
A Service-Oriented Approach for Increasing Flexibility in Manufacturing

Christin Groba
Technische Universität Dresden

Institute for Systems Architecture
Computer Networks Group

christin.groba@tu-dresden.de

Iris Braun
Technische Universität Dresden

Institute for Systems Architecture
Computer Networks Group
iris.braun@tu-dresden.de

Thomas Springer
Technische Universität Dresden

Institute for Systems Architecture
Computer Networks Group

thomas.springer@tu-dresden.de

Martin Wollschlaeger
Technische Universität Dresden

Institute of Applied Computer Science
Industrial Communications Group

martin.wollschlaeger@tu-dresden.de

Abstract

Manufacturing environments are characterized by a
multitude of heterogeneous devices, networks, specific
protocols and applications. Therefore, static structures,
close coupling and vendor-specific solutions have been
established over decades. To increase flexibility and in-
teroperability we introduce a service-oriented middleware
approach in form of an integration layer between shop-
floor equipment and enterprise applications. The integra-
tion layer addresses the actual capabilities and data flows
on the field and control layer individually. It offers core
services that are applicable in several manufacturing do-
mains. We describe a detailed case study to discuss pros
and cons of a SOA approach in manufacturing systems
and to show the feasibility of our approach.

1 Introduction

Manufacturing environments are characterized by a
layered system structure containing a variety of heteroge-
neous devices, networks, protocols and applications. Al-
though actual developments are focusing on integration
aspects between shop-floor systems and enterprise appli-
cations, there is still a lack of standardized interfaces be-
tween these two worlds. SOA seems to be a promising
approach to bridge this gap by achieving interoperabil-
ity between automation devices and shop-floor applica-
tions on the one hand and enterprise applications on the
other hand. The challenges SOA approaches face is han-
dling different solutions from different vendors as well as
the diversity of network protocols like Industrial Ethernet
(e.g. PROFINET, EtherCat, Ethernet/IP, Ethernet Pow-
erlink) or non-IP-based protocols like fieldbusses accord-
ing to IEC 61158 [1] (e.g. PROFIBUS, CAN, DeviceNet,
AS-Interface). Even if technological development may
promise a reduction of this variety, heterogeneity resulting

from different application areas, and from different indus-
try sectors is rather increasing. Thus, flexible, reliable and
easily adaptable middleware solutions are required by in-
dustry.

The paper aims at demonstrating and discussing the
feasibility of a SOA-based middleware approach in the
field of manufacturing systems. Based on a case study
about maintenance operation management, we show ben-
efits of a service-oriented middleware layer for integrat-
ing heterogeneous system structures in general, and shop-
floor equipment and enterprise applications in particular.
We describe basic concepts and the architecture of our
service-oriented middleware approach before presenting
implementation details for our particular use case. The
discussion of design and implementation decisions re-
garding service and interface granularity, architecture and
core services as well as communication aspects and data
handling points out the generality of our approach regard-
ing the manufacturing domain.

The paper is organized as follows: According to a case
study chances and challenges of SOA in manufacturing
are discussed in section 2. Section 3 covers related work
in this realm of research. Basic concepts and the archi-
tecture of the proposed integration layer are introduced in
section 4. Section 5 examines implementation consider-
ations. Section 6 summarizes the results and cognitions
providing an outlook on future tasks afterwards.

2 SOA in manufacturing

The application of the service-oriented paradigm in of-
fice and telecommunication scenarios is frequently dis-
cussed by researchers and industry experts. Services en-
capsulate pieces of functionality in such a transparent way,
that they can be described, published, located and dynam-
ically invoked in a programming language and system in-
dependent way. However, to what extent are services fea-
sible off the beaten track, in application domains like man-



Enterprise Resource 

Planing

Controller
Programmable Logic Controller

Distributed Control System

Field Devices
Sensors, Actors, Drives

Manufacturing Execution System

P
ro

d
u
c
ti
o

n

Q
u

a
lit

y

M
a

in
te

n
a
n

c
e

In
v
e
n

to
ry

Layer 1: 

Field

Layer 2:

Controls

Layer 3:

MES

Layer 4: 

ERP

Fieldbus

Fieldbus, 

Industrial

Ethernet

LAN, 

IP-based 

Networks

Figure 1. Layered structure of manufactur-
ing systems according to [2]

ufacturing?
Typical manufacturing systems are organized in a hi-

erarchical structure. Fig.1 shows the functional layers as
defined by conceptual standard IEC 62264 [2]. We be-
lieve that maintenance operation management in layer 3
is a promising candidate for applying the service-oriented
approach in the manufacturing environment. Compared
to production operation management, i.e. control of the
production process itself, maintenance operation manage-
ment does not expose real-time requirements. Real-time
requirements usually demand a close coupling of system
components and make the application of a SOA approach
complicated in practice. Moreover, maintenance opera-
tions have high potential to improve production processes,
especially by avoiding process slowdowns and produc-
tion downtimes caused by functional loss of manufac-
turing equipment. Despite of this potential, up to the
present maintenance has been rather neglected for the ben-
efit of optimizing production. Thus, maintenance opera-
tion management is addressed in the following case study
and is further examined for its service capability.

2.1 Case study: maintenance
Functional loss of manufacturing equipment is caused

by aging, wear or drift of operating points. In fact, equip-
ment degradation results in expensive process slowdowns,
loss of quality, safety shutdowns or even machine and
production downtimes. However, an enormous potential
for reducing asset costs can be identified in the realm of
maintenance because well maintained machines are less
likely to fail. Therefore, the following case study will
analyze the state-of-the-art maintenance setting which is
illustrated in Fig.2.

Strategically, maintenance may be performed correc-
tively after machine malfunction has been detected, pre-
ventively in periodic maintenance intervals or predictively

 Remote I/O

Maintenance Planing and Execution System

Decision 
Support 
System

Binary I/OPROFIBUS Dev

PROFINET Dev PLC

SCADA

Industrial Ethernet
(e.g. PROFINET)

Fieldbus
(e.g. PROFIBUS)

Data 
Diagnosis 
System

Data 
Analysis 
System

Data 
Monitoring 

System

Alarm

Equip.

Health Data

Equip spec.

procedure

Maint. 

Command

Maint.
Definition

Maint.
Request

Maint.
Result

Device 
Capabilities

ERP and MES

Field and ControlsE
n

g
in

e
e

r
in

g

Equipment

Lifecycle Info

Asset 
Setup

MES 
Data

I&M 

Parameter

I&M 
Parameter

Maint.
Request

Figure 2. Case study maintenance opera-
tion management

based on the current machine state. Thus, maintenance is
triggered by feedback of human experts after inspection,
time constraints indicating a new maintenance interval, or
transgression of predefined threshold limits and condition
monitoring. Based on business and operation processes in
place, a maintenance request is generated from low-level
or high-level activities.

On field and control layer instruments and devices
comprise different degrees of intelligence. Sophisticated
devices may contain embedded maintenance functions to
automatically issue a maintenance request. PROFINET
and PROFIBUS devices, for example, implement identi-
fication and maintenance (I&M) functions [3] which al-
low online access to device identity information. Other
field devices like simple Binary I/O Modules are less in-
telligent. To achieve the same quality of information a
sequence of queries may has to be performed. However,
less capable devices are connected to controllers (PLC)
and data acquisition systems (SCADA) that have appro-
priate resources to derive and forward maintenance alarms
as well as equipment health data.

On MES and ERP layer a multitude of maintenance as-
sisting systems process data acquired from the shop floor.
Systems responsible for data monitoring, data analysis
and diagnosis as well as decision support provide high-
level activities to deduce a maintenance request. How-
ever, each system is a vendor-specific application varying
in functionality, interfaces and data representation. There-
fore, upper layers are characterized by heterogeneity and
redundancy also. This situation is caused by historical,
political and technical reasons. While system concepts
grew and changed over the years, mainly supported by



technical achievements, competition between manufactur-
ers prevented more uniform solutions. Finally, the hetero-
geneity of information consumers namely operators, pro-
duction scheduling experts, quality experts, maintenance
staff, asset optimization teams etc. caused the develop-
ment of different applications and tools, used in parallel
without interconnections.

After a maintenance request has been issued the main-
tenance planning and execution system schedules the re-
quired work orders typically by considering available
maintenance resources such as personnel, material and
maintenance equipment. However, there is a variety of in-
formation that is rather neglected in current maintenance
solutions. Data provided by the MES such as future pro-
duction plans and changeover times could be integrated
to setup an advanced maintenance schedule that least in-
terferes with production. Furthermore, the incorporation
of information about the equipment’s setup, life cycle and
capabilities would add additional value to the decision on
appropriate maintenance strategies and actions. This in-
formation, however, is stored in a distributed and rather
closed engineering system which exists in parallel to the
ERP, MES and automation system.

In order to fulfill the scheduled maintenance oper-
ations, maintenance personnel gets instructed through
maintenance definitions such as equipment and sys-
tem drawings, engineering documentation, specifications,
vendor manuals and standard operating procedures for re-
pair and servicing. As already pointed out this informa-
tion is spread over many data sources, is available in dif-
ferent formats and is accessible via different communica-
tion systems and services. The equipment-specific main-
tenance command e.g., calibration or cleaning command
are downloaded to layers 1 and 2. Afterwards, the main-
tenance result as well as equipment data indicating the
equipment’s past, current or future health condition is re-
turned. Having executed maintenance work orders by fol-
lowing all defined regulations and procedures, the main-
tenance planning and execution system collects and ana-
lyzes maintenance data to calculate its effectiveness and
to identify areas of improvement.

2.2 Challenge: flexibility and interoperability
The challenge of maintaining manufacturing equip-

ment is to cope with heterogeneity on layers 1 and 2
as well as on layers 3 and 4. Field devices tend to of-
fer increased functionality. However, a generic, vendor-
independent and complete model of field devices is lack-
ing. Thus, a multitude of control concepts and mainte-
nance tools is the consequence. Moreover, heterogeneity
on layers 1 and 2 is present because of the individual com-
plexity of different industry branches e. g. manufactur-
ing and chemical engineering. Furthermore, different data
sources each with individual capabilities exist to acquire
maintenance relevant data. Data transmission frequencies,
transmission volumes as well as data representation de-
pend on the specific process and measured signal. On the

other hand, heterogeneity on layers 3 and 4 is exposed by
the functional diversity of tools supporting data analysis,
reporting, diagnosis as well as maintenance planning and
execution. Each tool has individual requirements, depen-
dencies and internal data formats that have to be satisfied.
Common to all tools, however, is their reliance on con-
densed information. Instead of a vast amount of raw data,
tools rather process filtered and recombined maintenance
information that is enriched with information from other
sources.

Analyzing the case study the need for flexibility, in-
tegration and interoperability in the manufacturing envi-
ronment becomes evident. Because heterogeneity does
not only exist between lower and upper layers but also
in each layer itself, the challenge is to interconnect these
layers and to make the resources of one layer accessi-
ble to the others. Although integrated solutions already
exist (e. g., Siemens TIA), they are vendor-specific and
limiting because they lack the flexibility to interconnect
multi-vendor systems. Therefore, to achieve real interop-
erability between systems and layers individual features
and requirements have to be encapsulated and appropri-
ately mapped to a common interface. We propose an in-
tegration layer between the control and MES layer that
hides layer-specific diversity by providing services offer-
ing such a common interface. The integration layer will
especially address actual capabilities and data flows on
lower layers not assuming a certain intelligence of field
devices or IP-based communication systems.

3 Related work

OPC (OLE for Process Control) [4] is considered a de-
facto standard for data exchange between shop-floor au-
tomation equipment and higher layers of the automation
pyramid. Current activities like the specification of OPC
Unified Architecture (UA) [5] are focusing on platform-
independent solutions based on Web services. It can be
expected that the new OPC UA specification will adopt
the relevance of the COM-based variant of OPC. Thus,
data exchange between the layers 1/2 and 3/4 will have
to consider OPC. However, OPC is still focusing on the
pure communication aspect and will, therefore, provide
communication services. Related to the aim of providing
information exchange between the layers, further defini-
tions are still necessary.

The authors of [6], [7] propose the use of Web services
to exchange data between production workflow and pro-
duction scheduling applications situated in layer 3. Com-
municating either proprietary or using OPC DA [4] typi-
cally parameters, measurement and control values are ex-
changed.

To integrate information suitable for maintenance tasks
into CMMS systems a generic platform for e-maintenance
was developed by the PROTEUS project [8]. Applica-
tions may use the platform by providing adapters map-
ping their (mostly proprietary) interfaces to a Web service



based message scheduling system. Layer 2 is accessed
via data acquisition servers that adapt specific communi-
cation systems to OPC. Apart from communication, no
maintenance-related services have been defined. Services
as addressed in this paper could be implemented into the
adapters.

A standard information storage schema for asset and
maintenance information was defined by MIMOSA [9].
Typical applications of that schema reside in layers 3 and
4. Layer 2 is accessed solely through OPC. As an organi-
zation, MIMOSA assigns an enterprise a globally-unique,
alpha-numeric user tag identifier value. With such a glob-
ally unique enterprise ID and an enterprise unique asset
identifier, any asset may be transferred to another site or
enterprise without causing doubling of identifiers. On ba-
sis of this ID, assets (as part of the equipment) can be ad-
dressed in order to link additional information e.g. main-
tenance relevant engineering data.

The SIRENA project [10] develops an infrastructure
for high-level communications between devices by uti-
lizing the Device Profile for Web Services (DPWS) [11].
Although DPWS allows seamless integration of new de-
vices and their provided services, this approach is lim-
ited to special use cases requiring WS-enabled devices and
IP-based communication protocols. However, reality still
shows the dominance of proprietary standards and proto-
cols that severely impede the progress towards flexibility
and agility. Therefore, our approach builds on common
proprietary standards and uses an abstraction layer for re-
alizing interoperability.

A design, execution and management platform for
next-generation industrial automation systems is devel-
oped by the SOCRADES project [12]. The functionality
of smart embedded devices is encapsulated and advertised
by a SOCRADES service. Instead of re-programming
large monolithic systems, loosely coupled embedded units
are reconfigured to achieve increased adaptability. Al-
though, SOCRADES’ intention of exploiting the service-
oriented architecture paradigm both at device and applica-
tion level is quite similar to ours, we envision an integra-
tion layer that copes with individual capabilities of field
devices and communication systems in place, not assum-
ing a certain level of intelligence.

PABADIS’PROMISE [13] introduces a new control ar-
chitecture to increase adaptability and flexibility of man-
ufacturing systems especially targeting production and
supply-chain management. Mobile real-time agent sys-
tems and RFID technologies are employed to distribute
ERP system building blocks even on field control level.
The physical migration of agents stored in RFID tags
ensures a close connection between agent and prod-
uct. Therefore, on-the-fly design of order-related con-
trol applications is possible. We differ from the mature
PABADIS’PROMISE in such that we envision a service-
oriented abstraction layer providing valuable domain-
independent core services.

Field and

Controls

ERP and MES

Tool

Workflow

Integration Layer

Core Service Core Service Core Service UDDI

Gateway 

Entity

Gateway 

Entity

Gateway 

Entity
Gateway 

Entity

OPC 

Server

Device DeviceDevice

OPC Client

Tool

Application

Service Client

Device

Figure 3. Integration layer architecture

4 Basic concept and architecture

One of the main prerequisites for optimizing the man-
ufacturing environment is to open up new information
sources and to provide seamless access to them. However,
architecture and communication methods vary greatly.
While MES and ERP layer are similar to standard IT ar-
chitectures and communication methods (i.e. Web ser-
vices), the field and control layers are realized specifically
with Industrial Ethernet and fieldbus systems. Our pro-
posed integration layer will abstract from this heterogene-
ity by providing services that offer a common interface to
the outside world, however, that internally adapts its func-
tionality to the given situation of a certain environment.

4.1 Architecture
To integrate lower layers as information sources, an in-

tegration layer illustrated in Fig.3 is designed as middle-
ware between the control and MES layer. The integration
layer addresses service granularity, physical distribution
and degree of coupling individually according to the ac-
tual capabilities and data flows on the field and control
layer.

The integration middleware offers new-quality services
adding further value to existing tools and applications.
Applying the SOA paradigm, services abstract from lower
and upper layer heterogeneity and implement valuable
functionality that is applicable in several application sce-
narios. For instance, a core service for device identifica-
tion is evidently beneficial in production operation man-
agement and maintenance operation management as well.
Hiding implementation details behind service interfaces,
services provide a common access mechanism for above
layers to receive information offered by lower layers. In
fact, services introduce more flexibility because they dis-



solve fixed, solution-specific point-to-point mappings be-
tween upper and lower layers.

Specific gateway entities enable legacy systems to con-
sume core services without being changed. Acting as a
proxy they map application-specific requests to core ser-
vices and from there to sequences of services provided by
the underlying systems. To map core services to specific
underlying communication protocols, a gateway entity is
created for each technology and device type. An exam-
ple for such a lower gateway entity is the combination of
a OPC client and OPC server. Within the entire abstrac-
tion process the gateway entity considers domain-specific
semantics as well as device and system models. Those
models have to be formally described in order to identify
information sources and to allow mappings.

A UDDI resides in the integration layer to publish core
services and to make them plant-wide accessible. The
Universal Description Discovery and Integration (UDDI)
protocol was actually designed for companies to quickly,
easily, dynamically find and use Web services over the In-
ternet. The UDDI in the integration layer does not address
this global business scope. Therefore, registered services
are visible only to company-internal MES and ERP sys-
tems. In case of maintenance operation management a
gateway entity representing a CMMS system may use the
UDDI to search for services to better coordinate and equip
maintenance personnel carrying out maintenance tasks.

An open topic that remains for future research is to
keep the architecture flexible for advanced tools and appli-
cations disposing appropriate resources to access core ser-
vices directly. A service client implemented within such
applications would replace a specific gateway entity in the
integration layer. This development would finally result in
the distribution of integration layer responsibilities.

4.2 Data handling

Information offered by layers 1 and 2 can be distin-
guished between real-time data, parameter data, and fixed
data. Real-time data is time-critical for the automation
and control function. Data associated with measurement
values, set points, alarms, and controller input and out-
put is typically available at runtime and can be accessed
through standardized interfaces like OPC. Parameter data
is used to adapt devices to their specific function in the
system. Rather rarely exchanged, parameter data is mostly
shared with diagnosis and engineering tools. Fixed data
contains information on manufacturer, version, etc. and is
used in an inventory and asset management context. Be-
cause of its rather static nature and low update rate a fre-
quent transmission of fixed data over OPC is not necessary
and would waste bandwidth. Therefore, this data is nor-
mally accessed by specific communication services. The
semantics of data supplied by layers 1 and 2 is defined
in so-called profiles (e.g., for different device types and
different application scenarios).

4.3 Core services
A feature of the integration layer are its core services.

Addressing domain-independent tasks (e.g., device iden-
tification) and being applicable in various domains core
services raise the benefit of the integration layer. In the
following we outline some example core services empha-
sizing that this list is not exhaustive.

4.3.1 Device identification service

Device identity represents the common reference point for
all asset life cycle stages and related device information.
However, this identification data is spread over different
information sources and may have to be mapped between
life cycle stages. Depending on the particular device intel-
ligence certain identification information is available on
the field and control layer. Therefore, a device identi-
fication service will open up this information source by
adapting to the situation in place and providing device
identification information. Some devices supply identi-
fication data themselves. In this case, data can be read
out over the communication system. However, due to dif-
ferent communication protocols information has to be ac-
cessed in various ways. For example, I&M parameter of a
PROFINET device are accessed over PROFINET (indus-
trial ethernet) whereas PROFIBUS devices, in case they
offer I&M parameter, are accessed via PROFIBUS (field-
bus). On the other hand, identification information of
devices and passive equipment (e.g. pipes and tubes) is
sometimes spread over several sources in layer 1 and 2.
Therefore, the service relies on specific proxies (gateway
entities) that know for a certain device type which infor-
mation is found where.

4.3.2 Information retrieval service

Devices and systems typically exist in a life cycle charac-
terized by the stages: design and production (at the man-
ufacturer), planning, engineering, run-time, maintenance
(at the end user) and recycling. During this life cycle,
device-related information is distributed throughout the
whole system and hard to retrieve. A maintenance expert
may not easily access engineering documents due to sep-
aration of concerns and isolated data sources. Or parts
of information needed exists within devices, configura-
tion files and planning documents. Thus, an information
retrieval service will discover device-related information
from different contexts and will apply application-specific
filters to reveal relevant information. Assembling or even
representing all information in a uniform format is chal-
lenging because documents such as manuals in PDF for-
mat may not be convertible. Therefore, using ontologies
that formally describe available documents the service lies
focus on information discovery and provides references to
it.



4.3.3 Device positioning service

Knowledge about where a device resides is crucial for pro-
duction and maintenance operation management. Because
the position of a device has many aspects, different struc-
ture and location services are necessary. In large assets
where several factory floors and thousands of devices are
managed, it seems cumbersome for maintenance person-
nel to keep an overview of where machines are physically
located. A device positioning service will find devices
by deriving position information from appropriate sources
e.g., GPS coordinates stored in a database are loaded to a
handheld and guide a maintenance engineer through sani-
tation.

4.3.4 Structure analysis services

A device is characterized by its affiliation to several struc-
tures e.g. physical network, functional network and de-
vice structure. Detecting and representing these would
be beneficial to several experts within the life cycle. An
engineer may utilize the physical network service to de-
termine the network type by which a device is accessed.
This service will further infer network-related properties
such as physical neighboring devices in fieldbus systems.
A device structure service will reveal the structure of com-
plex devices by considering the device’s planned config-
uration and detecting installed modules. As soon as the
actual configuration deviates from the reference config-
uration alarms are issued. A production planer is rather
interested in functional network of devices. A functional
network service identifies functional capabilities of a de-
vice, filters relevant information for production and even
suggests functional identically device alternatives. Fur-
ther it may determine the functional predecessor and suc-
cessor concerning a particular process chain, e.g., which
sensor affects which actuator in a control loop.

4.3.5 Event notification service

For some applications it might be necessary to stay in-
formed about the actual state of a device or processing
step, e.g. to initiate logging of data under certain circum-
stances. State information, however, is usually mapped to
alarms/events and send to a PLC. Because most devices
wait on an acknowledgment of the PLC it is hardly pos-
sible to access this eventing mechanism. Therefore, an
event notification service will make use of the communi-
cation function blocks offered by the PLC and will sub-
scribe to the PLC for such events. Besides the propaga-
tion of events to layers 3 and 4, mapping of proprietary
or vendor-specific event codes to generalized ones is nec-
essary. A step into this direction is provided with spec-
ifications like [14]. These specifications define common
maintenance states and data structures for maintenance as
well as mappings to appropriate transport mechanisms for
specific protocols (in this case PROFINET I/O).

5 Implementation

A SOA enabling technology are vendor-neutral Web
services. Available independently from the implementa-
tion of particular applications, three mechanisms are as-
sociated with Web services:

• SOAP messages to exchange data between service
provider and service consumer

• WSDL to propagate the interfaces a service imple-
ments

• UDDI for potential service discovery

Web service are considered an abstraction layer in IT ar-
chitectures due to their service interfaces that provide a
simple and comprehensible access to underlying applica-
tions. However, to fulfill the aforementioned integration
capabilities, Web services alone are not sufficient. In fact,
the implementation platform has to satisfy four primary
requirements:

• messaging between core services and applications on
different automation layers

• intelligent message routing

• data and message format transformation

• Web service support and discovery

From a technological perspective JBI and ESB address
these issues.

Java Business Integration (JBI) [15] is a standardized
platform that entails a service-oriented approach for the
integration and structuring of enterprise functions in J2EE
environments. It creates a standard meta-container allow-
ing several components to be plugged in and to interop-
erate seamlessly. This framework provides a dynamic
composition and deployment of loosely-coupled applica-
tions. Regardless of the implementation technology, mul-
tiple services may be wrapped as a service unit and pack-
aged in a loosely-coupled manner into a service assembly.
Messages exchanged between various service engines like
BPEL engines or external Web services, are normalized
through binding components. The normalized message
router handles message routing. JBI proves its flexibil-
ity and resilience by allowing extensions for management,
monitoring, and other enhancements. Despite being an
open specification, JBI is not widely adopted in the busi-
ness world. An open source project, pioneered by Sun
Microsystems known as Open ESB [16], fully implements
JBI for the construction of a powerful ESB.

Enterprise Service Bus (ESB) is a larger integration
concept involving intelligent routing, XML transforma-
tion, federated management, orchestration and process
flow. Offering a distributed middleware infrastructure
ESB is consistent with SOA principles. The basic idea
of this bus architecture is to link each service or legacy
application (wrapped by a service frame) directly to the



Enterprise Service Bus
Service Registry

HTTP/

SOAP

ERP CMMSMES

Gateway Entity Gateway Entity Gateway Entity

Core 

Service

Core 

Service

PLCOPC

DeviceDevice

Gateway EntityGateway Entity Gateway Entity

HTTP/

SOAP

Core 

Service

Device

Orchestration 
Engine

Device Device

Figure 4. Enterprise Service Bus

bus. Thus, large numbers of point-to-point connections
between applications and services are avoided. The
find/bind/invoke mechanism for services is no longer im-
plemented within applications or services but rather man-
aged by ESB in combination with configuration and de-
ployment tools. In fact, providing a highly distributed in-
tegration environment that extends well beyond hub-and-
spoke architectures, ESB facilitates a clear separation of
business and integration logic [17]. ESB features value-
added services beyond those found in basic communica-
tion middleware, such as message validation, transforma-
tion, content-based routing, security, service discovery,
load balancing, and logging.

We consider ESB as a suitable approach for integrat-
ing manufacturing systems (see Fig.4). As a loosely cou-
pled, standards-based, highly distributed integration layer
it scales beyond the limits of a hub-and-spoke EAI bro-
ker. Combining messaging, Web services, data transfor-
mation and intelligent routing an ESB reliably connects
and coordinates interaction between a significant number
of diverse applications across different automation layers.

Core services, realized as Web services with Apache
Axis, directly link to the bus via SOAP and Web service
APIs. Because they rely on several data sources (e.g., de-
vices and controls, engineering storage, MES and ERP
storage), different gateway entities wrap access to legacy
applications.

Gateway entities are service containers that realize the
actual integration. They adapt ERP and CMMS appli-
cations that cannot directly interact with core services.
They integrate specific underlying communication proto-
cols from layer 1 and 2. For each technology and device
type an individual gateway entity is created. An example
for such a lower gateway entity is the integration of a OPC
client connecting to a OPC server. Depending on device
intelligence gateway entities further encapsulate different
message exchange pattern e.g., they subscribe to a PLC
and use the event generation capability of function blocks.
ESB implementations like JBossESB [18] already provide
a diversity of connectors especially for higher-level ap-
plications: They utilize J2EE components such as Java

Message Service (JMS) and J2EE Connector Architecture
(JCA or J2CA) or nicely integrate with applications built
with .NET, COM, C#, and C/C++.

A service registry stores all necessary information
about service endpoints the ESB needs to realize the
find/bind/invoke mechanism for services. Further, the reg-
istry allows to dynamically add and remove core services
and gateways. Therefore, the integration layer becomes
flexible and easily extensible.

An orchestration engine (e.g., BPEL engine) facilitates
the basic concept of ESB: Service are not invoked directly
by other services, rather they are part of a larger event-
driven process flow. The following example illustrates
this. An alarm from a PLC is put as XML message into
a topic or queue. On message arrival (entry point) a de-
vice identification service starts processing and places the
alarm message augmented with identification data into its
exit point. Then a subsequent maintenance execution ser-
vice receives this message via a queue or topic and creates
a maintenance command message. This message is then
put into the appropriate queue or topic to be received by
the PLC. Such a process chain (services, entry and exit
point) has to be configured in advance. The ESB realizes
the process at runtime by identifying the next service in
chain, binding to it and invoking the service.

Direct service access within ESB is also possible, how-
ever, should be an exception. In this case the development
of dynamic invocation interfaces for remote service invo-
cation is favored. Loose coupling between a service and
its client is essential, i.e., a client dynamically accesses a
service without changing its core application. Especially,
if service endpoints often change or several service in-
stance exist, only the abstract interface should be known
during design time while the particular service is dynami-
cally localized at run time. JAX-RPC API allows service
discovery at runtime via JAX-R registry. If this API is ac-
cessed directly no additional stub classes have to be gen-
erated and client-service dependability is reduced. At run-
time only the specific port, operation and input parameters
have to be supplied. Hence, dynamic invocation interfaces
allow flexible client design.

Using ESB is so far a conceptual consideration. Cur-
rently, we have exemplary implementations of few core
services and gateway entities in the maintenance scenario.
We are planning the integration with an ESB within next
months.

6 Summary and outlook

Analyzing the maintenance case study, two major find-
ings became evident: Firstly, manufacturing systems are
characterized by diversity including heterogeneous de-
vices, networks, protocols and applications. Secondly,
although a great amount of relevant data resides in the
field and control layer, it is rarely used due to the lack of
standardized interfaces between control and MES layer.
Therefore, the challenges in manufacturing systems are



bridging the gap between shop-floor and enterprise ap-
plications, adapting and encapsulating heterogeneity in
place, and leveraging flexibility and interoperability of
systems.

By applying the SOA paradigm, the proposed integra-
tion layer defines core services to abstract from diver-
sity and provides service interfaces for a common access
mechanism. Gateway entities are responsible for the ap-
propriate mapping between the layers. For implementa-
tion ESB is favored because it fits the requirements for
loose coupling and high distribution of the integration
layer.

The benefit of our approach is its adaptation to the
current manufacturing system not assuming a certain de-
vice intelligence, device resources, or IP-based protocols.
Gateway entities encapsulate the integration complexity
for a particular device type, communication protocol, or
ERP/MES tool. They direct service requests from higher-
layer legacy systems to sequences of services provided
by lower layers and project core services to underlying
communication protocols. Opening up new information
sources, especially in field and control layers, the integra-
tion layer offers core services that are applicable in several
manufacturing application scenarios. In fact, the combi-
nation of core services and gateway entities realize the re-
quired flexibility and interoperability. Aware of the real-
time requirements in e.g. in production operation man-
agement, a service-oriented architecture is not applicable
in all fields of manufacturing. Therefore, the integration
layer is not considered a holistic approach. It rather seeks
to identify appropriate areas to apply services in the man-
ufacturing domain.

In the future we will conduct further research in the
realm of service granularity, degree of coupling, and phys-
ical distribution within the integration layer. Since field
devices will gain intelligence and applications will get
more sophisticated, the question arises how close services
may settle to lower and upper layers possibly replacing
some gateway entities. We see sophistication of applica-
tions in near future and argue that our integration layer
accelerates the development toward unified service-based
applications in layer 3 and 4. We hope to extract additional
findings by further implementing the integration layer and
applying new use cases to it.

References

[1] IEC, “IEC 61158: Digital data communications for mea-
surement and control Fieldbus for use in industrial control
systems”, 2003.

[2] IEC, “IEC 62264 Enterprise Control System Integration”,
2003.

[3] M. Wollschlaeger and D. Hasler, “Uniform Identification
and Maintenance Functions for PROFIBUS Devices as an
Example for Web-based Information Systems in Automa-
tion (WFCS’2004)”, in 5th IEEE Workshop on Factory
Communication Systems, Wien, 2004, pp. 385–388, Pro-
ceedings, IEEE 04TH8777, ISBN 0-7803-8734-1.

[4] OPC Foundation, “OPC Data Access Custom Interface
Specification 3.0”.

[5] OPC Foundation, “OPC Unified Architecture Specifica-
tion Part 1: Concepts Version 1.00”.

[6] C. Alexakos and et. al., “Workflow - Coordinated Integra-
tion of Enterprise / Industrial Systems based on a Semantic
Service - Oriented Architecture”, in ETFA2005 10th IEEE
International Conference on Emerging Technologies and
Factory Automation, Catania (Italy), 2005.

[7] J. Gialelis and et. al., “Advanced Enterprise Process Mod-
elling Utilizing Ontology Semantics”, in ETFA2005 10th
IEEE International Conference on Emerging Technologies
and Factory Automation, Catania (Italy), 2005.

[8] PROTEUS Project Homepage, http://www.proteus-
iteaproject.com/.

[9] MIMOSA, “OSA-EAI V3.1 Product Release”,
http://www.mimosa.org/downloads/40/specifica-
tions/index.aspx/.

[10] SIRENA Project Homepage, http://www.sirena-itea.org.
[11] F. Jammes, A. Mensch, and H. Smit, “Service-Oriented

Device Communications Using the Devices Profile for
Web Services”, in 3rd Workshop on Middleware for
Pervasive and Ad Hoc Computing, MPAC 05, Grenoble
(France), 2005.

[12] SOCRADES Project Homepage, http://www.socrades.eu,
2006.

[13] J. Peschke, A. Lüder, and H. Kühnle, “The
PABADIS’PROMISE architecture - a new approach for
flexible manufacturing systems”, in ETFA2005 10th IEEE
International Conference on Emerging Technologies and
Factory Automation, Catania (Italy), 2005.

[14] PROFIBUS International, “PROFINET Profile Guideline
PROFINET and MES, Part 1: Maintenance Operations.
Version 0.9”, March 2006.

[15] Sun Microsystems Inc., “Java Business Integration (JBI)
Specification”, http://www.jcp.org/en/jsr/detail?id=208.

[16] Sun Microsystems Inc., “Open ESB Project Homepage”,
https://open-esb.dev.java.net/.

[17] D. Chapell, Enterprise Service Bus, O’Reilly, 2004.
[18] Red Hat, “JBossESB - Reliable SOA infrastructure”,

http://labs.jboss.com/jbossesb/.


