
Senceive: A Middleware for a Wireless Sensor
Network

Christian Hermann and Waltenegus Dargie
Chair for Computer Networks
Faculty of Computer Science

Technical University of Dresden
01062 Dresden, Germany

Email: s6928045@inf.tu-dresden.de, waltenegus.dargie@tu-dresden.de

Abstract— A significant amount of research effort is being
carried out by the research community to increase the scope and
usefulness of wireless sensor networks; to optimise life time by
developing energy efficient power management, self-organising,
medium access and routing protocols; and to reduce the cost of
sensing nodes so that dense and robust deployment is possible.
Though much has already been achieved, currently the cost
of commercially available wireless sensor nodes is considerable
and the wide applicability of proposed or existing protocols is
still under investigation. One essential problem associated with
cost or wide applicability of protocols is that sensor networks
are application-specific. Protocols and in-network algorithms are
optimised for particular sensing tasks. On the other hand, in
research environments researchers would like to experiment not
with a single application but with many applications. Considering
the not-so-cheap sensing nodes available on the market and the
management overhead of deploying wireless sensor networks,
it is not economical or efficient to dedicate wireless sensor
networks just to a single application, not at present at any
rate. We therefore propose a middleware that enables researchers
to experiment with multiple applications while providing them
with essential in-network functionalities to satisfy individual
application’s requirements. The middleware cleanly separates
sensing from network management so that application developers
can obtain data from the wireless sensor networks without having
to deal with management concerns.

I. INTRODUCTION

Several applications have been proposed for wireless sensor
networks. In some cases, field investigation and test have
already been made and the experiences have been reported.
These include habitat monitoring [13], active volcano sensing
[18], structural health monitoring [2], and under ground min-
ing [15]. These applications clearly demonstrate the greater
scope and usefulness of wireless sensor networks which are
made up of several spatially distributed, low-cost, lightweight,
and smart sensor nodes with embedded software to fulfill
complex tasks in a cooperating manner. The nodes gather data
from their surroundings either continuously or periodically.
The collected data will be processed locally or transmitted to
a sink possibly in a multi-hop fashion. In the transmission
path, some nodes act as relays, conveying locally gathered
(and processed) data together with data from other nodes. At
the base station, application software analyzes the collected
data, produces a system log, invokes an alarm, or stores the
data in a database for future use.

Compared to traditional computer networks, the design
and implementation of a wireless sensor network requires
confluence of many fields, including sampling technology,
signal processing, networking, power management, embedded
systems, information aggregation, and distributed computing,
and many more.

At present, however, the challenges facing the deployment
of wireless sensor networks contend with the opportunities.
One typical constraint is that the sensor nodes are powered
with limited capacity batteries, thereby limiting the lifetime
of the network they constitute. In some applications, it is
not feasible to recharge or replace sensors for many practical
reasons. Subsequently, minimising the power consumption of
a wireless sensor network is one of the main focuses of
research. A plethora of protocols have already been proposed
in all aspects of wireless sensor network. For example, for
managing the power consumption of a sensor node, dynamic
voltage and frequency scaling have been proposed [14]; for
minimizing collusion, overhearing and idle listening, medium
access protocols which accommodate dynamic or periodical
sleeping have been proposed [17], [16]. There are other
protocols and algorithms which aim to reduce the overall data
traffic in the network by allowing in-network processing. Most
of these protocols are, however, optimal to specific sensing
tasks and may not be easily generalized. This is why it is
argued by many that a sensor network should be deployed for
a particular sensing task; this task should be known at a time
of deployment and does not change or changes only slowly
over time [10].

Similarly, research contributions have been made in devel-
oping middleware and data access and aggregation systems.
There are two main motivations for these latter contribu-
tions. Firstly, at present the cost of commercially available
sensor nodes or developing sensor nodes from scratch for
particular applications is considerable; therefore setting aside
an entire sensor network just for one particular application
may not be feasible. Secondly, experimenting with multiple
applications in parallel can be done only with the support
of a middleware or a data access system which abstracts
network management applications which are interested in the
data that can be extracted from sensor networks. The focus
of this paper is a sensor network middleware - the Senceive



Middleware - which we develop to experiment with multiple
applications at our Chair, chair of Computer Networks, the
Technical University of Dresden. Senceive separates sensing
from network management (which is unavoidable at present)
and enables application developers to define complex sensing
tasks and in-network processing. We will discuss in this paper
the conceptual architecture of our middleware as well as its
implementation. The sensor network which the middleware
abstracts is set up by several MICAz and Mica2 sensor nodes.

The rest of this paper is organised as follows: in section
I we summarise related work; in section III, we discussed
the requirements of the Senceive middleware; in section IV,
we present the conceptual architecture of our middleware
and discuss its implementation. In section V, we will give
a report about the experiences learned in experimenting with
commercially available sensors, namely, MICA2 and MICAz
sensors. And finally, in section VI, we give concluding remarks
and outlook to future work.

II. RELATED WORK

A. MoteWorks

Crossbow’s MoteWorks [6] consists of three layers. The
Mote Tier at sensor level supports self-organising networking
to connect all nodes within range to the server by using the
XMesh software [7] installed at the motes. The Server Tier
runs XServe software [8] handling data translation and storage
and providing interfaces for the client applications. At the
Client Tier every application using XServe interfaces is able
to gather and analyse data provided by the network. Crossbow
provides MoteView [5] as a full-featured data analysing appli-
cation and MoteConfig [4] as programming utility on the client
side. Advantages of MoteWorks are the full support for the
whole Crossbow sensor hardware product line, an optimized
development environment and a sophisticated user interface,
providing charts, health monitoring and data conversion to en-
gineering units. MoteView for example provides temperature
values in degree Celsius, Fahrenheit or Kelvin, acceleration
in m/s2 or g units and gives status information about forward
queues, dropped packets, retries, battery or path.

On the other hand MoteWorks also has some disadvantages.
It sticks to TinyOS 1.x, which makes it hard to extend. It also
restricts packet size to 55 byte whereas TinyOS would allow
up to 235 byte. The software provides only a small command
set to gather data in trivial way by simply defining a sensing
interval. And even this is restricted to a minimum interval of
300ms [6] whereas several applications, especially for sound
and acceleration need a higher sampling rate which actually
is supported by the hardware. Finally it has to be stated that
the provided framework is profound (manuals have about 500
pages), not application specific by nature and therefore hard to
adopt to specific needs. All these disadvantages are probably
the reason no research projects so far base on MoteWorks.

B. sdlib: Sensor Data Library

In contrast to the full featured approach provided by Cross-
bow sdlib [3] offers a component library for nesC developers.

This library includes data collection and dissemination as in-
tegral parts of most sensor network systems. The components
are implemented in nesC as well and thus can be integrated
easily in existing nesC projects. Sdlib is not a middleware
in the natural sense of hiding network implementation and
offering an abstract user interface. But usually developers of
wireless sensor network software which are new to the field
of programming in nesC have to master specific concepts like
asynchronous split-phase programming, sidestep race condi-
tions or resource arbitration. The intention of the authors of
sdlib is to support those developers with reliable, powerful
and well tested components for these recurring common cases.
Unfortunately sdlib is based on TinyOS 1.x and is no longer a
research focus, because original researchers are now working
on a successor called Declarative Sensor Networks (DSN).
This shall address an increased number of common develop-
ment tasks within wireless sensor networks. So far there is no
release of this software available for further investigation.

C. TinyDB

TinyDB [12] is the pioneer in sensor network database
abstraction developed at University of California Berkeley. Its
sensor software implementation running on each node includes
a schema manager to handle different types of readings and
node properties, a query processor, a small memory manager
and a topology manager for efficient routing. The Java-based
client interface provides functionality to extract information
about the network, build SQL-like queries, inject them into
the network and listen for results. It also provides graphical
user interfaces to construct queries, display sensor results and
visualize network topology. The rich query language, with
extensions for query duration and sample rates lets users
describe the data they want to gather without requiring any
knowledge about how this data might be gathered. Multi-
ple queries are allowed and managed by a query execution
planning engine. TinyDB also manages the underlying radio
network and ensures relatively reliable data delivery. Finally
low power optimization is also one of the advantageous aspects
of TinyDB. On the other hand TinyDB is based on TinyOS
1.x, supporting no specific in-node processing capabilities.

D. Cougar

Cougar [19] is also a database approach quite similar to
TinyDB developed at Cornell University. It also defines a high
level SQL-like declarative query language. In such a query
the FROM statement describes a node or a group of nodes
called Abstract Data Types (ADTs) whereas the SELECT and
WHERE statements refer to node specific data, invoking an
abstract method which includes attributes for the node like
input arguments, output values or timestamp. The query string
is translated into a relational algebra expression. Then an
optimizer combines all expressions from actual active queries
and builds up a query execution plan. At the end a command
injector distributes the commands into the sensor network
according to the execution plan. Another issue considered in
this project is about using adaptive query processing that adds



statistics-gathering to regular query processing and piggybacks
small feedback data on results to long-running queries. The
effort of this is to reduce administration overhead for gathering
status information which is permanently necessary to address
the general problem of lacking absolute knowledge about the
global state of the network.

E. Mat

Mat [11] is developed at University of California, Berkeley.
It is one of the first agent-based approaches and implements
a virtual machine which interprets byte-code instructions. A
capsule, which can be propagated quickly through the network,
holds up to 24 instructions, each a single byte long. Larger
programs can be built using multiple capsules. These programs
are provided with three execution contexts which are asso-
ciated to three events: clock timers, message receptions and
message send requests. Each context has its own operand and
subroutine address stack. This clear separation helps avoiding
concurrency problems often occurring with standard TinyOS
implementations. Mat is designed to run on MICA platform as
well as on rene2, which offers even more restricted hardware
resources with 1 KB RAM, 16 KB program memory and a
data transmission rate of about 10 Kbit/s. Simple programs
like a sense and send application with a binary size of about
5 KB would need a long time to propagate through the
network. With Mat the same application can be expressed
with 6 instructions and fits into one capsule of 24 Byte. It
has to be stated that Mat is well designed for sensor networks
with frequent changes of application. It also supports a reliable
hardware abstraction which allows easy customization for
relative simple sensing tasks. It provides the possibility for
extending the instruction set with customized components. But
the authors conclude as well that ”’the interpretation overhead
makes implementing complex applications entirely in Mat
wasteful”’ [11]. Mat also builds on TinyOS 1.x and is actually
not enhanced for over three years now.

F. Agilla

As a pure agent-based middleware for wireless sensor
networks Agilla [9] offers flexibility in dynamically adapt to
changes in environmental conditions or multiple application
requirements. The Agilla approach allows examining multiple
phenomena without the need to initially specify at which
location these might occur. Fields of application could be fire
detection or parcel tracking. Every sensor node is able to run
multiple agents and maintains a tuple space and a neighbour
list. The tuple space contains locally available data which
gives information about the node state and is the only possible
way of communication among the agents on the node. There
are also instructions which allow agents to remotely access
tuple spaces of other nodes. The neighbour list contains the
addresses of all nodes reachable within one hop. Agents may
migrate quickly to other nodes, carrying their code and state,
but leaving the tuple space at the node. The agent code itself
is not written in nesC but in an own abstract stack operation
based Assembler-like language. The definitive advantage of

Agilla is its ability to dynamically adapt to changes in the
network environment as well as to changes in application
requirements. On the other hand Agilla is not applicable to
complex sensing tasks. It is based on TinyOS 1.1, provides just
primitive sensing operations, does not support streaming or
long running sensing implicitly and has no timer abstraction.
Extending Agilla is hardly possible because it already needs
about 3.59 KB of the 4 KB of available RAM. Further com-
plex data processing such as buffered high-frequency stream
sampling is therefore infeasible.

III. SYSTEM REQUIREMENTS

The related work discusses so far focuses on either the
query aspect or the management aspect of a sensor network.
We build upon exiting work but explicitly support multiple
applications through the employment of a lightweight query
language and query processing engine; we also provide a
highly flexible network configuration (management) interface
to enable a network administrator define complex sensing tasks
and orchestrate query requests so that the network does not
over flooded by requests from independent applications which
have no view of the other applications accessing one and the
name sensor network.

More explicitly, Senceive satisfies the following require-
ments:

A. Sensor Data Quality

The implementation should provide sensor data quality as
best as possible, supporting high frequent data sampling. A
special focus in the hardware programming is set on recording
and analysing the audio signal. This includes for example cal-
culation of noise level, zero crossing rate or signal energy. Also
tone-detection and range measurement should be regarded as
point of interest. A further minor goal is to provide users with
engineering units instead of raw data.

B. Specific Data Querying

The middleware should enable users to query each single
sensor separately and gather data from connected sensors in
the current environment by using a well defined interface.
This interface should be locally and remotely accessible and
include support for a SQL-like querying language as proposed
by Bonnet et al. [1]. Such a language includes snapshot queries
for immediate data requests, long run queries for periodical
data sampling and historical queries for access to previously
stored data.

C. Explicit and Automatic Network Configuration

A separate interface should provide an administrator to
configure the whole network as well as individual nodes.
Dynamic ad hoc recognition of new sensors and configuration
of these should also be supported by the middleware. This
includes dynamic information about available sensors on the
node.



Fig. 1. The conceptual architecture of the Senceive Middleware

D. Status Information

The middleware should allow gaining meta information
about the network infrastructure like routes or congestion in-
formation. Also specific node status information is of interest.
This includes battery status, connection quality and sensor
usage.

IV. ARCHITECTURE

This section gives an overview of the conceptual archi-
tecture of the middleware and describes the basic building
blocks. The design decisions draw from several concepts and
approaches. The middleware is designed as database system
like TinyDB; the basic three tiered architecture is inspired
by Crossbows MoteWorks; the implemented routing protocols
are improved versions of the sdlib protocols; and the query
processing is similar to the Cougar approach.

The whole system can be regarded as a three-tiered architec-
ture as illustrated in figure 1. The mote tier (denoted as WSN)
provides a communication interface for node control and is
implicit part of the middleware. The server tier is illustrated
in the middle in detail and acts as the central control instance
of the network. The client tier finally holds one administrator
for the network configuration and multiple applications for
parallel data gathering.

The Message Server handles message sending, reception
and pre-selection for further processing. The kernel contains
business logic to interpret queries; handled incoming mes-
sages; perform periodic tasks; and persists gathered data using
the DB Manager which encapsulates the database specific
control methods. This clear separation allows easy replacement
of the concrete database attached to the middleware.

While the Message Server uses the interface to the mote tier,
the middleware services provide the interfaces to the client tier.
There are two distinct services to separate data gathering and

configuration. It is important to notice that users should not
be allowed to configure nodes, as they can not be expected to
have global knowledge about all users needs.

The Data Gathering Service provides the following func-
tionalities:

• Send snapshot queries
• Send historical queries
• Start long run queries with or without data listener
• Provide information about available sensors in the net-

work
• Register listener for changes in network status
The Configuration Service provides the following essential

functionalities:
• Provides detailed network status information
• Provides information about configuration aspects
• Modifies individual mote configuration
• Modifies global configuration
• Manual mote adding and removal
The implementation of the mote software builds upon

TinyOS 2.x including support for Crossbow MICAz with
MTS300 or MTS310 sensor board. With version 2.0.1, TinyOS
provides driver support for those boards including single
sensor access, stream sampling, resource arbitration and power
management. The motes autonomously register with an ex-
isting network, synchronize to global network time, receive
commands to alter configuration or start sensing tasks and
reliably deliver data to the sink.

Node deployment is carried out in two different ways: The
first is supervised by the network administrator who configures
the mote program according to the mote hardware, including
a sensor board specific description and a globally unique id;
additionally, the administrator should provide the middleware
with information about the location of the newly deployed
mote to support users with this important information. As a
second way it should be possible to allow former network
nodes or absolute new nodes (programmed with the same
software) to enter the network and register dynamically. In this
case the middleware configures the new node automatically,
performing time synchronisation, and sends node information
to the applications registered with a network status listener.

A. Mote-Tier

As there is no in network point-to-point communication
necessary, routing gets simplified essentially. Establishing a
routing tree is a good choice to match the applications need.
All nodes reliably deliver data back over multiple hops to the
sink which directly forwards the data via serial or Ethernet
connection to the middleware server. We found the collection
protocol introduced by sdlib as a good choice for this purpose.
Command distribution on the other hand is intended to be
realized by using the dissemination protocol also introduced by
sdlib and provided by TinyOS 2.x. Senceive supports a Time-
Diffusion time Synchronisation (TDS). With this technique the
sink acts as precise time server and broadcasts the reference
time to all master nodes. The master nodes then synchronise



Fig. 2. An overview of the Senceive Middleware (admin interface)

their neighbours using the received reference time. Thus the
established equilibrium time in the wireless sensor network
is the reference time broadcasted by the sink. There is a
drawback with this approach because master nodes are not
explicitly defined to be always in range to the sink. As a result
some might get not synchronized.

This is solved by periodically redefining which nodes are
master nodes. Anyway TDS as well as other hierarchical
synchronisation techniques always lead to decreasing accuracy
with increasing node depth, according to unpredictable and
indeterministic time used for local time transmission. But
usually this gap is in the range of some milliseconds and thus
acceptable for most applications. For instance, TinyOS running
on MICAz provides a millisecond timer with an unsigned
counter width of 32-bit. This offers nearly 50 days continuous
running time without overflow. The approach works as follows.
By starting the middleware and the base station, which is
directly connected via serial or Ethernet connection to the
middleware both synchronize to be able to provide received
data with a UTC timestamp. When a mote is activated, it
should be in a non-synchronized state and immediately tries to
synchronize with a local mote which is synchronized. Message
transfer delays should be considered to minimize deviation
with increasing node depth.

B. Server Tier

Communication with the applications may involve remote
access. At present Senceive supports Java Remote method
Invocation. Application developers are provided with a ref-
erence implementation how to use RMI and how to access
the server tiers services for data gathering and configuration.

Query Processing is probably the most complicated part of the
middleware. The kernel combines all queries for a mote and
generates one resulting command satisfying all needs. If this is
not possible due to hard- or software restrictions the user query
leading to this problem will be rejected including an error
message explaining the problem. This is realized by throwing
an exception. The middleware also combines commands for
several nodes to reduce message overhead by using multicast
or broadcast command.

Data Storage is realized using a separate MySQL server
running on the same host as the middleware. JDBC driver to
access the data is provided for MySQL. All SQL request are
encapsulated within one class to allow possible replacement.
This database is also used to store configuration of the network
and the middleware.

V. IMPLEMENTATION AND PERFORMANCE
EVALUATION

Due to the enormous gap in hardware resources compar-
ing the sensor nodes with a standard computer running the
server side Java middleware program, it is useful to focus
our evaluation on the behaviour of the nesC implementation.
During development as well as in the test phase the Java
program never faced any message or data processing problems,
although query and data processing is no trivial processes. All
measurements and performance tests related to the wireless
network are done using a common hardware setup. This
consists of several MICA-z motes with the network all of
which are equipped with the MTS310 sensor board. The
tests described in the following examine performance and



Fig. 3. An overview of the Senceive Middleware (application interface)

reliability of the routing protocols, sensor data quality and
energy consumption.

The implementation uses the latest sensor board drivers
provided by Crossbow. These drivers include resource arbi-
tration, single sensor access and stream sampling support.
As a summary, the middleware implementation offers several
features listed below:

• Component based software architecture;
• Full support for Crossbow MPR2400 (MICAz) motes;

full support for Crossbow MTS300 and MTS310 sensor
boards; full support for Crossbow MIB510 and MIB600
interface boards;

• Multi-hop command dissemination and data collection;
• Network and node status information;
• Network wide time synchronisation; item Multiple sensor

sampling up to 5Hz;
• Single or dual sensor stream sampling up to 4 kHz;
• In-node noise level calculation;
• SQL-like querying language;
• Snapshot, long-run and historical queries;
• Multiple query handling; and,
• Remote service access via Java RMI.

A. Data Collection

The implemented time synchronization described in the
previous section allowed calculation of the collection time
needed to send a packet from a node to the base station. To test
the data collection performance of the system, several MICAz

nodes were distributed in an apartment in different rooms in
such as way that the node depth increases with every node.
Whereas some nodes directly communicated with the base
station, other nodes used intermediate nodes, based on the
local decision regarding the signal strength. This ensured the
establishment of a link with reliable quality. Test results were
positive. No response was lost and collection time was in an
acceptable and mostly expected range. The average collection
time is about 10 ms for nodes within a one-hop range; 14ms
for nodes within two-hop range; 20ms for nodes within three-
hop range and 46ms for nodes within four-hop range. The data
collection time fluctuated from 10ms to 25ms for nodes within
one-hop range; 0ms to 24ms for nodes within two-hop range;
3ms to 45ms for nodes within three-hop range; and 33ms to
64ms for nodes within four-hop range. A further test starting
multiple long run queries on the motes resulted in the same
collection times.

The results led to the expected conclusion that collection
time generally increases with increasing node depth. Only
nodes within two-hop range showed unexpected behaviour,
usually needing a shorter time to deliver message to the base
station. A probable cause for this is the time synchronisation.
As the implemented time synchronisation protocol does only
provided synchrony with a resolution of around 20ms, real
collection times could be higher. The above results can never-
theless be regarded as proof of reliability. All node messages
reach the base station with a relatively short delay.



B. Command Dissemination

The test environment for the collection performance is also
used to test command dissemination behaviour. Unfortunately
the dissemination protocol does not offer any meta information
about routing status as the collection protocol does. Thus it
was hard to build up a meaningful test environment which can
formally approve performance and reliability of the protocol.

Basically the dissemination protocol can be seen as bottle-
neck of our system. The most restricting characteristic of the
protocol is its (purposely intended) behaviour of distributing
only the latest command. This behaviour can lead to a loss
of a command if a second command is sent directly after the
first one or after a short time span. Especially in large scale
networks the middleware would theoretically need to send
several commands in parallel, for example if a new application
starts a query which affects several nodes in different ways.

Tests show an expected behaviour. Motes with a node depth
of 1 always receive the command with a negligible delay
and answer promptly. With a higher node depth the answer
time increases. During testing, nodes within one-hop always
answers directly, while motes within two and three hops away
usually answer with a 0 to 2 second delay and nodes within
four hops away usually need 1 to 2 seconds to answer. In some
cases the answer time is significantly higher reaching up to 4
seconds. The positive result of the test was that no command
was lost.

The results showed that the dissemination protocol reliably
delivered commands to the nodes as long as time span between
sending two commands is large enough. On the other hand the
protocol did not guarantee a low delivery time if multi-hop
command delivery were necessary. Comparing worst cases led
to a dramatic difference as command delivery time reached up
to the factor of ca. 100 times slower than data collection time.
It is left as a future work to develop an alternative command
distribution protocol.

VI. DISCUSSION

This paper introduced the Senceive middleware for wireless
sensor networks supporting multiple applications with data
gathering services. The intended use within the academic
environment makes Senceive general purpose sensor network
software than other approaches. Possible applications range
from long term usage like habitat monitoring to high frequent
sampling tasks such as motion modelling. The middleware is
characterized by applying multi hop routing techniques, energy
aware resource management and globally synchronised time.
More sophisticated design issues like security aspects have
been left out as they would exceed the scope of this paper.

At present the middleware implementation fully supports
hardware platforms of Crossbow MICAz with MTS300 and
MTS310 sensor boards. These boards provide light, sound
and temperature sensors, plus a 2-axis accelerometer and a
2-axis magnetometer on the MTS310. As basis for this im-
plementation, the most popular operating system for wireless
sensor networks was used: TinyOS. The component based
programming language nesC is developed especially for the

purposes of TinyOS and simplifies the software development
by reusing components. But with the release of a fundamen-
tally changed version 2.x in 2006 the TinyOS development
community faces a tough challenge to port code from version
1.x. TinyOS 2.x still faces a reduced driver support and lacks
broad contribution. It will need some time before this open
source project is able do support commercial applications.

Most existing middleware approaches introduced in this
paper are still based on TinyOS 1.x and therefore also
struggle with code porting. Useful concepts and reference
implementations like data collection and command dissemi-
nation protocols, a query language for specifying requested
data, and processing principles for managing parallel queries
are adopted from other wireless sensor network software
like sdlib, TinyDB and Cougar. The middleware’s component
based software architecture and consequent model view con-
troller ensures extensibility and enables further improvements.
Multi-hop command dissemination and data collection, status
information, automatic node recognition and configuration,
high frequent sensor sampling and a public interface remotely
accessible via RMI providing snapshot, long-run and historical
queries through an SQL-like querying language and automati-
cally managing parallel queries make the Senceive middleware
a profound software that support complex sensing tasks.

At node level, unrealized features mainly concern data
quality. Especially high frequency stream sampling and voice
recording could not be realized. The evaluation identified some
drawbacks posing questions which could be subject to further
development. Two are essential to the performance and en-
ergy efficiency. The dissemination protocol used to propagate
commands is broadcast oriented, whereas an optimized unicast
approach would better fit to the needs. Further work should
also try to enable the low power listening concept, which
still lacks compatibility problems with the routing protocols.
But as it is a simple and well scaling approach in theory to
improve energy efficiency it is worth tracking future TinyOS
releases, especially because developers recently announced its
tight integration.

Taking an outlook to the future leads to the reasonable
assumption that public areas will be covered by wireless sensor
networks. Making them available to many applications rather
than to a few by providing standardized interfaces through
middleware like the one presented in this work

VII. CONCLUSION

We presented the Senceive middleware for supporting mul-
tiple applications which employ one and the same wireless
sensor network to obtain data pertaining to a physical envi-
ronment. The premise for the need to develop a middleware
is that at present dedicating a sensor network for a single,
specific application in research environments given the cost
of establishing and maintaining presently affordable wireless
sensor networks is not optimal. Senceive separates network
management concerns from data aggregation and collection.
This way, it is possible for applications to declaratively issue
a sensing task without the need to have to directly deal with



management problems. Hence, the middleware consists of
two essential components: a query interface and a network
configuration interface. The query interface processes queries
from multiple applications, and provides the applications with
expressive and adequate SQL-like query language. At present,
Senceive supports snap-shot and long-run queries. The config-
uration interface enables network administrators - it is hardly
possible to avoid administrative tasks in real wireless sensor
networks - to configure nodes and to prioritising sensing tasks.

Admittedly, such flexibility is attained at the expense of
running the network at sub-optimal operation cost. For if the
sensing task is known at the time the network is deployed, it is
possible to configure the network to operate with highly effi-
cient in-network algorithms and communication protocols. On
the other hand, by defining elementary aggregation functions
such as statistical mean, mode, median, standard deviation,
etc., it is also possible to dynamically configure a network
to carry our complex in-network processing tasks within the
network. This is left as a future task.

REFERENCES

[1] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world.
IEEE Personal Communications, 7(5), 2000.

[2] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey,
R. Govindan, E. Johnson, and S. Masri. Monitoring civil structures
with a wireless sensor network. IEEE Internet Computing, 10(2):26–34,
2006.

[3] D. Chu, K. Lin, A. Linares, G. Nguyen, and J. M. Hellerstein. Sdlib:
a sensor network data and communications library for rapid and robust
application development. In IPSN ’06: Proceedings of the fifth interna-
tional conference on Information processing in sensor networks, pages
432–440, New York, NY, USA, 2006. ACM.

[4] Crossbow Technology, Inc. MoteConfig User’s Manual, 2007.
[5] Crossbow Technology, Inc. MoteView Users Manual, 2007.
[6] Crossbow Technology, Inc. MoteWorks Getting Started Guide, 2007.
[7] Crossbow Technology, Inc. XMesh User’s Manual, 2007.
[8] Crossbow Technology, Inc. XServe Users Manual, 2007.
[9] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent middleware for sensor

networks: an application case study. In IPSN ’05: Proceedings of the 4th
international symposium on Information processing in sensor networks,
page 51. IEEE Press, 2005.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
In ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom 2000), 2000.

[11] P. Levis and D. Culler. Mat: A tiny virtual machine for sensor networks.
In The 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), 2002.

[12] S. Madden, J. Hellerstein, and W. Hong. Tinydb: In-network query
processing in tinyos. Technical report.

[13] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA 2002),
pages 88–97, 2002.

[14] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and
A. P. Chandrakasan. Energy-centric enabling technologies for wireless
sensor networks. IEEE Communications Magazine, pages 28–39, 2002.

[15] M. Ndoh and G. Delisle. Geolocation in underground mines using wire-
less sensor networks. In Antennas and Propagation Society International
Symposium, pages 229–232, 2005.

[16] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Optimizing
sensor networks in the energy-latency-density design space. IEEE
Transactions on Mobile Computing, 1(1):70–80, 2002.

[17] Y. Wei, J. Heidemann, and D. Estrin. An energy-efficient mac protocol
for wireless sensor networks. In 21st Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM 2002),
pages 1567–1576, 2002.

[18] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees. Deploying a wireless sensor network on an active
volcano. IEEE Internet Computing, 10(2):18–25, 2006.

[19] Y. Yao and J. Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Rec., 31(3):9–18, 2002.


