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ABSTRACT 
Random sampling of documents is a substantial supporting 
function for research in information science, content-related 
research (like content adaptation), or social sciences. Looking for 
an appropriate method to get a random sample of Microsoft 
Office files for research on presentation sharing applications, we 
found out, that the two main approaches Random Walk and 
Random Search are not appropriate to find formatted documents. 
Both approaches are designed for the purpose of large scale Web 
analysis and do not fit more special requirements.  

In this paper, we adopt and extend the Random Search approach 
first described by Bharat and Broder to a more universal random 
sampling method based on natural language lexica called NL 
Sampler, that can be used in a wide range of application domains. 
It supports parameters like file type or DNS domain restrictions 
while preserving representativeness. We implemented and 
evaluated the approach and found a Zipf-like distribution of 
average hits per query which enables estimation of query hits for 
a certain set of parameters and thus can be used in a lot more 
application areas than the approaches previously published. 
Estimation functions are given for Microsoft Word and 
PowerPoint documents.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Clustering, Information filtering, Query 
formulation, Relevance feedback, Retrieval models, Search 
process, Selection process.  

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Random Sampling, Search Engines, Content Analysis, World 
Wide Web. 

1. INTRODUCTION 
With the exponential growth of the Web in a means of both the 
total amount of accessible data as well as the amount of useful 
information, there has always been a strong interest in measuring 
the Web and its contents. Thus, the research question which drove 
the development of methods for Web random sampling was to 
compare the index size and quality of search engines like Google, 
Yahoo!, or MSN Search [1]. It is not possible to crawl the whole 
Web for this purpose, so naturally there is a need for random 
sampling of documents from the Web. The two main approaches 
of Web random sampling, i.e. using random search engine queries 
(Random Search) [2] or crawling the Web with random selection 
of links (Random Walk) [3] are based on this question. Such 
questions and more specific Web-related information science 
problems are subsumed under the term “webometrics” [4]. 
Besides this, there is a keen interest in random sampling in the 
field of content-related research such as content networking and 
content adaptation. E.g., Chandra [5] gathered image files from 
major websites to analyze the possibilities of scaling and 
compression of images for mobile Web access. De Lara et. al. [6] 
downloaded 12,500 Microsoft Office documents from 935 
websites to explore possibilities for document adaptation.  
We faced a similar problem when looking for an appropriate 
method to get a representative sample of Microsoft PowerPoint 
and pdf files with the purpose to convert and analyze them for  
research on presentation sharing applications [7]. Simply 
downloading files from different sites does not ensure the 
representativeness of the sample. Thus we try to answer the 
following research question: can we sample documents from a 
small subset of the documents available in the static Web while 
preserving representativeness?  
We tried both the Random Walk as well as the Random Search 
approach to get such a sample. But a Random Walk does not find 
enough formatted documents as they are scarce compared to 
HTML pages. The Random Search approach has the same 
problems, as it is very unlikely to find a formatted document with 
a conjunctive random query of words from a large lexicon of 
words found by a Web crawl. Bar-Yossef and Gurevich recently 
proposed to use a pool of exact phrases instead [8], but this also 
doesn’t solve the problem of how to sample within a small subset 
of Web documents. 
Based on a detailed requirements analysis, we found out, that the 
Random Search approach can form a basis for such a sampling 
method, although it has the disadvantage that it can only find 
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documents containing text. Random sampling of images is thus 
not possible with this method.  
Unlike existing methods, our approach uses natural language 
lexica ordered by frequency of occurrence to form random 
queries. This enables the flexible adjustment of input parameters 
(words per query, number of words to use from the lexicon) by 
query hit estimation to get a sufficiently large average number of 
query hits. We found a direct Zipf-like [9] relationship between 
these parameters and the number of query hits as returned by the 
search engine. Query hit estimation functions for Microsoft Word 
and PowerPoint documents are presented as the result of 
evaluation and analysis. Thus we are able to sample even scarce 
documents such as formatted documents or documents from 
certain domains.  
We implemented the NLSample tool which we plan to make 
available as open source software. Besides sampling of text-based 
documents, it also downloads directly linked images in HTML 
pages and can thus also be used for random sampling of images.  
The rest of the paper is organized as follows: In Section 2, we 
define requirements for random sampling of Web documents that 
consider both the area of webometrics as well as content-related 
research. Existing approaches are compared in Section 3 with 
respect to these requirements. Our approach is shown in Section 4 
and evaluated in Section 5. We conclude the paper in Section 6 
and discuss future research directions. 

2. REQUIREMENTS 
As mentioned above, a universal method for Web random 
sampling should be used in the domain of webometrics as well as 
for content-related research and social sciences. There are 
different possible application scenarios such as measuring search 
engine indexes, gathering content samples of images or formatted 
documents, or get a sample of documents from one or more 
specific domains and/or documents that contain special keywords 
such as product names. We thus define requirements for a 
universal sampling method that fits these application scenarios: 
1. Universal – The method should support the sampling of as 

many file types as possible, especially markup files (html, 
xml), images (jpeg, png, gif), and formatted documents 
(pdf, doc, ppt, OpenOffice files). 

2. Configurable - The procedure must be able to specialize on 
a certain portion of the Web, e.g. the .com top-level domain 
or any other set of hosts. Furthermore you should be able to 
specify keywords that have to be in the sampled documents. 

3. Correct - The method has to work correctly, i.e. produce a 
representative and uniformly distributed random sample. 
Furthermore, the method should have a mathematical 
background, so that theoretical correctness of the approach 
can be proven considering e.g. a simplified graph model of 
the Web. 

4. Repeatable - Every researcher with a keen interest in 
random sampling must be able to run the sampling 
procedure and produce repeatable results. 

5. Economical - The sampling procedure must be economical 
to use, i.e. it has to consume few resources like processing 
time or network bandwidth. 

The first functional requirement of universality (Req 1) is the 
primary motivation of our research. Existing methods are not 
appropriate to sample formatted Web documents, so we want to 
extend these methods to be universal.  
Many studies do not cover the whole Web but specialize on a 
certain territory like commercial websites or all websites of a 
country only. Thus the sampling method has to be configurable 
(Req 2). More generally speaking, there has to be a flexible set of 
parameters for the sampling method. 
As every research work has to be accountable, the requirement of 
correctness (Req 3) can be inferred consequently. This also leads 
to the requirement of repeatability (Req 4). 
According to [10] the best sampling method would be to crawl 
and index all pages in the Web, and then select a page at random 
from the created index. As this is not possible due to resource 
limitations and the messy structure and size of the Web, the 
method has to be economical to use (Req 5). Random Walks are a 
first step in this direction, but still require several hundred of 
parallel crawling threads to achieve appropriate results. The 
Random Search approach is much more economical as it only 
requires one or two search engine queries per document in the 
sample. 

3. EXISTING SAMPLING METHODS 
The problem of random sampling from the Web has already been 
tackled in a number of research efforts. As mentioned above, the 
two main approaches are random walks on the Web and search 
engine random queries. These two and other approaches are 
described in the following with respect to the requirements 
specified in Section 2. 
Random Search and Random Walk suffer a number of limitations, 
which can be found in the corresponding literature [2] [3] [10] 
[11]. Common to both methods are the limitation to static and 
public Web pages and the experimental bias, as the Web changes 
during the sampling. 

3.1 Random Walk 
The random walk approach was first proposed for Web random 
sampling by Henzinger et al. [3]. The theoretical background is to 
see the Web as a directed graph where Web pages as nodes are 
connected by links as edges of the graph.  
The main idea behind the random walk approach is to model the 
typical behavior of a Web surfer. In this model, the surfer starts at 
a randomly chosen page and then chooses a link uniformly at 
random from the outlinks of each page he visits. Occasionally, he 
does a random restart by choosing a page at random from the Web 
again to avoid cycles. This ought to be the case after 5 to 10 steps. 
Hence, a Markovian random walk on the Web graph is performed, 
which means that the decision only depends on the current state 
and not on previous states, too.   
This simple model is also used as the basis for the PageRank 
measure [12]. A site that is potentially visited more often by such 
an idealized Web surfer is assigned a higher PageRank. This 
introduces a bias to a sampling method based on this model, as a 
random sample of pages is usually not uniform but PageRank 
distributed.   
Nevertheless, near-uniform distributed samples can be fetched 
using Random Walk when the visited pages are not added 



uniformly at random to the sample but with a propability 
approximately inversely proportional to their PageRank [10] [11]. 
This increases complexity and need for resources as at least 
medium-scale Web crawling (100 or more threads) is needed to 
achieve appropriate results.  
Concerning our requirements, the Random Walk approach clearly 
fulfills the requirement of correctness (Req 3), as there is the 
mathematical model of the random Web surfer. It is also 
repeatable (Req 4), although this often requires a large amount of 
resources. Regarding Req 2 (configurable), the search for 
documents with keywords or from special domains always 
requires a Random Walk over the whole Web to be 
representative. Afterwards, documents that are not of interest 
have to be filtered out. For special parameters the resulting 
sample might contain an insufficient number of documents. For 
the same reason the method is not appropriate for arbitrary file 
types (Req 1), because they are scarce compared to HTML pages. 
After all, the method is not economical to use (Req 5), because it 
requires multi-threaded crawling of Web pages which is often not 
possible due to resource limitations.   

3.2 Random Search 
As stated above, the ideal random sampling technique would be 
based on a large crawl of the entire Web, that indexes all pages 
found and so a sample of pages could easily be chosen uniformly 
at random from this index. Search engines maintain such an index 
of pages, but they do not allow direct access to it.  
Bharat and Broder [2] used random queries to overcome this 
problem. They built up a lexicon of words from a Web crawl 
starting at yahoo.com that contains 400,000 words and their 
respective frequencies. Then they constructed random queries out 
of the lexicon and selected an URL at random from the first 100 
results returned by the search engine. In the following, we refer to 
this method as the BB Sampler. 
Besides the well-known limitations of the BB Sampler as 
mentioned in [2], there remain some open questions. Only two 
words are used in conjunctive queries and are selected according 
to their estimated frequency to get sufficient search results. But no 
data is reported how this affects the distribution of the sample.  
Bar-Yossef and Gurevich recently proposed to use a pool of exact 
5-term phrases instead of conjunctive or disjunctive combination 
of search words – the Pool-based Sampler (PB Sampler) [8]. 
Their primary focus was to overcome what they call large 
documents bias. The original Random Search approach tends to 
prefer large, content-rich documents as they contain more words 
indexed by the search engine. Another bias they deal with is the 
unrelated words bias, i.e. if words are combined that are 
completely unrelated, only documents that are actually word 
lexica can be found by the method.  
As we also use conjunctive search phrases, the bias of our method 
towards large documents is the same as the bias of the BB 
Sampler. But unlike the two Random Search approaches 
mentioned, we use word lists of most frequently used words of 
specific languages and have a more limited lexicon size. This 
reduces the possibility of unrelated words. Furthermore, the 
unrelated words bias can be reduced even more if less words from 
the lexicon are used which is one of the input parameters of our 
method. While the PB Sampler is obviously better in reducing the 
unrelated words bias, it is not appropriate to sample formatted 

documents as this would produce massive query underflows (i.e. 0 
hits are returned by the search engine).  
Regarding the requirements in Section 2, the BB Sampler, the PB 
Sampler, as well as our Sampler (the NL Sampler) are correct 
(Req 3), assuming the lexicon contains a collection of words 
representative for the basic population of documents indexed by 
the search engine. Their strongest points are repeatability (Req 4) 
and economical use of resources (Req 5). They need only a small 
number (often 1) of search requests per object in the sample. 
While it can be argued that the search engine consumes much 
more resources indexing all the Web pages, Req 5 should be 
refined to represent only the researcher’s point of view.   
The user also has the possibility to enhance the random search 
with own parameters such as “filetype:pdf” or “site:stanford.edu” 
and thus have a near-universal (Req 1) and configurable (Req 2) 
method, but restricted to documents containing text. In the case of 
additional parameters, the average number of hits has to be 
increased to avoid query underflows. This can only be done with 
our NL Sampler, as it introduces estimation functions for the 
average number of hits per search engine query. This is only 
possible with natural language lexica.  

3.3 Other Approaches 
An overview of other approaches for random sampling of Web 
sites can be found in [4]. A method often used in content 
networking is to crawl selected documents of one or more hosts as 
used in [5]. This may be desirable for certain research questions, 
but we also need a sampling method which incorporates the whole 
Web.  
Log file analysis [13] suffers much the same problems. Web 
server logs and web proxy logs each only cover a small portion of 
the Web with special distributions of requests. As an example, 
Web proxies of academic institutions are tended to give a 
preference towards research-related Web sites.   
Besides this, there have been considerations to generate random 
IP addresses [14] or URLs [15]. But both approaches have proven 
to be of little usefulness as can be seen in [4].   

4. NL SAMPLER  
The architecture of the NL Sampler is shown in Figure 1. It 
consists of the 3 components Randomizer, Search Engine Agent, 
and Download Agent. The components are chained together to get 
the intended result but work independently from each other.  
A sampling transaction consists of several random search queries 
with the same parameters but different random words. Parameters 
for the transaction are the number of documents to sample and/or 
the maximum number of search engine requests to use for this 
purpose. A word frequency ordered natural language word 
lexicon (like the 10,000 most frequently used words in English) 
has to be selected and additional parameters like file type, domain 
restriction, or keywords may be given. The result of the sampling 
transaction is a random sample of documents and several log files. 
In a first step, the Randomizer takes as input the lexicon and the 
randomizer parameters i.e. the number of random search words in 
each query and the span of words to use from the lexicon. The 
Randomizer randomly selects words from the lexicon (using a 
uniform distribution) and eliminates double hits, so that random 
search phrases are constructed. As already mentioned, the lexicon 



has to be ordered by frequency of occurrence in natural language. 
This is essential for the query hit estimation described later in 
Section 5. 
This difference to the BB and PB Sampler has big impact on the 
selection of documents. The random selection is now based on 
natural language and as such separated from characteristics of the 
basic population.   
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Figure 1: NL Sampler architecture. 

 
The Search Engine Agent combines each random search phrase 
with the search parameters like domain or file type restrictions. 
An URI is randomly selected out of the search results using a 
uniform distribution. As ordinary search engine queries are used 
for this purpose, the behavior of the sampler can easily be adapted 
to the user’s needs. E.g., the NL Sampler gathers a sample from a 
search engine query like “groupware filetype:pdf”, which has 
approximately 500,000 hits. The last 499,000 of them are not 
accessible, as search engines restrict search results to the first 
1,000 hits.  
The Search Engine Agent now repeats the search and changes the 
randomly generated part for each request. Thus, web pages are 
randomly selected out of the set of web pages specified by the 
search parameters. Thus, we get a sample of pdf files containing 
the word “groupware” out of the 500,000 available documents.  
Random sampling of documents without additional search words 
generates a sample out of the basic population of all Web 

documents accessible through the search engine interface. As 
most search engines do not allow automated access of their Web 
interfaces anymore, we use search engine Web Services like the 
Google APIs [16] instead.  
Once the URLs are sampled, they can be downloaded by a 
Download Agent like HTTrack [17] which supports downloading 
of formatted documents as well as HTML pages with associated 
images.  

5. IMPLEMENTATION AND 
EVALUATION 
5.1 The NLSample system 
We implemented the NL Sampler using C# and SharpDevelop. 
The NLSample tool uses the Google Search APIs and the lexica 
of the “Wortschatz” project of Leipzig University [18]. This 
project offers lists of the 10,000 most frequently used words in 
English, German, Dutch, and French. Thus the system is able to 
search for documents in these 4 languages. 
 

 
Figure 2: Screenshot 1 - input parameters. 
 

Figure 2 shows the start screen of the system where the user can 
insert the Randomizer parameters and search parameters. A 
lexicon must be selected and the word span to use from this 
lexicon has to be specified. In the example, we look for a random 
sample of pdf documents in English. All 10,000 words of the 
lexicon are used and each random query consists of 3 words that 
are combined to a conjunctive search phrase. We specify to find 
100 documents by using a maximum of 200 search engine 
requests (some requests may return no result). The number of 
requests is limited to 1,000 per day per user by the usage policy of 
Google Search APIs. 
Then the sampling can be started as shown in Figure 3. URIs from 
the search results are grouped by domains of the host part of the 
URI. Once these requests are finished, a selection of the 
documents can be downloaded by the integrated download agent 
and thus form the actual random sample. For each sample a log 
file is written which contains the random search request, original 
URI and the number of total documents for each query.  
 



 
Figure 3: Screenshot 2 - the sampling process. 
 

5.2 Evaluation  
We evaluated the system by performing sampling transactions for 
“filetype:ppt” and “filetype:doc” over a period of 2 months. Each 
sampling transaction consisted of 200 to 1,000 queries. We 
analyzed the average number of hits returned by each query 
dependent on the number of search words in each query and the 
number of words used from the lexicon. 
We observed that it is difficult for users to know which 
randomizer parameters to choose for certain search parameters to 
get appropriate results. If users want to have a uniform 
distribution of documents in the sample, they should use as many 
random search words per query as possible. On the other hand, if 
they specified special search queries with file type and domain 
restrictions, even 2 additional random search words may result in 
query underflow. Besides reducing the number of search words, it 
is also possible to reduce the number of words to use from the 
lexicon.  

Definitions. 
We adopt the formal setup of [8] and define Q as the space of 
queries supported by the search engine. EVAL(q) is an evaluation 
function, which maps every query q∈Q to a result set Rq, i.e. an 
ordered sequence of documents. The volume of q is the number of 
results for this search query: VOL(q) = | Rq |. We further define the 
transaction T as a set of queries q with the same search parameters 
(but different randomizer parameters). We define the volume of T 
VOL(T) as the number of documents accessible with any 
combination of randomizer parameters. We further define HITS(T) 
as the average volume of all queries in this transaction:  

Tq
T

qVOL
THITS ∈= ∑ ,

)(
)(  (1) 

The volume of q is estimated by the search engine on every 
request and returned in the result. Our goal is to find a function 
which takes the parameters as input and estimates the HITS(T) 
value. 

Experiment results. 
Figure 4 shows the results of various test runs with the search 
parameters “filetype:ppt”, i.e. with the purpose to sample 

Microsoft PowerPoint documents out of all static documents 
indexed by Google. Each point in the diagram corresponds to a 
run with 200 queries and certain randomizer parameters. The 
randomizer parameters were modified for each next run to 
identify the influence on HITS(T). 
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Figure 4: HITS(T) of “ppt” dependent on words used from the 
lexicon. 
 
As it is shown in the diagram, we have a Zipf-like distribution for 
HITS(T) which can be seen in the near-linear regression lines in 
the log-log scale for 2, 3, 4, and 5 search words dependent on the 
number of words used from the lexicon. The original meaning of 
Zipf’s law as stated in [9] was the ranking of words against their 
frequency of occurrence in natural language. As we stated in 
Section 4, the input lexicon of the NL Sampler should be in 
natural language and ordered by this frequency. So the input 
lexicon shows a Zipf distribution. This distribution of the input 
lexicon results in a Zipf-like distribution of HITS(T) as shown 
above.  
It is not surprising that the more popular search words we use (i.e. 
less words from the lexicon) the more documents we find using 
these words. But the fact, that the resulting distribution of average 
search engine hits is Zipf-like gives us the crucial starting-point 
for query hit estimation.   
It has already been proven, that website popularity also follows a 
Zipf-like distribution [19]. But this has no influence on the 
distribution of HITS(T). The (estimated) total number of websites 
returned by the search engine is not related in any way to the 
mean or maximum popularity of these sites. Only the ranking 
within the result set depends on popularity (e.g. PageRank). 

5.3 Query Hit Estimation 
To get an estimating function for HITS(T), we have to divide the 
parameters in randomizer parameters and search parameters. The 
search parameters are a search string like “groupware 
filetype:pdf” which can be sent as a query to the Google Web 
Service. The result returns the estimated total number of 
documents for the query. We assume that this is equal to VOL(T). 
For search parameters without search words like “filetype:pdf” we 
use a query with the character “e” to get the volume of T. E.g., a 
search request “e filetype:pdf” returns approximately between 250 
million and 300 million hits.  



The randomizer parameters constitute the number of possible 
random search queries which is equivalent to the combinations of 
search words in the lexicon and words in each query. Thus we 
define: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

erywordsperqu
consizeoflexiCq

  (2) 

as the number of possible combinations of words per query and 
number of words to use from the input lexicon (i.e. size of the 
lexicon).  

We are now able to summarize both types of parameters in a 
characteristic value, 

)(TVOL
CC q

d =  (3) 

where Cd is the number of possible query combinations per 
document in the basic population that is accessible with the search 
parameters of the transaction.  

To find the influence of Cd on HITS(T) we print the same data as 
in Figure 4 but now dependent on Cd (Figure 5).  
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Figure 5: HITS(T) of “ppt” dependent on Cd. 
 
As can be seen in the diagram, we now have almost parallel linear 
regression lines. Parallel lines in this scale can be mapped onto 
each other by multiplication. We found out, that this factor is the 
reciprocal of wordsperquery to the power of 10. This leads us to 
the definition of the weighted number of query combinations per 
document (Wd): 

derywordsperqud CW ⋅=
10

1      (4) 

All influence of the randomizer parameters can be modeled by 
Wd. Figure 6 shows this as all runs of the first experiment series 
are now on one regression line. Additionally a second series of 
experiments has been carried out with the search parameters 
“filetype:doc”. This leads to another estimating function which 
can be seen in Figure 6. The estimating functions for these two 
file types are specified in the diagram and show a correlation 
bigger than 95 %. We thus have identified estimating functions 

for these two file types which can be easily extended to other file 
types by further experiments.  
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Figure 6: HITS(T) of “ppt” and “doc” dependent on Wd. 
 

6. CONCLUSIONS 
We surveyed related works in the field of random sampling of 
Web documents and revisited the random search approach first 
published by Bharat and Broder. The NL Sampler described in 
this paper is an extension of the random search approach to get 
random samples of Web documents with a flexible set of 
parameters. It is now possible to sample any document type from 
the Web that contains text while consuming only few resources. 
The sampling of images is also possible by downloading the 
images linked in sampled HTML pages. We have implemented 
the NL Sampler within the NLSample system and plan to make 
this available as an open source tool for scientific and private use.  
Unlike previous attempts, we use frequency-ordered natural 
language lexica which enables query hit estimation. Estimation 
functions for Microsoft PowerPoint and Word files are given in 
the paper based on experimentation and analysis. The NLSample 
tool can be used in different application domains like content-
related research, webometrics, marketing research, or extended 
Web search. Due to new policies of search engines, Web services 
APIs have to be used for random search.  
A quantitative comparison of our approach with the BB and PB 
sampler or the Random Walk approach has not yet been carried 
out but will be part of our future work, although the goal of our 
work is different from these previous works. These are still the 
reference methods to sample representative samples out of all web 
pages while our approach is best suited to find samples out of 
small subsets of Web documents such as formatted documents.  
Besides this, more experiments are needed in the future to refine 
query hit estimation. This has already been done for the search 
parameters “filetype:ppt” and “filetype:doc”, which means 
random sampling of ppt- and doc-files out of all such documents 
indexed by Google. It would be interesting to see how other 
search parameters influence query hit estimation.    
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