
NL Sampler - Random Sampling of Web Documents Based
On Natural Language with Query Hit Estimation

Daniel Schuster, Alexander Schill
Chair of Computer Networks, Department of Computer Science, Technische Universität Dresden

Helmholtzstr. 10, 01062 Dresden, Germany

Daniel.Schuster@tu-dresden.de, Alexander.Schill@tu-dresden.de

ABSTRACT
Random sampling of documents is a substantial supporting
function for research in information science, content-related
research (like content adaptation), or social sciences. Looking for
an appropriate method to get a random sample of Microsoft
Office files for research on presentation sharing applications, we
found out, that the two main approaches Random Walk and
Random Search are not appropriate to find formatted documents.
Both approaches are designed for the purpose of large scale Web
analysis and do not fit more special requirements.

In this paper, we adopt and extend the Random Search approach
first described by Bharat and Broder to a more universal random
sampling method based on natural language lexica called NL
Sampler, that can be used in a wide range of application domains.
It supports parameters like file type or DNS domain restrictions
while preserving representativeness. We implemented and
evaluated the approach and found a Zipf-like distribution of
average hits per query which enables estimation of query hits for
a certain set of parameters and thus can be used in a lot more
application areas than the approaches previously published.
Estimation functions are given for Microsoft Word and
PowerPoint documents.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Clustering, Information filtering, Query
formulation, Relevance feedback, Retrieval models, Search
process, Selection process.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Random Sampling, Search Engines, Content Analysis, World
Wide Web.

1. INTRODUCTION
With the exponential growth of the Web in a means of both the
total amount of accessible data as well as the amount of useful
information, there has always been a strong interest in measuring
the Web and its contents. Thus, the research question which drove
the development of methods for Web random sampling was to
compare the index size and quality of search engines like Google,
Yahoo!, or MSN Search [1]. It is not possible to crawl the whole
Web for this purpose, so naturally there is a need for random
sampling of documents from the Web. The two main approaches
of Web random sampling, i.e. using random search engine queries
(Random Search) [2] or crawling the Web with random selection
of links (Random Walk) [3] are based on this question. Such
questions and more specific Web-related information science
problems are subsumed under the term “webometrics” [4].
Besides this, there is a keen interest in random sampling in the
field of content-related research such as content networking and
content adaptation. E.g., Chandra [5] gathered image files from
major websites to analyze the possibilities of scaling and
compression of images for mobile Web access. De Lara et. al. [6]
downloaded 12,500 Microsoft Office documents from 935
websites to explore possibilities for document adaptation.
We faced a similar problem when looking for an appropriate
method to get a representative sample of Microsoft PowerPoint
and pdf files with the purpose to convert and analyze them for
research on presentation sharing applications [7]. Simply
downloading files from different sites does not ensure the
representativeness of the sample. Thus we try to answer the
following research question: can we sample documents from a
small subset of the documents available in the static Web while
preserving representativeness?
We tried both the Random Walk as well as the Random Search
approach to get such a sample. But a Random Walk does not find
enough formatted documents as they are scarce compared to
HTML pages. The Random Search approach has the same
problems, as it is very unlikely to find a formatted document with
a conjunctive random query of words from a large lexicon of
words found by a Web crawl. Bar-Yossef and Gurevich recently
proposed to use a pool of exact phrases instead [8], but this also
doesn’t solve the problem of how to sample within a small subset
of Web documents.
Based on a detailed requirements analysis, we found out, that the
Random Search approach can form a basis for such a sampling
method, although it has the disadvantage that it can only find

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

documents containing text. Random sampling of images is thus
not possible with this method.
Unlike existing methods, our approach uses natural language
lexica ordered by frequency of occurrence to form random
queries. This enables the flexible adjustment of input parameters
(words per query, number of words to use from the lexicon) by
query hit estimation to get a sufficiently large average number of
query hits. We found a direct Zipf-like [9] relationship between
these parameters and the number of query hits as returned by the
search engine. Query hit estimation functions for Microsoft Word
and PowerPoint documents are presented as the result of
evaluation and analysis. Thus we are able to sample even scarce
documents such as formatted documents or documents from
certain domains.
We implemented the NLSample tool which we plan to make
available as open source software. Besides sampling of text-based
documents, it also downloads directly linked images in HTML
pages and can thus also be used for random sampling of images.
The rest of the paper is organized as follows: In Section 2, we
define requirements for random sampling of Web documents that
consider both the area of webometrics as well as content-related
research. Existing approaches are compared in Section 3 with
respect to these requirements. Our approach is shown in Section 4
and evaluated in Section 5. We conclude the paper in Section 6
and discuss future research directions.

2. REQUIREMENTS
As mentioned above, a universal method for Web random
sampling should be used in the domain of webometrics as well as
for content-related research and social sciences. There are
different possible application scenarios such as measuring search
engine indexes, gathering content samples of images or formatted
documents, or get a sample of documents from one or more
specific domains and/or documents that contain special keywords
such as product names. We thus define requirements for a
universal sampling method that fits these application scenarios:
1. Universal – The method should support the sampling of as

many file types as possible, especially markup files (html,
xml), images (jpeg, png, gif), and formatted documents
(pdf, doc, ppt, OpenOffice files).

2. Configurable - The procedure must be able to specialize on
a certain portion of the Web, e.g. the .com top-level domain
or any other set of hosts. Furthermore you should be able to
specify keywords that have to be in the sampled documents.

3. Correct - The method has to work correctly, i.e. produce a
representative and uniformly distributed random sample.
Furthermore, the method should have a mathematical
background, so that theoretical correctness of the approach
can be proven considering e.g. a simplified graph model of
the Web.

4. Repeatable - Every researcher with a keen interest in
random sampling must be able to run the sampling
procedure and produce repeatable results.

5. Economical - The sampling procedure must be economical
to use, i.e. it has to consume few resources like processing
time or network bandwidth.

The first functional requirement of universality (Req 1) is the
primary motivation of our research. Existing methods are not
appropriate to sample formatted Web documents, so we want to
extend these methods to be universal.
Many studies do not cover the whole Web but specialize on a
certain territory like commercial websites or all websites of a
country only. Thus the sampling method has to be configurable
(Req 2). More generally speaking, there has to be a flexible set of
parameters for the sampling method.
As every research work has to be accountable, the requirement of
correctness (Req 3) can be inferred consequently. This also leads
to the requirement of repeatability (Req 4).
According to [10] the best sampling method would be to crawl
and index all pages in the Web, and then select a page at random
from the created index. As this is not possible due to resource
limitations and the messy structure and size of the Web, the
method has to be economical to use (Req 5). Random Walks are a
first step in this direction, but still require several hundred of
parallel crawling threads to achieve appropriate results. The
Random Search approach is much more economical as it only
requires one or two search engine queries per document in the
sample.

3. EXISTING SAMPLING METHODS
The problem of random sampling from the Web has already been
tackled in a number of research efforts. As mentioned above, the
two main approaches are random walks on the Web and search
engine random queries. These two and other approaches are
described in the following with respect to the requirements
specified in Section 2.
Random Search and Random Walk suffer a number of limitations,
which can be found in the corresponding literature [2] [3] [10]
[11]. Common to both methods are the limitation to static and
public Web pages and the experimental bias, as the Web changes
during the sampling.

3.1 Random Walk
The random walk approach was first proposed for Web random
sampling by Henzinger et al. [3]. The theoretical background is to
see the Web as a directed graph where Web pages as nodes are
connected by links as edges of the graph.
The main idea behind the random walk approach is to model the
typical behavior of a Web surfer. In this model, the surfer starts at
a randomly chosen page and then chooses a link uniformly at
random from the outlinks of each page he visits. Occasionally, he
does a random restart by choosing a page at random from the Web
again to avoid cycles. This ought to be the case after 5 to 10 steps.
Hence, a Markovian random walk on the Web graph is performed,
which means that the decision only depends on the current state
and not on previous states, too.
This simple model is also used as the basis for the PageRank
measure [12]. A site that is potentially visited more often by such
an idealized Web surfer is assigned a higher PageRank. This
introduces a bias to a sampling method based on this model, as a
random sample of pages is usually not uniform but PageRank
distributed.
Nevertheless, near-uniform distributed samples can be fetched
using Random Walk when the visited pages are not added

uniformly at random to the sample but with a propability
approximately inversely proportional to their PageRank [10] [11].
This increases complexity and need for resources as at least
medium-scale Web crawling (100 or more threads) is needed to
achieve appropriate results.
Concerning our requirements, the Random Walk approach clearly
fulfills the requirement of correctness (Req 3), as there is the
mathematical model of the random Web surfer. It is also
repeatable (Req 4), although this often requires a large amount of
resources. Regarding Req 2 (configurable), the search for
documents with keywords or from special domains always
requires a Random Walk over the whole Web to be
representative. Afterwards, documents that are not of interest
have to be filtered out. For special parameters the resulting
sample might contain an insufficient number of documents. For
the same reason the method is not appropriate for arbitrary file
types (Req 1), because they are scarce compared to HTML pages.
After all, the method is not economical to use (Req 5), because it
requires multi-threaded crawling of Web pages which is often not
possible due to resource limitations.

3.2 Random Search
As stated above, the ideal random sampling technique would be
based on a large crawl of the entire Web, that indexes all pages
found and so a sample of pages could easily be chosen uniformly
at random from this index. Search engines maintain such an index
of pages, but they do not allow direct access to it.
Bharat and Broder [2] used random queries to overcome this
problem. They built up a lexicon of words from a Web crawl
starting at yahoo.com that contains 400,000 words and their
respective frequencies. Then they constructed random queries out
of the lexicon and selected an URL at random from the first 100
results returned by the search engine. In the following, we refer to
this method as the BB Sampler.
Besides the well-known limitations of the BB Sampler as
mentioned in [2], there remain some open questions. Only two
words are used in conjunctive queries and are selected according
to their estimated frequency to get sufficient search results. But no
data is reported how this affects the distribution of the sample.
Bar-Yossef and Gurevich recently proposed to use a pool of exact
5-term phrases instead of conjunctive or disjunctive combination
of search words – the Pool-based Sampler (PB Sampler) [8].
Their primary focus was to overcome what they call large
documents bias. The original Random Search approach tends to
prefer large, content-rich documents as they contain more words
indexed by the search engine. Another bias they deal with is the
unrelated words bias, i.e. if words are combined that are
completely unrelated, only documents that are actually word
lexica can be found by the method.
As we also use conjunctive search phrases, the bias of our method
towards large documents is the same as the bias of the BB
Sampler. But unlike the two Random Search approaches
mentioned, we use word lists of most frequently used words of
specific languages and have a more limited lexicon size. This
reduces the possibility of unrelated words. Furthermore, the
unrelated words bias can be reduced even more if less words from
the lexicon are used which is one of the input parameters of our
method. While the PB Sampler is obviously better in reducing the
unrelated words bias, it is not appropriate to sample formatted

documents as this would produce massive query underflows (i.e. 0
hits are returned by the search engine).
Regarding the requirements in Section 2, the BB Sampler, the PB
Sampler, as well as our Sampler (the NL Sampler) are correct
(Req 3), assuming the lexicon contains a collection of words
representative for the basic population of documents indexed by
the search engine. Their strongest points are repeatability (Req 4)
and economical use of resources (Req 5). They need only a small
number (often 1) of search requests per object in the sample.
While it can be argued that the search engine consumes much
more resources indexing all the Web pages, Req 5 should be
refined to represent only the researcher’s point of view.
The user also has the possibility to enhance the random search
with own parameters such as “filetype:pdf” or “site:stanford.edu”
and thus have a near-universal (Req 1) and configurable (Req 2)
method, but restricted to documents containing text. In the case of
additional parameters, the average number of hits has to be
increased to avoid query underflows. This can only be done with
our NL Sampler, as it introduces estimation functions for the
average number of hits per search engine query. This is only
possible with natural language lexica.

3.3 Other Approaches
An overview of other approaches for random sampling of Web
sites can be found in [4]. A method often used in content
networking is to crawl selected documents of one or more hosts as
used in [5]. This may be desirable for certain research questions,
but we also need a sampling method which incorporates the whole
Web.
Log file analysis [13] suffers much the same problems. Web
server logs and web proxy logs each only cover a small portion of
the Web with special distributions of requests. As an example,
Web proxies of academic institutions are tended to give a
preference towards research-related Web sites.
Besides this, there have been considerations to generate random
IP addresses [14] or URLs [15]. But both approaches have proven
to be of little usefulness as can be seen in [4].

4. NL SAMPLER
The architecture of the NL Sampler is shown in Figure 1. It
consists of the 3 components Randomizer, Search Engine Agent,
and Download Agent. The components are chained together to get
the intended result but work independently from each other.
A sampling transaction consists of several random search queries
with the same parameters but different random words. Parameters
for the transaction are the number of documents to sample and/or
the maximum number of search engine requests to use for this
purpose. A word frequency ordered natural language word
lexicon (like the 10,000 most frequently used words in English)
has to be selected and additional parameters like file type, domain
restriction, or keywords may be given. The result of the sampling
transaction is a random sample of documents and several log files.
In a first step, the Randomizer takes as input the lexicon and the
randomizer parameters i.e. the number of random search words in
each query and the span of words to use from the lexicon. The
Randomizer randomly selects words from the lexicon (using a
uniform distribution) and eliminates double hits, so that random
search phrases are constructed. As already mentioned, the lexicon

has to be ordered by frequency of occurrence in natural language.
This is essential for the query hit estimation described later in
Section 5.
This difference to the BB and PB Sampler has big impact on the
selection of documents. The random selection is now based on
natural language and as such separated from characteristics of the
basic population.

Web Server
Web Server

Random Sample

+ancient +heavily +Any +Vegas
+playing +OEMs +Those +typical
+diversity +Manhattan +support +trains
+Quattro +vacation +affiliated +Based
+cause +planting +effectively +buy-out
...

Randomizer

the of to and a in for is that on said
with be was by as are at from ...

Randomizer
Parameters

Search Engine Agent Search Engine
Web Service

SOAP

+ancient +heavily +Any
+Vegas filetype:ppt

logfile http://classweb.gmu.edu/kersch/infs640/Slides/
Second_Edition/CH12_LaudonTraver_PPT_LK.ppt
http://courses.bus.msu.edu/materials/1327/ICE.ppt
http://www.ficci.com/ficci/media-room/speeches-
presentations/2002/oct/oct-comm-kotak.ppt
http://www.hp.ufl.edu/~jjohnson/AnxietyandOCD.ppt
http://www.usaid-ph.gov/Documents/
CVs%20of%20Arroyo's%20Cabinet%20Secretaries.ppt

Download Agent

logfile CH12_LaudonTraver_
PPT_LK.ppt

ICE.ppt

oct-comm-kotak.ppt

10000 most frequently used words

Web Server

Search Parameters

Figure 1: NL Sampler architecture.

The Search Engine Agent combines each random search phrase
with the search parameters like domain or file type restrictions.
An URI is randomly selected out of the search results using a
uniform distribution. As ordinary search engine queries are used
for this purpose, the behavior of the sampler can easily be adapted
to the user’s needs. E.g., the NL Sampler gathers a sample from a
search engine query like “groupware filetype:pdf”, which has
approximately 500,000 hits. The last 499,000 of them are not
accessible, as search engines restrict search results to the first
1,000 hits.
The Search Engine Agent now repeats the search and changes the
randomly generated part for each request. Thus, web pages are
randomly selected out of the set of web pages specified by the
search parameters. Thus, we get a sample of pdf files containing
the word “groupware” out of the 500,000 available documents.
Random sampling of documents without additional search words
generates a sample out of the basic population of all Web

documents accessible through the search engine interface. As
most search engines do not allow automated access of their Web
interfaces anymore, we use search engine Web Services like the
Google APIs [16] instead.
Once the URLs are sampled, they can be downloaded by a
Download Agent like HTTrack [17] which supports downloading
of formatted documents as well as HTML pages with associated
images.

5. IMPLEMENTATION AND
EVALUATION
5.1 The NLSample system
We implemented the NL Sampler using C# and SharpDevelop.
The NLSample tool uses the Google Search APIs and the lexica
of the “Wortschatz” project of Leipzig University [18]. This
project offers lists of the 10,000 most frequently used words in
English, German, Dutch, and French. Thus the system is able to
search for documents in these 4 languages.

Figure 2: Screenshot 1 - input parameters.

Figure 2 shows the start screen of the system where the user can
insert the Randomizer parameters and search parameters. A
lexicon must be selected and the word span to use from this
lexicon has to be specified. In the example, we look for a random
sample of pdf documents in English. All 10,000 words of the
lexicon are used and each random query consists of 3 words that
are combined to a conjunctive search phrase. We specify to find
100 documents by using a maximum of 200 search engine
requests (some requests may return no result). The number of
requests is limited to 1,000 per day per user by the usage policy of
Google Search APIs.
Then the sampling can be started as shown in Figure 3. URIs from
the search results are grouped by domains of the host part of the
URI. Once these requests are finished, a selection of the
documents can be downloaded by the integrated download agent
and thus form the actual random sample. For each sample a log
file is written which contains the random search request, original
URI and the number of total documents for each query.

Figure 3: Screenshot 2 - the sampling process.

5.2 Evaluation
We evaluated the system by performing sampling transactions for
“filetype:ppt” and “filetype:doc” over a period of 2 months. Each
sampling transaction consisted of 200 to 1,000 queries. We
analyzed the average number of hits returned by each query
dependent on the number of search words in each query and the
number of words used from the lexicon.
We observed that it is difficult for users to know which
randomizer parameters to choose for certain search parameters to
get appropriate results. If users want to have a uniform
distribution of documents in the sample, they should use as many
random search words per query as possible. On the other hand, if
they specified special search queries with file type and domain
restrictions, even 2 additional random search words may result in
query underflow. Besides reducing the number of search words, it
is also possible to reduce the number of words to use from the
lexicon.

Definitions.
We adopt the formal setup of [8] and define Q as the space of
queries supported by the search engine. EVAL(q) is an evaluation
function, which maps every query q∈Q to a result set Rq, i.e. an
ordered sequence of documents. The volume of q is the number of
results for this search query: VOL(q) = | Rq |. We further define the
transaction T as a set of queries q with the same search parameters
(but different randomizer parameters). We define the volume of T
VOL(T) as the number of documents accessible with any
combination of randomizer parameters. We further define HITS(T)
as the average volume of all queries in this transaction:

Tq
T

qVOL
THITS ∈= ∑ ,

)(
)((1)

The volume of q is estimated by the search engine on every
request and returned in the result. Our goal is to find a function
which takes the parameters as input and estimates the HITS(T)
value.

Experiment results.
Figure 4 shows the results of various test runs with the search
parameters “filetype:ppt”, i.e. with the purpose to sample

Microsoft PowerPoint documents out of all static documents
indexed by Google. Each point in the diagram corresponds to a
run with 200 queries and certain randomizer parameters. The
randomizer parameters were modified for each next run to
identify the influence on HITS(T).

0

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000

words used from the lexicon

H
IT

S(
T)

2 w ords 3 w ords 4 w ords 5 w ords

Figure 4: HITS(T) of “ppt” dependent on words used from the
lexicon.

As it is shown in the diagram, we have a Zipf-like distribution for
HITS(T) which can be seen in the near-linear regression lines in
the log-log scale for 2, 3, 4, and 5 search words dependent on the
number of words used from the lexicon. The original meaning of
Zipf’s law as stated in [9] was the ranking of words against their
frequency of occurrence in natural language. As we stated in
Section 4, the input lexicon of the NL Sampler should be in
natural language and ordered by this frequency. So the input
lexicon shows a Zipf distribution. This distribution of the input
lexicon results in a Zipf-like distribution of HITS(T) as shown
above.
It is not surprising that the more popular search words we use (i.e.
less words from the lexicon) the more documents we find using
these words. But the fact, that the resulting distribution of average
search engine hits is Zipf-like gives us the crucial starting-point
for query hit estimation.
It has already been proven, that website popularity also follows a
Zipf-like distribution [19]. But this has no influence on the
distribution of HITS(T). The (estimated) total number of websites
returned by the search engine is not related in any way to the
mean or maximum popularity of these sites. Only the ranking
within the result set depends on popularity (e.g. PageRank).

5.3 Query Hit Estimation
To get an estimating function for HITS(T), we have to divide the
parameters in randomizer parameters and search parameters. The
search parameters are a search string like “groupware
filetype:pdf” which can be sent as a query to the Google Web
Service. The result returns the estimated total number of
documents for the query. We assume that this is equal to VOL(T).
For search parameters without search words like “filetype:pdf” we
use a query with the character “e” to get the volume of T. E.g., a
search request “e filetype:pdf” returns approximately between 250
million and 300 million hits.

The randomizer parameters constitute the number of possible
random search queries which is equivalent to the combinations of
search words in the lexicon and words in each query. Thus we
define:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

erywordsperqu
consizeoflexiCq

 (2)

as the number of possible combinations of words per query and
number of words to use from the input lexicon (i.e. size of the
lexicon).

We are now able to summarize both types of parameters in a
characteristic value,

)(TVOL
CC q

d = (3)

where Cd is the number of possible query combinations per
document in the basic population that is accessible with the search
parameters of the transaction.

To find the influence of Cd on HITS(T) we print the same data as
in Figure 4 but now dependent on Cd (Figure 5).

0

1

10

100

1,000

10,000

100,000

1,000,000

1.E-02 1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Cd

H
IT

S(
T)

2 w ords 3 w ords 4 w ords 5 w ords

Figure 5: HITS(T) of “ppt” dependent on Cd.

As can be seen in the diagram, we now have almost parallel linear
regression lines. Parallel lines in this scale can be mapped onto
each other by multiplication. We found out, that this factor is the
reciprocal of wordsperquery to the power of 10. This leads us to
the definition of the weighted number of query combinations per
document (Wd):

derywordsperqud CW ⋅=
10

1 (4)

All influence of the randomizer parameters can be modeled by
Wd. Figure 6 shows this as all runs of the first experiment series
are now on one regression line. Additionally a second series of
experiments has been carried out with the search parameters
“filetype:doc”. This leads to another estimating function which
can be seen in Figure 6. The estimating functions for these two
file types are specified in the diagram and show a correlation
bigger than 95 %. We thus have identified estimating functions

for these two file types which can be easily extended to other file
types by further experiments.

y = 1,738.28x-0.44

R2 = 0.98

y = 14,628.57x-0.31

R2 = 0.96

0

1

10

100

1,000

10,000

100,000

1,000,000

1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09

Wd

H
IT

S(
T)

f iletype:ppt f iletype:doc
(f) (f)

Figure 6: HITS(T) of “ppt” and “doc” dependent on Wd.

6. CONCLUSIONS
We surveyed related works in the field of random sampling of
Web documents and revisited the random search approach first
published by Bharat and Broder. The NL Sampler described in
this paper is an extension of the random search approach to get
random samples of Web documents with a flexible set of
parameters. It is now possible to sample any document type from
the Web that contains text while consuming only few resources.
The sampling of images is also possible by downloading the
images linked in sampled HTML pages. We have implemented
the NL Sampler within the NLSample system and plan to make
this available as an open source tool for scientific and private use.
Unlike previous attempts, we use frequency-ordered natural
language lexica which enables query hit estimation. Estimation
functions for Microsoft PowerPoint and Word files are given in
the paper based on experimentation and analysis. The NLSample
tool can be used in different application domains like content-
related research, webometrics, marketing research, or extended
Web search. Due to new policies of search engines, Web services
APIs have to be used for random search.
A quantitative comparison of our approach with the BB and PB
sampler or the Random Walk approach has not yet been carried
out but will be part of our future work, although the goal of our
work is different from these previous works. These are still the
reference methods to sample representative samples out of all web
pages while our approach is best suited to find samples out of
small subsets of Web documents such as formatted documents.
Besides this, more experiments are needed in the future to refine
query hit estimation. This has already been done for the search
parameters “filetype:ppt” and “filetype:doc”, which means
random sampling of ppt- and doc-files out of all such documents
indexed by Google. It would be interesting to see how other
search parameters influence query hit estimation.

7. REFERENCES
[1] Sullivan, S., Sherman, C., Search Engine Watch Website,

searchenginewatch.com, 2006.
[2] Bharat, K., Broder, A., A technique for measuring the

relative size and overlap of public Web search engines, 7th
International World Wide Web Conference (WWW7),
Brisbane, Australia, 1998.

[3] Henzinger, M., Heydon, A., Mitzenmacher, M., Najork, M.,
Measuring Index Quality using Random Walks on the Web,
8th International World Wide Web Conference, WWW8,
Toronto, Canada, 1999.

[4] Thelwall, M. V. L., Björneborn, L., Webometrics, Annual
Review of Information Science and Technology 39, 2005.

[5] Chandra, S., Gehani, A., Ellis, C. S., Vahdat, A.,
Transcoding Characteristics of Web Images, Multimedia
Computing and Networking (MMCN'01), San Jose, CA,
USA, 2001.

[6] de Lara, E., Wallach, D. S., Zwaenepoel, W., Opportunities
for Bandwidth Adaptation in Microsoft Office Documents,
4th Usenix Windows Systems Symposium, Seattle,
Washington, USA, 2000.

[7] Schuster, D., Kuemmel, S., Towards Adaptive Distribution
of Multimedia Content within Collaborative Conferencing
Sessions, 9th International Conference on Internet and
Multimedia Systems and Applications, Honolulu, Hawaii,
2005.

[8] Bar-Yossef, Z., Gurevich, M., Random Sampling from a
Search Engine's Index, World Wide Web Conference
(WWW 2006), Edinburgh, Scotland, 2006.

[9] Zipf, G. K., Human Behavior and the Principle of Least
Effort, Addison Wesley, Cambridge, MA, USA, 1949.

[10] Henzinger, M. R., Heydon, A., Mitzenmacher, M., Najork,
M., On Near-Uniform URL Sampling, 9th International
World Wide Web Conference, Amsterdam, The Netherlands,
2000.

[11] Rusmevichientong, P., Penncock, D. M., Lawrence, S.,
Giles, C. L., Methods for Sampling Pages Uniformly from
the World Wide Web, AAAI 2001 Fall Symposium on Using
Uncertainty within Computation, North Falmouth, MA,
USA, 2001.

[12] Page, L., Brin, S., Motwani, R., Winograd, T., The
PageRank Citation Ranking: Bringing Order to the Web,
Stanford University Database Group, Stanford, CA, USA,
1998.

[13] Mahanti, A., Williamson, C., Eager, D., Traffic Analysis of a
Web Proxy Caching Hierarchy, IEEE Network Magazine,
Special Issue on Web Performance, May/June 2000, 2000.

[14] Lawrence, S., Giles, C. L., Accessibility of information on
the Web, intelligence, 11/1, pp. 32-39, 2000.

[15] Thelwall, M., Commercial web sites: Lost in cyberspace?
Internet Research: Electronic Networking and Applications,
10/2, pp. 150-159, 2000.

[16] Google, Inc., Google APIs, http://www.google.com/apis/,
2006.

[17] Roche, X., et. al, HTTrack Website Copier,
http://www.httrack.com/, 2006.

[18] Universität Leipzig, Word lists of wortschatz project,
http://wortschatz.uni-leipzig.de/html/wliste.html, 2006.

[19] Nielsen, J., Zipf Curves and Website Popularity,
http://www.useit.com/alertbox/zipf.html, 1997.

