therefore should be placed on a RAM disk
or another write-tolerant storage target. Involving knowledge
about the non-functional properties of the nodes will be a key
aspect to achieve well-balanced dispersed processing.

V. SUMMARY AND RESEARCH OUTLOOK

Applications processing generic, text, numerical and multi-
media data benefit from special algorithms which are aware
of the degree of dispersion of data fragments. In many cases,
such algorithms can work very close to the data assuming
an appropriate hardware or service infrastructure in order to
avoid costly network transmissions. Furthermore, awareness of
the availability and encryption of fragments leads to adaptive
applications which let programmers worry less about failures
and privacy issues in distributed systems. We have introduced
algorithms with several examples on text searching, calculation
and statistical analysis over data with structure-preserving
dispersion for higher parallelisation, redundancy for higher
availability and homomorphic encryption for higher protection
to demonstrate these claims. Our work has shown that there
are clear performance drawbacks but there is also a potential
for transmission savings which may make up the drawbacks
depending on the connection capacity and pricing. In the
future, we are going to extend the work with controlled quality
degradations over dispersed numeric and multimedia data.

ACKNOWLEDGEMENTS

This work has been partially funded by the German Re-
search Foundation (DFG) under project agreement SCHI

402/11-1. We would like to thank Martin Beck for contributing
ideas to the search over R-Code data and to homomorphic
encryption.

REFERENCES

[1] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” The 39th International Conference on
Very Large Data Bases (VLDB), vol. 6, no. 5, pp. 325–336, August
2013.

[2] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “DiskReduce: Repli-
cation as a Prelude to Erasure Coding in Data-Intensive Scalable
Computing,” Carnegie Mellon University Parallel Data Laboratory, Tech.
Rep. CMU-PDL-11-112, October 2011.

[3] O. Knodel, T. B. Preußer, and R. G. Spallek, “Next-Generation Mas-
sively Parallel Short-Read Mapping on FPGAs,” in 22nd IEEE Inter-
national Conference on Application-Specific Systems, Architectures and
Processors (ASAP), Santa Monica, California, USA, September 2011,
pp. 195–201.

[4] A. Celesti, N. Peditto, F. Verboso, M. Villari, and A. Puliafito, “DRACO
PaaS: A Distributed Resilient Adaptable Cloud Oriented Platform,” in
IEEE 27th International Symposium on Parallel & Distributed Process-
ing Workshops and PhD Forum (IPDPSW), Cambridge, Massachusetts,
USA, 2013, pp. 1490–1497.

[5] D. Warneke and O. Kao, “Exploiting Dynamic Resource Allocation for
Efficient Parallel Data Processing in the Cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, pp. 985–997, June 2011.

[6] J. L. Gonzalez, V. Sosa-Sosa, B. Bergua, L. M. Sanchez, and J. Car-
retero, “Fault-Tolerant Middleware Based on Multistream Pipeline for
Private Storage Services,” in 7th International Conference for Internet
Technology and Secured Transactions (ICITST), London, UK, December
2012, pp. 548–555.

[7] L. Tan and T. Sherwood, “Architectures for Bit-Split String Scanning
in Intrusion Detection,” IEEE Micro, vol. 26, no. 1, pp. 110–117,
January/February 2006.

[8] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
Database Systems,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1664–1665, August 2009.

[9] D. E. Knuth, The Art of Computer Programming. Addison-Wesley,
1998, vol. 3 - Sorting and Searching, 2nd Edition.

[10] J. Lin and M. Schatz, “Design Patterns for Efficient Graph Algorithms
in MapReduce,” in Proceedings of the Eighth Workshop on Mining and
Learning with Graphs (MLG), Washington D.C., USA, August 2010,
pp. 78–85.

[11] M. Mani, “Enabling Secure Query Processing in the Cloud using Fully
Homomorphic Encryption,” in Proceedings of the Second Workshop on
Data Analytics in the Cloud (DanaC), New York City, New York, USA,
June 2013, pp. 36–40.

[12] J. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems,” Software, Practice & Experience, vol. 27, no. 9,
pp. 995–1012, September 1997.

[13] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Transactions on Information Theory, vol. 45, no. 1,
pp. 272–276, January 1999.

[14] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC), Bethesda, Maryland, USA, June 2009, pp. 169–
178.

[15] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “SWIFFT: A
Modest Proposal for FFT Hashing,” in Fast Software Encryption: 15th
International Workshop FSE, Revised Selected Papers, ser. LNCS, 2008,
vol. 5086, pp. 54–72.

[16] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-Preserving Encryp-
tion Revisited: Improved Security Analysis and Alternative Solutions,” in
Proceedings of the 31st Annual Conference on Advances in Cryptology
(CRYPTO), ser. LNCS, 2011, vol. 6841, pp. 578–595.

[17] M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, and
H. Schröder, “Secure Computations on Non-Integer Values,” in 2nd
IEEE International Workshop on Information Forensics and Security
(WIFS), Seattle, Washington, USA, December 2010, pp. 1–6.

