
Tensor-Based Resource Utilization Characterization
in a Large-Scale Cloud Infrastructure

Waltenegus Dargie
waltenegus.dargie@tu-dresden.de
Technische Universität Dresden

Dresden, Saxony

ABSTRACT
The introduction of virtualization and cloud computing has
enabled a large number of containers/virtual machines to
share computing resources. Nevertheless, the number and
size of data centres are still on the rise, partly on account of
an ever increasing amount of generated data and workloads
worldwide. On the other hand, independent studies indicate
that a large number of servers in contemporary data centres
are underutilised. One of the strategies currently adopted
by the research community in order to deal with resource
inefficiency is dynamic workload consolidation. The idea
behind is dynamically balancing the supply of computing,
communication, and storage resources with the demand for
resources. This entails populating physical servers with an
optimal number of complementary workloads. Most existing
or proposed approaches employ multi-variate optimisation
to achieve this goal but do not easily lend themselves to
fast and intuitive solutions. In this paper, we investigate the
scope and usefulness of dimensionality reduction techniques
(tensor decomposition) to identify execution and resource
utilisation patterns in hosted containers/virtual machines.
Our analysis is based on two large-scale data centres, one of
them hosts 1190 commercial virtual machines on 59 physical
computing servers and 29 physical storage servers organised
in 9 clusters and the other 44 373 containers on 3985 physical
servers. Our analysis shows that “spatial” and “temporal”
patters can be uncovered with tensor decomposition, based
on which efficient clustering can be realised.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
UCC’19, Dec 2019, Auckland, New Zeeland
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Distributed Architecture→ Cloud Computing; • Dis-
tributed systems organizing principles → Cloud Com-
puting; • Computer systems organization → Data Cen-
ters.

KEYWORDS
Cloud computing, consolidation, containers, data centerwork-
load, resource utilization, tensor decomposition, virtual ma-
chines

ACM Reference Format:
Waltenegus Dargie. 2019. Tensor-Based Resource Utilization Char-
acterization in a Large-Scale Cloud Infrastructure. In Proceedings
of ACM Conference (UCC’19). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Contemporary data centres interconnect a large number of
physical servers using data centre networks [15]. A high-
level software architecture (virtualization) enables containers
and virtual machines to share computing, storage, and/or
communication resources without compromising on their
privacy and security [10]. This approach has given rise to
cloud computing and resulted in a number of advantages
in terms of reduction of cost in infrastructure set-up and
management, flexibility in dynamic adaptation of resource
supply, and better security. It has also contributed in the
reduction of the energy consumption of information and
communication technologies worldwide [9]. Nevertheless,
studies show that data centres often provide resources to
their customers in excess in order to ensure that service-level
agreements are respected [4, 14]. This practice inevitably
leads to resource underutilisation and energy inefficiency.

Existing approaches attempting to address resource utili-
sation inefficiency aim at dynamic workload consolidation.
Broadly speaking, this is carried out in three steps:
(1) The overall workload of the data centre is estimated

to determine the number of physical servers needed.
(2) Containers/virtual machines are profiled according to

their predominant resource demand.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

UCC’19, Dec 2019, Auckland, New Zeeland Waltenegus Dargie

(3) Physical servers are populated by containers/virtual
machines exhibiting complementary resource utilisa-
tion characteristics.

The second step is critical to achieve high performance
computing and to avoid resource overload or underutilisa-
tion. The assignment is challenging since the resource de-
mand of hosted containers changes over time along multiple
dimensions. In other words, containers which are comple-
mentary in one dimension may be contentious in another.
Similarly, containers which are complementary at one time,
may become contentious at another. In order to simplify the
consolidation task, some researchers aim at optimising the
utilisation of a handful of resources which consume a signifi-
cantly large amount of energy (such as CPU cores) or which
often become performance bottlenecks (such as the network
and storage bandwidth).
In this paper, we propose the use of multi-way tensor

decomposition and analysis in order to characterise the re-
source utilisation of hosted containers/virtual machines. This
approach enables to achieve two opposing objectives at the
same time. Firstly, it enables to efficiently process a large
amount of statistical data pertaining to the resource utilisa-
tion of a large number of containers/virtual machines. Sec-
ondly, it enables to efficiently characterise both the temporal
and the “spatial” aspect of resource utilisation. Originally
arising in the fields of psychometrics and chemometrics [8],
tensor decomposition has induced a great deal of interest in
modelling and reasoning about complex relationships in a
wide range of research areas. Its popularity lies in its capacity
to:

• structure a large amount of data in a comprehensible
way;

• exploit multi-dimensional correlations in order to sig-
nificantly reduce the dimensions of the original data;
and,

• extract latent features which can be examined from
different vantage points.

Even though tensor decomposition and analysis appear to be
the ideal strategies to deal with big data in cloud computing,
to the best of our knowledge, ours is the first proposal to use
these techniques for managing computing resources in data
centres. Our analysis is based on statistics obtained from
two independent data centres: One of them is the Enterprise
Cloud Infrastructure (ECI) at the Centre for Information
Services and High-Performance Computing, TU Dresden,
Germany1. ECI consists of 59 physical computing servers
and 29 physical storage servers organised into 9 clusters. At
the time we took measurement, the data centre was hosting
1190 commercial virtual machines. The other belongs to one

1https://tu-dresden.de/zih (Last accessed on 14 May 2019, 10:00 CET).

of Alibaba’s Production Clusters (APC)2 and consists of 3985
physical servers hosting 44 373 Linux containers (LXC).
The remaining part of the paper is organized as follows:

In Section 3, we lay out the research goals this paper sets out
to achieve. In Section 4, we introduce dimensionality reduc-
tion techniques, highlighting tensor decomposition and its
relevance to characterise resource utilisation. In Section 5,
we demonstrate how we apply tensor decomposition to anal-
yse the resource utilisation characteristics of hosted virtual
machines and containers in order to identify “spatial” and
temporal characteristics. Finally, in Section 6, we provide
concluding remarks and outline future work.

2 RELATEDWORK
Existing or proposed approaches for managing data centre
resources can be broadly classified as proactive or reactive.
The former attempt to predict potential resource underutili-
sation or overload and consolidate workloads based on their
complementary characteristics. The latter react to resource
overload or “hotspots” by relocating the containers which
give rise to it.
Curino et al. [2] propose Hydra, a large-scale container

manager in a federated data centre. The design focus is on the
cluster organisation and coordination by cleanly separating
the concerns of demand prediction, resource appropriation,
and task scheduling. Hence, the prevailing idea is setting
up loosely-connected sub-clusters which can be organised
into large clusters when demand grows and turned off in
unison when demand reduces. This decision is managed by a
control plane that can push scheduling policies across tens of
thousands of nodes within seconds. The proposed approach
works well for long-running batch workloads, the statistics
of which is stable.
Pahlevan et al. [12] and Canali et al. [1] explore the use-

fulness of machine learning in identifying contentious or
complementary virtual machines based on their utilisation
statistics. The former combine unsupervised clustering and
integer linear programming and observe that whereas the
machine learning strategy yields a fast and comprehensible
result, the more accurate, however, is the latter. The pro-
posed approach is quite extensive, but users can tune the
model, based on their preference, so as to achieve the desire
trade-off between computation accuracy and speed. Canali et
al., on the other hand, apply Principal Component Analysis
in order to cluster virtual machines based on their resource
consumption characteristics. They used traces obtained from
a virtual testbed running on Amazon EC2 platform and a
proprietary data centre. However, their analysis is limited

2https://github.com/alibaba/clusterdata/tree/master/cluster-trace-
v2018 (Last accessed on 4 September 2019, 15:15 CET).

https://tu-dresden.de/zih
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018

Tensor-Based Resource Utilization Characterization in a Large-Scale Cloud Infrastructure UCC’19, Dec 2019, Auckland, New Zeeland

to simple cases (2-dimensional) and the number of virtual
machines they considered are relatively small.

Haehnel et al. [7] extend the Cutting Stock Problem [5] for
consolidating containers with stochastic workloads. They
employ the aggregate probability density function of co-
located and simultaneously executing jobs to establish valid
patterns, where a valid pattern is one yielding an overall
resource utilisation below a set threshold. The validation of
the proposed approach was based on a 16-core server with 29
different benchmarks. The workloads of these benchmarks
have been generated based on the CPU utilisation traces of
100 real-world containers from a Google data centre. Alto-
gether, the authors considered 540 different consolidation
scenarios and investigated system overload probability, job
completion time, and energy consumption. However, the con-
solidation assignment considered only the CPU utilisation
of the consolidated services.

Similarly, Nguyen et al. [11] employ multiple linear regres-
sion (Original Least Squares) to predict (1) the future use of
a named resource by a virtual machine and (2) the potential
of overloading the same resource. Virtual machine consoli-
dation is triggered if a resource bottleneck is predicted. The
proposed algorithm assesses the state of all the servers in the
data centres before a consolidation process begins, so that a
global balance is achieved between the demand for and the
supply of resources. The authors employed real Google Data
Centre traces both to train and test their model. However,
the proposed approach is elaborate and works well only for
linear relationships.

Ferdaus et al. [3] formulate the problem of virtual machine
consolidation in data centres as a discrete combinatorial op-
timisation problem with the objective of minimizing data
centre resource wastage, power consumption, and overall
migration overhead. As a solution to the problem, the au-
thors propose a scalable Ant Colony Optimization (ACO)
meta-heuristic and a hierarchical, decentralized dynamic
consolidation framework which localises migration-related
network traffic and reduce network cost. Similarly, Tang et
al. [13] propose a hybrid genetic algorithm for dynamic vir-
tual machine consolidation in a hierarchical data centre. The
algorithm extends the genetic algorithm by incorporating an
infeasible solution repairing procedure and a local optimisa-
tion procedure in order to enhance the exploitation capacity
and the convergence of the original genetic algorithm. The
proposed algorithm exploits the well-structured (hierarchi-
cal) topology of the data centre to yield a consolidation result
in a polynomial time. The validation of the algorithm was
carried out by employing self-generated virtual machines.
Yu et al. [16] define a probabilistic threshold of exceed-

ing the capacity of a server in a cloud environment. If this
threshold is crossed, the server is labelled as a hotspot. Sub-
sequently, they order the hotspots by decreasing overload

risk. Then, the authors go through each hotspot, starting
with the server with the highest overload risk. The virtual
machines on each server are sorted as well as grouped by a
decreasing metric describing the potential of reducing the
server’s overload risk. Finally, the virtual machines from the
group with the highest potential but lowest migration cost
are migrated until the server is no longer a hotspot. However,
the authors focus only on overloaded servers as a result of
which the algorithm optimises only locally.

Most of the approaches we reviewed in this section employ
multi-variate optimisation to utilise resources efficiently but
do not easily lend themselves to fast and intuitive solutions.
In this paper, we investigate the scope and usefulness of
dimensionality reduction techniques to identify execution
patterns and resource utilisation complementarity in hosted
virtual machines/containers. Our analysis offers multiple and
intuitive vantage points (“spatial” as well as temporal) from
which resource utilisation can be examined.

3 RESEARCH GOALS
In this paper, we strive to address the following research
questions:
(1) Given a large set of hosted containers (virtual ma-

chines) having stochastic workloads and a correspond-
ing set of computing resource demands (CPU, mem-
ory bandwidth, memory capacity, network bandwidth,
storage size, disk read/write bandwidth, etc.), is it pos-
sible to identify containers/virtual machines having
complementary as well as contentious resource utili-
sation characteristics?

(2) Considering the large amount of hosted containers and
the large amount of statistics pertaining to resource
utilisation, is it possible to develop analytic strategies
which (a) are efficient to compute, (b) yield tractable
solutions, and (c) are intuitive to identify workloads
exhibiting higher-level features?

(3) Using the same sets of analytic tools and sets of data,
is it possible to simultaneously uncover hidden, non-
overlapping features and predict the temporal evolu-
tion of the resource demand of hosted containers/virtual
machines? This aspect is useful for performing dy-
namic workload consolidation.

4 DIMENSIONALITY REDUCTION
The utilisation of a particular resource, say a CPU, by hosted
containers in a data centre can be represented by a matrix,
assuming that the samples are taken synchronously. The
columns of the matrix can represent the sampling intervals
(time) and the rows, the containers, or vice versa. How the
matrix should be structured depends on what one wishes to
achieve.

UCC’19, Dec 2019, Auckland, New Zeeland Waltenegus Dargie

If one expects strong correlation between the samples
along both dimensions (temporal correlation as well as syn-
chronised execution amongst the containers), it is possible to
decompose the matrix into more compact and basic matrices
which reveal underlying execution features (patterns). One
of the most widely used techniques is the Singular Value De-
composition (SVD) [6]. Thus, for a given utilisation matrix
R havingM × N dimensions, its SVD yields the following:

R = UΣVᵀ (1)

U ∈ RM×P and V ∈ RN×P are said to be orthogonal (uncor-
related) matrices and Σ ∈ RP×P is a diagonal matrix having
entries which are naturally arranged according to their mag-
nitude (i.e., σ11 ≥ σ22 ≥ ...σpp). In order to explain the
significance of SVD, we shall give a simple example. Suppose
we have the following utilisation matrix – assuming the rows
represent the containers and the columns, the time intervals:

R =

S1 S2 S3 S4 S5

V1 1 5 9 13 17
V2 2 6 10 14 18
V3 3 7 11 15 19
V4 4 8 12 16 20

 (2)

We chose the matrix deliberately to demonstrate the exis-
tence of hidden features in it. As can be seen, if we concate-
nate the columns of the matrix, they result in a sequence
of whole numbers ranging from 1 to 20. So, one of the hid-
den features of this matrix is that it consists of a sequence
of whole numbers. The other hidden feature is that the se-
quence is divided into five columns. Applying SVD on this
matrix yields the following basic matrices:

U =

−0.44 −0.71
−0.48 −0.26
−0.52 0.18
−0.55 0.63

 (3)

Σ =

[
54 0
0 2

]
(4)

V =

−0.10 0.77
−0.25 0.49
−0.39 0.21
−0.54 −0.07
−0.69 −0.35

(5)

Notice the entries of Σ. It is not by accident that there are only
two diagonal entries, as the original matrix contains only
two hidden features. Moreover, notice that the two diagonal
entries of Σ do not have equal significance. The first is more
significant than the second. What will happen if we carry
out the following matrix operation?

R̂ = σ11
(
u1 ◦ v

ᵀ
1
)

(6)

where σ11 is the first element in Σ and ◦ refers to an outer
product between the first column of U and the transpose of
the first column of V:

R̂ = 54 ×

−0.44
−0.48
−0.52
−0.55

[
−0.10 −0.25 −0.39 −0.54 −0.69

]
(7)

The result is the following:

R̂ =

2.29 5.82 9.35 12.89 16.42
2.48 6.31 10.13 13.96 17.78
2.67 6.79 10.91 15.03 19.15
2.86 7.27 11.69 16.10 20.51

 (8)

Clearly, there is a strong similarity between R̂ and R. If we
compute the difference between the two matrices, the result
is the following:

e = R − R̂ =

−1.29 −0.82 −0.35 0.11 0.58
−0.48 −0.31 −0.13 0.04 0.22
0.33 0.21 0.09 −0.03 −0.15
1.14 0.73 0.31 −0.10 −0.51

 (9)

So, apart from uncovering hidden features in R, we can
also reconstruct the original matrix by just considering a
single column in U and a single column in V. For a large
raw matrix, the second aspect implies that SVD considerably
reduces our storage demand to save R. To summarise some
of the advantages of SVD:
(1) Firstly, one does not need to make any assumption as

regards the hidden features. Their number and signifi-
cance is dynamically revealed by the diagonal matrix
Σ.

(2) Secondly, one can express the original utilisation ma-
trix R as the outer products of the columns of U and
V (refer also to Fig. 1):

R =
P∑
p=1

σppup ◦ vp (10)

where ur and vr refer to the r-th column of the ma-
trices U and V, respectively. We refer each matrix on

Figure 1: Expressing the utilisationmatrix as the sum-
mation of SVD components.

Tensor-Based Resource Utilization Characterization in a Large-Scale Cloud Infrastructure UCC’19, Dec 2019, Auckland, New Zeeland

the right side as a component. Note that the relevance
of each component is associated with the relevance of
σii .

(3) Thirdly, if the samples of the utilisation matrix exhibit
strong correlations, then, R can be approximated by
taking the first K components only:

R ≈

K∑
p=1

σppup ◦ vp (11)

for K < P . If the difference in magnitude between
the successive σr r entries is significantly large, then
a strong correlation is identified in the original utili-
sation matrix and, hence, the error resulting from our
approximation will be significantly small.

4.1 Utilisation Tensor
One of the limitations of working with SVD is that it is two
dimensional3. This forces us to analyse the utilisation of a
single resource at a time. If we wish to analyse the utilisation
of multiple resources using SVD, we have to analyse the
average utilisation. But the average utilisation disregards
the temporal variations of resource utilisation and leads to
a considerable resource overload or underutilisation should
the containers be consolidated without the knowledge of
this aspect.
The most plausible alternative is to model resource util-

isation using a three-way tensor, as shown in Figure 2. As
can be seen, the tensor is a three-dimensional array consist-
ing of elements intersecting three orthogonal axes. Hence,
in the same way every element of a matrix can be referred
to by two indices (the row index i and the column index
j), every element of the tensor can be referred to by three
indices. So, for example, ri jk refers to the utilisation of the
j-th element by the i-th VM in the k-th time slot. Now we
have three dimensions along which we can search for hidden
features (and, hence, three degrees-of-freedom to cluster the
containers).

In the same way a matrix can be decomposed (factorised)
into basic constituting elements, a tensor can be decomposed
into basic constituting elements. However, unlike decompos-
ing a matrix, decomposing a tensor is not straightforward. To
start with, an assumption has to be made about the number
of hidden factors embedded in the original tensor, whereas

3One important aspect to notice is that in carrying out SVD the row
dimension of the original matrix R is preserved in the U matrix and the
column dimension in theVmatrix. In other words, theUmatrix encodes the
relationship of the hidden features with the row variables (the containers)
and the V matrix encodes the relationship of the hidden features with the
column variables (the samples intervals).

this is done automatically with SVD. Secondly, different de-
composition strategies employ different statistical estimation
techniques, which may result in different outcomes.

cpu mem net_r net_t disk_r disk_w …

Vm1

vm2

Vm3

vm4

vm5

vm6

cpu mem net_r net_t disk_r disk_w …

Vm1

vm2

Vm3

vm4

vm5

vm6

cpu mem net_r net_t disk_r disk_w …

Vm1 12 10 0 0 0 0 0

vm2 8 2 120 98 45 12 16

Vm3 33 120 15 12 44 5 3

vm4 35 26 0 0 0 0 0

vm5 6 34 0 0 0 0 0

vm6 12 98 46 54 25 6 12

cpu mem net_r net_t disk_r disk_w …

Vm1 12 10 0 0 0 0 0

vm2 8 2 120 98 45 12 16

Vm3 33 120 15 12 44 5 3

vm4 35 26 0 0 0 0 0

vm5 6 34 0 0 0 0 0

vm6 12 98 46 54 25 6 12

cpu mem net_r net_t disk_r disk_w …

C1 12 10 0 0 0 0 …

C2 8 2 120 98 45 12 …

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cn 12 98 46 54 25 6 …

Figure 2: A three-way tensor representing the resource
utilisation statistics of hosted containers.

A closer look into the utilisation tensor reveals that it
provides three orthogonal views which can serve different
purposes. For example, the front view (borrowing an ex-
pression from architecture) provides a matrix describing the
utilisation of all resources by all hosted containers at the
k-th sampling interval – i.e, (container versus resources)k .
This view is called the front slice. Likewise, the top view
provides a matrix describing the utilisation of all resources
by the i-th virtual machine over a period of time – i.e., (re-
sources vs. time)i . This is called the horizontal slice. Finally,
the side view provides a matrix describing the utilisation of
the j-th resource by all containers over a period of time – i.e.,
(container vs. time)j . This is called the lateral slice. It is this
flexibility, among others, which makes a tensor desirable.

4.2 Tensor Decomposition
The chief task of a tensor decomposition is to identify multi-
dimensional features in terms of which the containers can be
explained (categorized). Compared to the size of the tensor,
the basic features should be significantly small in size, so
that the clustering process is computationally tractable. A
tensor analysis begins by unfolding (flattening) the tensor
into a matrix. The unfolding can take place in different ways,
but whichever way is chosen, the entries along each dimen-
sion form a column vector. For example, let the first three
slices (i.e., the samples of the first three time instances) of the
tensor R ∈ RI×J×K – where I is the number of containers, J
the number of computing resources, and K , the number of

UCC’19, Dec 2019, Auckland, New Zeeland Waltenegus Dargie

sample points – are represented as follows:

R1 =

0.76 −0.56 1.44 · · ·

1.66 3.24 −0.78 · · ·
...

...
...

...

R2 =

1.45 1.65 −1.24 · · ·

0.12 1.23 −0.86 · · ·
...

...
...

...

R3 =

0.26 1.48 0.01 · · ·

−0.50 1.18 0.18 · · ·
...

...
...

...

(12)

The mode-1 unfolding of the above tensor takes each column
vector as they are and put them together side-by-side:

R(1) =

0.76 · · · 1.45 · · · 0.26 · · ·

1.66 · · · 0.12 · · · −0.50 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

 (13)

The mode-2 unfolding takes each raw entry of the matrices
and places them as column vectors in a single matrix:

R(2) =

0.76 . . . 1.45 · · · 0.26 · · ·

−0.56 . . . 1.65 · · · 1.48 · · ·

1.44 . . . −1.24 · · · 0.01 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(14)

Likewise, the mode-3 unfolding takes the n-th entry of each
slice (along the time dimension) and puts them together as
column matrix:

R(3) =

0.76 1.66 −0.56 · · · −0.78 · · ·

1.45 1.12 1.45 · · · −0.86 · · ·

0.26 1.18 1.48 · · · 0.18 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(15)

There are different tensor decomposition strategies; which
of them is suitable for a particular decomposition depends
on what we wish to achieve. We chose to employ the Canon-
ical Decomposition/Parameter Factorisation (referred in the
literature as CANDECOM/PARAFAC, or, in short, CP) [8]
because it is intuitive to interpret. It decomposes a tensor
into three matrices:

R = ABC (16)
or

R =

R∑
r=1

ar ◦ br ◦ cr (17)

where ar , br , and cr , are the r -th columns of the matrices
A B, and C, respectively. In the existence of a strong cor-
relation in the utilised resources, the utilisation tensor can
be approximated only by the outer product of the first K
column vectors of the matrices A, B, and C, respectively.
The three basic matrices have the following significance:

The matrix A characterises the hosted containers in terms
of the unique features. The matrix B associates the unique

features with the resources utilised and the matrix C reveals
the temporal characteristics of the containers without ex-
plicitly referring to the particular resources they utilise. For
the consolidation task, the most relevant matrices are A and
C, because the former reveals the “spatial” characteristics
whereas the latter reveals the “temporal” characteristics of
the containers. However, the matrix B is vital to understand
or interpret the unique (hidden) features, as we shall demon-
strate in the next section.

5 EVALUATION
The VMware managing ECI provides a large number of key
performance indicators (KPI) to monitor resource utilisation.
We selected 14 of these (listed in Table 1) to build our utili-
sation tensor. APC, on the other hand, provides 9 KPI, but
two of these – cycle per instruction and Missed Predictions
per 1000 (=Kilo) Instructions – are applicable only to mon-
itoring the physical machines and one of them – machine
ID – is invariant. The other – timestamps – does not refer
to a specific resource. Therefore, we selected the five KPIs
– CPU, mem, net in, net out, and disk IO – to construct our
utilisation tensor. The ECI tensor contains a 24-hour period
utilisation trace sampled every 5 minutes (288 samples per
virtual machine per resource) whereas the APC tensor con-
tains 8 days of measurements, also sampled every 5 minutes
(960 samples per container per resource). In order to make
our analysis comprehensible, we randomly selected 45 vir-
tual machines from ECI and 1000 LXC from APC. So, for the
first, our utilisation tensor has a dimension of 45 × 14 × 288,
and for the second, 1000 × 5 × 960.

The ECI utilisation metrics have different units and scales.
This tends to produce bias in favour of metrics having large
numbers during the computation of correlations (underlying
the tensor decomposition). To remove the effect of this bias,
we normalised the samples, so that they all vary in the same
range (i.e., between 0 and 1) using min-max feature scaling
[17]. The APC KPIs had already been normalised when we
obtained the measurements.

Table 1: A summary of the utilisation metrics used to
construct the ECI utilisation tensor.

ID Metric ID Metric
1 Average CPU usage (in MHz) 2 Average CPU workload
3 MEM usage 4 NET transmit average
5 NET received average 6 NET broadcast TX summation
7 Storage total read latency 8 Storage total write latency
9 Data store read average 10 Data store write average
11 Virtual disk read average 12 Virtual disk write average
13 Disk read average 14 Disk write average

Tensor-Based Resource Utilization Characterization in a Large-Scale Cloud Infrastructure UCC’19, Dec 2019, Auckland, New Zeeland

5.1 Hidden Features
The type and magnitude of resources a virtual machine or a
LXC utilises at any given time change over time. Likewise,
the type of resources for which containers contend and the
level of contention arising as a result change as well. Fur-
thermore, some resources are not utilised in isolation. For
example, the utilisation of a memory bandwidth involves
the CPU and the memory; the utilisation of a network band-
width involves the utilisation of the memory and, to some
extent, the CPU. Similarly, the utilisation of a virtual storage
involves the memory. It is this dependency the tensor de-
composition exploits in order to uncover distinct utilisation
features.
Before a tensor decomposition takes place, one has to es-

timate the number of unique features (factors) hidden in the
original tensor. In order to ensure that we uncover all the
hidden features relevant to characterise the hosted contain-
ers, we examined the coefficient of determination (R2) for
different number of factors4. For the ECI tensor, the CANDE-
COMP/PARAFAC decomposition yielded a reconstruction
accuracy of 99 % (R2 = 0.996) when the number of factors
were set just to 2 but for the APC, the same accuracy could be
achieved when the number of factors were set to three. Thus,
we decided to decompose the utilisation tensors by assuming
that only two hidden factors in the first tensor and three in
the second tensor were embedded in the original tensors.
This resulted in a 45 × 2 A matrix (VMs vs hidden features),
a 14 × 2 B matrix (resources vs hidden features) and 288 × 2
C matrix (samples vs hidden features) as a consequence of
the decomposition of the decomposition of the first tensor
and 1000× 3Amatrix (containers vs hidden features), a 5× 3
Bmatrix (resources vs hidden features) and 960× 3 Cmatrix
(samples vs hidden features) as a consequence of the decom-
position of the second tensor. Hence, besides its usefulness in
uncovering hidden execution patterns, the tensor decomposi-
tion significantly reduced the sample size we deal with, from
45×14×288 = 181, 440 to (45 × 2)+(14 × 2)+(288 × 2) = 694
for the first tensor and from 1000 × 5 × 960 = 4, 800, 000 to
(1000 × 3) + (5 × 3) + (960 × 3) = 5895 for the second tensor.

5.2 Interpretation
Since we wish to characterise the VMs according to the
resources they utilise, we first examine the Bmatrix in order
to determine what the hidden factors actually represent. This
is because the B matrix describes the relationship of the
hidden features with the resources utilised. In Fig. 3, the two
hidden factors are plotted against the resource types. It is

4The reconstruction of the original tensor from the decomposed matri-
ces entails some error. One way of measuring the difference between the
reconstructed tensor and the original tensor is by using the coefficient of
determination.

0 2 4 6 8 10 12 14

Resource ID

-1.5

-1

-0.5

S
co

re

0 2 4 6 8 10 12 14
Resource ID

-2

-1.5

-1

-0.5

0

0.5

S
co

re

Figure 3: The B matrix explaining the contribution of
the key performance indicators in uncovering the hid-
den features in the ECI utilisation tensor. Top: The
First Factor (signifying dominant write operations).
Bottom: The Second Factor (signifying dominant read
operations).

worth to remark that we intentionally organised the read
and write operations in Table 1 to make the interpretation of
the graphs intuitive; the read operations are listed in the left
column (odd numbers) and the write operations, in the right
(even numbers).

The score distribution in the top plot (produced from the
first column of the B matrix) can be categorised into three
groups. In the first group, we find the utilisation metrics with
IDs: {1, 2, 3, 4, 5}. These metrics , corresponding to compute
and network activities, scored relatively low. In the second
group, we have utilisation metrics with IDs: {9, 11, 13} re-
ceiving modestly high scores (these are read operations).
In the third group, we have utilisation metrics with IDs:
{6, 7, 8, 10, 12, 14} which received the highest scores. Refer-
ring to Tab. 1, the metrics which scored the highest refer
essentially to write operations. So we can conclude that the
hidden feature refers predominantly to write-intensive oper-
ations having almost no compute operations. Likewise, the
second feature (produced from the second column of the B
matrix) describes predominantly read- and compute-intensive
operations containing almost no write operations.

Once we determined what utilisation aspects the two hid-
den factors uncovered, the next step is determining which of
the VMs are classified aswrite-intensive and which of them as
read-intensive. This can be determined by examining the two
columns of the A matrix, since they encode the relationship
between the VMs and the hidden factors. Fig. 4 displays the

UCC’19, Dec 2019, Auckland, New Zeeland Waltenegus Dargie

0 5 10 15 20 25 30 35 40 45

VM ID

-1.5

-1

-0.5

0

S
co

re

0 5 10 15 20 25 30 35 40 45

VM ID

0

0.2

0.4

0.6

0.8

1

S
co

re

Figure 4: The scores in the A matrix explaining
the utilisation characteristics of the virtual machines
hosted by ECI in terms of the hidden features. Top:
Predominantly write-intensive VMs. Bottom: Predomi-
nantly read-intensive VMs.

contents of the A matrix. Accordingly, the first columns of
the A matrix describes how write-intensive the hosted VMs
are. The VMs which attained the highest scores are with
IDs: {6, 10, 18, 23, 28, 32, 42}. These VMs are undoubtedly
write-intensive VMs. Similarly, the bottom figure displays
the scores the VMs attained in the second feature. Thus, we
can conclude that VMs with IDs: {15, 24, 28, 45} are predom-
inantly read-intensive VMs. Our analysis is consistent with
the annual report of the data centre which states that in 2018,
its approximate average annual resource utilisation was: 40 %
CPU, 55 %MEM and 91 % disk.
Our characterisation of the virtual machines cannot be

complete without closely examining their temporal execu-
tion characteristics, which is encoded in the C matrix (dis-
played in Fig. 5). As can be seen, there was a write operation
(top, produced from the first column of the Cmatrix) present
throughout the day and the night, albeit with modest fluctu-
ation in intensity. By contrast, the read operations (produced
from the second column of the C matrix) took place con-
spicuously during the day time with a markedly elevated
activity between 6:30 AM and 8:00 PM, even though there
were sporadic activities in the night as well.

Figure 6 displays a complete description of the decom-
posed utilisation tensor for APC. Each colour depicts one
hidden feature. On the top are displayed the contributions
of the utilised resources in describing the three hidden fea-
tures (components of the B matrix). The middle three plots

0 50 100 150 200 250 300

Samples

0.1

0.15

0.2

0.25

0.3

0.35

S
co

re

0 50 100 150 200 250 300

Samples

-0.4

-0.2

0

0.2

S
co

re

Figure 5: The scores in the C matrix explaining the
temporal aspects of the write-intensive (top) and the
read-intensive (bottom) operations.

describe the hosted containers in terms of the hidden fea-
tures (components of the A matrix); and, finally, the bottom
three plots describe the temporal characteristics of the three
hidden features (components of the C matrix). Thus, the
hosted containers can be categorised into three clusters: The
first are predominantly compute- and IO-intensive (disk). The
second are predominantly IO-intensive (NET), and the third
areMEM-intensive. A careful examination of the relationship
of the hidden features with the samples (temporal aspect)
reveals an interesting aspect. Whereas the mem-intensive
containers persist throughout the weak (bottom left, green
plot), the io-intensive (NET) containers have a periodic pat-
tern (bottom middle, red plot). Likewise, the activities of the
compute-intensive containers gradually increased in the be-
ginning and made a steep increment afterwards, remaining
intensive for the rest of the week (bottom right, pink plot).

5.3 Consolidation
As we have seen, the result of the tensor decomposition pro-
vides a complete and comprehensive view of the “spatial” and
temporal utilisation characteristics of the hosted containers
(virtual machines). This enables us to determine which of
them are contentious and which complementary. For exam-
ple, for the ECI, we can deduce that VMs {6, 10, 18, 23, 28, 32, 42}
are contentious, since of all them scored high aswrite-intensive
jobs. As a result, co-locating these VMswill result in high disk
access latency. On the other hand, these VMs have very low
CPU, MEM, and NET demand whereas VMs {15, 24, 28, 45}
are compute- and read-intensive jobs. Hence, combining the
VMs of the first set with the VMs of the second set will re-
sult in complementary resource utilisation. Furthermore, by

Tensor-Based Resource Utilization Characterization in a Large-Scale Cloud Infrastructure UCC’19, Dec 2019, Auckland, New Zeeland

1 2 3 4 5

Resource ID

-10

-8

-6

-4

-2

0

S
co

re

500 1000 1500 2000 2500 3000 3500

Container ID

0

1

2

3

4

5

S
co

re

0 200 400 600 800 1000

Samples

-0.44

-0.43

-0.42

-0.41

S
co

re

1 2 3 4 5

Resource ID

-10

-5

0

5

10

S
co

re

500 1000 1500 2000 2500 3000 3500

Container ID

-0.5

0

0.5

1

1.5

2

S
co

re

0 200 400 600 800 1000

Samples

0.34

0.36

0.38

0.4

0.42

S
co

re

1 2 3 4 5

Resource ID

-10

-8

-6

-4

-2

0

S
co

re

500 1000 1500 2000 2500 3000 3500

Container ID

-1.5

-1

-0.5

0

0.5

S
co

re

0 200 400 600 800 1000

Samples

0.3

0.35

0.4

0.45

0.5

S
co

re

Figure 6: The results of the tensor decomposition applied on APC’s utilisation tensor. Top: components of the B
matrix. Middle: components of the A matrix. Bottom: components of the C matrix.

jointly examining the A and Cmatrices, it is possible to gain
additional insights along the “spatial” and temporal dimen-
sions. Similarly, we can cluster the APC LXCs, into three
disjoint groups. In the first we have, for example, LXCs with
IDs: {134, 353, 391, 694, 783, 933, 1114, 1321, 1721, 1871, 1956,
2072, 2375, 2591, 2670, 3212, 3304, 3463, 3450, 3596}. In the sec-
ond, we have: {985, 1349, 1537, 2035, 2488, 2954, 2811, 2643}.
In the third,we have: {2670, 3046, 3212, 3304}. Hosting each
cluster on the same machines leads to a significant con-
tention, whereas mixing containers from the three clusters
leads to complementary resource utilisation which not only
improves the performance of the containers but also ensures
that all the resources are utilised with comparable efficiency,
so that no resource utilises power without accomplishing
any work.

6 CONCLUSION
In this paper we proposed tensor decomposition to investi-
gate the existence of complementary and contentious char-
acteristics in resource utilisation amongst hosted containers
and virtual machines in large-scale data centres. We demon-
strated that tensors can offer up to three degrees-of-freedom

in analysing “spatial” and temporal aspects. A tensor decom-
position dissolves a raw utilisation tensor into basic, con-
stituting matrices in which each dimension of the original
tensor is explained by underlying (hidden) factors. Hence,
for our case, we constructed three-way tensors in which
statistics pertaining to containers and utilised resources are
recorded. The decomposition of these tensors using the CAN-
DECOMP/PARAFAC decomposition technique yielded three
constituting matrices, namely, the A matrix explaining the
relationship of the containers with the hidden factors (i.e.,
read-intensive, compute-intensive, write-intensive, etc.); the
B matrix explaining the relationship of the computing re-
sources with the hidden factors; and the Cmatrix explaining
the temporal characteristics of the hidden factors (day-time
vs. night-time activities, daily- vs. weakly-pattern, etc.).

We demonstrated the usefulness of tensor decomposition
by constructing two utilisation tensors based on traces we ob-
tained from two independent data centres. The next step will
be to automate the selection of containers from mutually ex-
clusive clusters and consolidate them. Furthermore, the gains
of this approach have to quantified in terms of performance,
resource utilisation efficiency and energy consumption. This
will be our future work.

UCC’19, Dec 2019, Auckland, New Zeeland Waltenegus Dargie

REFERENCES
[1] Claudia Canali and Riccardo Lancellotti. 2014. Improving scalability of

cloud monitoring through PCA-based clustering of virtual machines.
Journal of Computer Science and Technology 29, 1 (2014), 38–52.

[2] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni Matteo Fumarola, Botong Huang, Kishore Chaliparambil,
Arun Suresh, Young Chen, Solom Heddaya, et al. 2019. Hydra: a
federated resource manager for data-center scale analytics.. In NSDI.
177–192.

[3] Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N Calheiros, and
Rajkumar Buyya. 2014. Virtual machine consolidation in cloud data
centers using ACO metaheuristic. In European Conference on Parallel
Processing. Springer, 306–317.

[4] Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pour-
mina. 2018. An autonomic resource provisioning approach for service-
based cloud applications: A hybrid approach. Future Generation Com-
puter Systems 78 (2018), 191–210.

[5] Paul C Gilmore and Ralph E Gomory. 1961. A linear programming
approach to the cutting-stock problem. Operations research 9, 6 (1961),
849–859.

[6] Gene H Golub and Christian Reinsch. 1971. Singular value decomposi-
tion and least squares solutions. In Linear Algebra. Springer, 134–151.

[7] Markus Haehnel, John Martinovic, Guntram Scheithauer, Andreas
Fischer, Alexander Schill, and Waltenegus Dargie. 2018. Extending
the Cutting Stock Problem for Consolidating Services with Stochastic
Workloads. IEEE Transactions on Parallel and Distributed Systems
(2018).

[8] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and
applications. SIAM review 51, 3 (2009), 455–500.

[9] Christoph Möbius, Waltenegus Dargie, and Alexander Schill. 2013.
Power consumption estimation models for processors, virtual ma-
chines, and servers. IEEE Transactions on Parallel and Distributed
Systems 25, 6 (2013), 1600–1614.

[10] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar,
and Jorg Ott. 2018. Consolidate IoT edge computing with lightweight
virtualization. IEEE Network 32, 1 (2018), 102–111.

[11] Trung Hieu Nguyen, Mario Di Francesco, and Antti Yla-Jaaski. 2017.
Virtual machine consolidation with multiple usage prediction for
energy-efficient cloud data centers. IEEE Transactions on Services
Computing (2017).

[12] Ali Pahlevan, Xiaoyu Qu, Marina Zapater, and David Atienza. 2017.
Integrating Heuristic and Machine-Learning Methods for Efficient
Virtual Machine Allocation in Data Centers. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2017).

[13] Maolin Tang and Shenchen Pan. 2015. A hybrid genetic algorithm
for the energy-efficient virtual machine placement problem in data
centers. Neural Processing Letters 41, 2 (2015), 211–221.

[14] Adel Nadjaran Toosi, Richard O Sinnott, and Rajkumar Buyya. 2018.
Resource provisioning for data-intensive applications with deadline
constraints on hybrid clouds using Aneka. Future Generation Computer
Systems 79 (2018), 765–775.

[15] Thang X Vu, Symeon Chatzinotas, and Bjorn Ottersten. 2018. Edge-
caching wireless networks: Performance analysis and optimization.
IEEE Transactions on Wireless Communications 17, 4 (2018), 2827–2839.

[16] Lei Yu, Liuhua Chen, Zhipeng Cai, Haiying Shen, Yi Liang, and Yi Pan.
2016. Stochastic Load Balancing for Virtual Resource Management in
Datacenters. IEEE Transactions on Cloud Computing PP, 99 (2016), 1–1.
https://doi.org/10.1109/TCC.2016.2525984

[17] Alice Zheng and Amanda Casari. 2018. Feature engineering for machine
learning: principles and techniques for data scientists. " O’Reilly Media,
Inc.".

https://doi.org/10.1109/TCC.2016.2525984

	Abstract
	1 Introduction
	2 Related Work
	3 Research Goals
	4 Dimensionality Reduction
	4.1 Utilisation Tensor
	4.2 Tensor Decomposition

	5 Evaluation
	5.1 Hidden Features
	5.2 Interpretation
	5.3 Consolidation

	6 Conclusion
	References

