
The COMQUAD Component Container
Architecture and Contract Negotiation

Steffen Göbel, Christoph Pohl, Ronald Aigner,
Martin Pohlack, Simone Röttger, Steffen Zschaler

Institut für Systemarchitektur,
Institut für Softwaretechnik

TUD-FI04-04 - April 2004

TECHNISCHE UNIVERSITÄT

DRESDEN

Fakultät Informatik

Technische Berichte

Technical Reports

ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

http://www.inf.tu-dresden.de/




The COMQUAD Component Container Architecture and
Contract Negotiation∗

Steffen Göbel Christoph Pohl Ronald Aigner Martin Pohlack
Simone Röttger Steffen Zschaler

Abstract

Component-based applications require runtime support to be able to guarantee non-functional prop-
erties. This report proposes an architecture for a real-time-capable, component-based runtime environ-
ment, which allows to separate non-functional and functional concerns in component-based software
development. The architecture is presented with particular focus on three key issues: the conceptual ar-
chitecture, an approach including implementation issues for splitting the runtime environment into a
real-time-capable and a real-time-incapable part, and details of contract negotiation. The latter includes
selecting component implementations for instantiantion based on their non-functional properties.

∗A shorter version of this technical report appears in the proceedings of the WICSA-4 [10]



1 Introduction

Considering non-functional properties of a
system, such as Quality of Service (QoS) or se-
curity aspects, is crucial for reliable software
systems. Apart from explicit specification at
design time, this also includes implicit con-
sideration at implementation level and ade-
quate runtime support. In this report we in-
troduce the COMQUAD container architecture,
which provides a runtime environment for
QoS-capable, component-based software ap-
plications.

Component models like Sun’s Enterprise Jav-
aBeans (EJB) [4] or the OMG’s CORBA Com-
ponent Model (CCM) [27] are typically im-
plemented by application servers containing all
necessary infrastructural services of the com-
ponent runtime environment. The term con-
tainer is often used to refer only to the immedi-
ate execution shell of component instances—
for instance, in [7]. In contrast, our notion of
a container comprises all major parts of com-
ponent management, as we will explain in
Sect. 2.

One of the key benefits of component-oriented
application servers is that new applications
can be assembled from existing, commercial
off-the-shelf (COTS) components in a plug-
and-play fashion. The internal architecture of
such component-based software applications
is usually captured by descriptive means of
architecture description languages (ADL, [25]).
We use assembly descriptors as a part of our
COMQUAD component model [11] for this pur-
pose.

For brevity, we will use the terms real-time
(RT) and non-real-time (NRT) in the context of
this report. RT refers to QoS-capable parts that
can guarantee certain non-functional proper-
ties of their service, whereas the latter term
(NRT) shall be used for QoS-incapable parts
providing best-effort services only.

We argue that the separation of mission-
critical real-time code on one hand and lower
priority non-real-time code on the other hand
is natural for many applications where QoS is
an issue. This realization was the driving force

behind our decision for a split architecture that
handles both aspects separately.

The remainder of this report is organized as
follows: Section 2 provides a high-level view
on our container architecture and the under-
lying component model [11]. The reasons for
the real-time–non-real-time split are explained
afterwards. Section 3 describes the imple-
mentation of this split architecture, the neces-
sary communication primitives between both
parts, and the details of contract negotiation
necessary to guarantee a requested QoS for
servicing client requests. Finally, we give an
overview of related work and conclude with
an outlook.

2 Approach

In this section we first give an overview of
the conceptual elements of our architecture be-
fore explaining in more detail our approach
of splitting the runtime environment into two
parts: a real-time and a non-real-time part.

2.1 Conceptual Architecture

Our components are black-box elements,
which implement business logic and cooper-
ate with other components to solve an appli-
cation requirement. The component concept
is based on Szyperski’s definition [38]. Com-
ponents exist in a runtime environment—the
container—which hides the system logic and
details of the underlying platform. One of
the main features of our component model
is that—corresponding to ideas presented by
Cheesman and Daniels [2]—more than one
implementation can be provided for one func-
tional specification. This allows to provide
the same functionality with different non-
functional properties, and thus serves to sepa-
rate functional and non-functional concerns.

To support non-functional properties, it is es-
sential to extend the container by a resource
management providing services for admis-
sion and reservation of system resources, such
as CPU time or memory. Figure 1 gives

4



Resource Manager

Component Manager

Implementation Manager

QoS
Repository

Instance of
Comp. Impl. 1

Contract Manager
Instance of

Comp. Impl. 2
Communication

Proxy 

Resource Proxy

Figure 1: Conceptual COMQUAD container ar-
chitecture [5]

an overview of our architecture consisting
of two layers: component manager and re-
source manager. The component manager it-
self consists of three subsystems: implemen-
tation manager, QoS repository, and contract
manager. The implementation manager sup-
ports the lifecycle of component implementa-
tions and the QoS repository stores the non-
functional specification of each component
implementation. We have developed CQML+

[33] as our specification language for non-
functional properties.

The key part of the container is the con-
tract manager, which instantiates and con-
nects the components required to service each
client request. In order to select the cor-
rect components and component implemen-
tations, the contract manager uses the func-
tional and non-functional component speci-
fications provided in XML-based descriptors
[11]. The non-functional descriptors essen-
tially contain CQML+ specifications for each
component implementation. The key informa-
tion in the functional descriptors is contained
in component net templates, which describe the
component assemblies forming an applica-
tion. The term component assembly refers to
component instances whose used and pro-
vided ports have been connected to form a
network of cooperating instances handling a
request. Note that, although the component
net templates are very similar in purpose to
classic ADLs [25] there is one major differ-
ence: Classic ADLs describe connections be-
tween components at the level of instances of
specific component implementations whereas

our component net templates leave implemen-
tation selection to the container. This is done
by defining only how instances of certain func-
tional component specifications are to be con-
nected without referencing any implementa-
tions. Thus, the container can select the appro-
priate implementations for these component
specifications based on their non-functional
properties.

Once the contract manager has selected imple-
mentations and created component instances,
it uses communication proxies to connect
these instances according to the specification,
and resource proxies to manage the com-
ponent instances’ usage of the reserved re-
sources. It is important to realize that these
proxies are primarily conceptual in nature.
They serve to represent various mechanisms
in the conceptual architecture, but are not
necessarily present as actual elements of the
running container. We usually implement
communication proxies either implicitly by
directly exchanging references between in-
stances or explicitly by placing a chain of inter-
ceptors [35] between the instances. Resource
proxies are very often implemented implicitly
only, such that the resource management layer
itself does all the work.

A special case of inter-component communi-
cation is stream-based communication. This
kind of communication frequently has associ-
ated non-functional requirements, the classic
example being a Video-on-Demand (VoD) ser-
vice. We have enhanced the component model
to allow specification of stream-based commu-
nication between components. At runtime,
such communication is implemented by a
container-provided buffer component, which
uses normal request-response–based commu-
nication to exchange data packets with the
participating components. More details can be
found in [11].

2.2 Real-Time and Non-Real-Time
Parts

In the previous section we described the con-
ceptual architecture of our component run-

5



time environment. Typically, applications that
give guarantees on non-functional properties
are split into two parts: (i) a small part of code
that performs the actions for which guaran-
tees of non-functional properties are essential
and (ii) a usually much larger part for which
non-functional guarantees are not important.
Again, a VoD application is a typical example.
Only the actual delivery of the movies needs
to provide guarantees of non-functional prop-
erties. The much larger part of the application
dealing with management of customers and
movies, selection of, and payment for, movies
by customers, advertisement, bonus actions,
etc. is typically not so critical in terms of its
non-functional properties.

This distinction can be applied to the archi-
tecture of a component runtime environment.
Figure 2 shows an extension of the conceptual
architecture with the parts that need to give
guarantees (real-time) and the parts that do
not (non-real-time) clearly separated. Most of
the work is done in the non-real-time part of
the component environment. It manages the
available component implementations and ap-
plication specifications, handles requests for
creation of component networks, negotiates
contracts between components, and maintains
a model of the instantiated components and
the networks formed by them. The real-time
part is essentially restricted to actually instan-
tiating components, reserving resources, and
executing the instantiated components in re-
sponse to user requests.

This concept is closer to the reality of applica-
tions with non-functional properties than the
approach of monolithic real-time applications.
Additionally, it also allows us to make use
of advanced component technology (namely
JBoss [7]) on the non-real-time side while still
being able to make full use of the real-time and
resource-reservation features of the underly-
ing platform on the real-time side. Thus, we
can leverage the best of both worlds and move
towards a running prototype very efficiently.

The most noteworthy consequence of this split
in the architecture can be seen in the commu-
nication proxies. Because now there can occur

Resource Management Subsystem

Component Manager

Implementation Manager

QoS
Repository

Instance of
Comp. Impl. 1

Contract Manager
Instance of

Comp. Impl. 2
Communication

Proxy

Resource Proxy

NRT–NRT

RT–RT

NRT Å RT

NRT Æ RT

RT: real-time; NRT: non-real-time

non-real-time

real-time

Figure 2: Detailed COMQUAD container archi-
tecture

four different types of communication, either
in one of the container parts or between them,
we need four different specializations of com-
munication proxies. It is important to under-
stand the differences between these commu-
nication proxies. Namely, the proxy for com-
municating from the real-time part to the non-
real-time part needs to provide asynchronous
communication whereas all other proxies only
have to provide synchronous communication.

3 Implementation

3.1 Split Architecture

Based on our experience with the develop-
ment of DROPS (Dresden Real-time OPerating
System) [16], we conclude that real-time capa-
bilities are often not necessary for large appli-
cations, but just for small parts of them. In
DROPS we have small real-time capable server
processes for dedicated tasks—for example, a
window manager [6], a SCSI disk driver [32],
and network drivers [1, 3, 24]. These servers
run directly on our real-time capable micro-
kernel (Fiasco, [19]). Complex legacy software
without real-time requirements runs concur-
rently on a large off-the-shelf Linux server
(L4Linux, [18]), which gives us a fairly large
code base.

Consequently, we designed our component

6



container as a split architecture where we
have a large non-real-time container, which is
based on JBoss [7], and a small real-time con-
tainer, which runs directly on DROPS . Thus,
we could both simplify the development by
reusing existing software and minimize the
amount of real-time–capable program code.

The split architecture also motivates the in-
troduction and support of both QoS-capable
and QoS-incapable components. This allows
developers to divide applications into a real-
time and a non-real-time part as well. Cur-
rently, NRT components must be developed
with Java and RT components with C/C++, re-
spectively. In the future we plan to loosen this
restriction.

For the NRT container we use the infrastruc-
ture of a stripped down JBoss container and
add support for the new COMQUAD compo-
nent model [11] together with necessary ser-
vices, such as contract negotiation, adminis-
tration, as well as implementation and com-
ponent management. The NRT container ex-
clusively handles the deployment of compo-
nent archives including integrity checks and
the initialization phase of components. When-
ever a client wants to create a component in-
stance, the NRT container receives and pro-
cesses the required create call of the compo-
nent’s home interface. It also starts the con-
tract negotiation phase (cf. Sect. 3.4) and sends
control commands to the RT container. After-
wards, the client directly talks to the RT con-
tainer.

For the RT container we have identified a min-
imal set of necessary services. It contains a
simple instance repository, communication in-
frastructure (cf. Sect. 3.2), resource managers,
and a small framework for components, con-
sisting of interfaces and base classes for com-
ponent instances, and helper functions.

When communicating with real-time–aware
cients, the RT container acts as a proxy for
the NRT container with respect to its man-
agement functionality for connecting compo-
nent instances, intercepting communication,
and starting and stopping components. The
real-time component instances have the RT

container reserve their required resources with
the respective resource managers. DROPS re-
source managers as described in [17] are orga-
nized in a resource reservation systems, which
is governed by a QoS manager. The QoS man-
ager accepts the reservation requests of the
container and tries to place the reservation
with the respective resource managers. If all
requested resources can be reserved, it replies
to the container with a message containing
handles to the reservations. These handles
are later used to access the reserved resources.
To be able to manage different kinds of re-
sources, the resource managers implement a
generic admission interface, which is used by
the QoS manager to make reservation. In
case a reservation is violated—for instance, be-
cause a higher priority reservation has been
made—the container is notified via its notifica-
tion interface. The container then initiates the
adaptation of all components using the con-
sidered resource.

In real-time environments we have to differen-
tiate between active and passive components.
A passive component is only executed when
a user request arrives or another component
calls its methods. In contrast, an active com-
ponent is processing data in its own thread
of control, that is, without an explicit user re-
quest. An example is a video decoder that
decodes a frame every 40 ms without another
component calling the decode method. To be
able to use such an active component, the con-
tainer must be able to reserve periodic execu-
tion time for this component. The component
has to interact with the execution infrastruc-
ture to be invoked whenever its execution time
starts. This could, for instance, be done by ex-
plicitly waiting for the beginning of the next
period.

3.2 Communication between RT and
NRT Container Parts

To maximize software reuse and to create a
really small and fast RT container, we tried
to find a minimal set of functionality the RT
container has to support in order to be man-
ageable by the NRT container. Most of these

7



Destroyed ReadyStopped

InitializingCreatedNon existent

destructor

stop

callMethod

setParameter/

destroy

create setParameter/

init

connect

connect

Figure 3: Life cycle of a COMQUAD component

functions also correspond to state transitions
in the life cycle of a COMQUAD component as
depicted in Fig. 3.

create/destroy. The RT container must be able
to create new and remove existing com-
ponent instances.

init. Components must be initialized before
they can be started.

stop. This functions stops the request delivery
to a component. Buffered requests will
still be processed, but no new requests
will be accepted.

connect. The container must be capable of
connecting component interfaces with
other instances.

setParameter. The container must be able to
set components’ properties. This method
is meant to be used for modifying config-
uration parameters upon initialization.

reserveResources. The container must be able
to make resource reservations on behalf of
components.

callMethod. The container must be able to
forward calls to arbitrary component
methods. We discuss the communication
details of this function in Sect. 3.3.

install/uninstall Specification/Implementation.
The container must be able to accept and
remove component specifications and
implementations.

Fortunately, it is not necessary to implement
all of these functions with RT guarantees.
We focus on RT communication between con-
nected components, not the establishing of
communication structures and setup in RT.
Thus, only the callMethod operation must
be carried out in RT. Other services, such as
instance creation, resource reservation, and
connecting instances do not have RT require-
ments.

3.3 Communication between RT and
NRT Components

The architecture split described in Sect. 3.1 im-
plies two types of components: real-time and
non-real-time. As a consequence, four constel-
lations of communication can occur:

Non-real-time to non-real-time. In this con-
stellation a NRT component in the NRT
component container invokes another
NRT component. This communication
uses the infrastructure provided by the
JBoss-based container only.

Non-real-time to real-time. The details for
this communication are depicted in Fig. 4.
A NRT component invokes a RT compo-
nent in the RT container. The communica-
tion crosses container boundaries. There-
fore, we use a dynamic proxy to intercept
and delegate the message to a specialized
invocation handler. The message is trans-
ferred through a generated bridge, which
marshals the message into an octet stream
and transfers it to the RT container us-
ing native microkernel IPC mechanisms.
In the RT container a generated demul-
tiplexing container skeleton delivers the
message to the addressed interface skele-
ton, which itself unmarshals the message
from the octet stream. On the RT side we
do not use a Dynamic Invocation Inter-
face but generated code instead, which is
larger but faster [12, 14, 15].

Communication with RT components re-
quires a reservation and the invoking
component’s communication pattern has

8



JNI-Bridge

dyn. Proxy

Invocation
Handler

Java C (JNI)

L4Linux Drops

Container
Stub

Container
Skeleton

Interface
Skeleton

choose specific
invocation handler

method call

Object-ID,
Octet Stream IPC

choose specific. 
interface skeleton

Octet Stream

method call

Marshalling

unmarshalling

Figure 4: NRT to RT component communica-
tion

Java C (JNI)

L4Linux Drops

msg. receiver
thread

JNI
IPC-Wait

real-time
component

create new thread for
message receiving

msg. buffer

insert message,
wakeup sleeping

non-real-time
component

wait for message

non-real-time
component

Figure 5: RT to NRT component communica-
tion

to conform with the reservation. Non-
conforming communication can be de-
layed or dropped by the RT container.

Real-time to real-time. Communication be-
tween RT components does not cross
container boundaries and can be sched-
uled entirely by the RT container, because
their specification contains information
about the load generated.

Real-time to non-real-time. There are cases
when RT components use complex ser-
vices provided by NRT components.
However, synchronous communication is
not suitable in this case, because it could
delay the RT components for an un-
bounded amount of time. The alternative
of asynchronous communication will be
discussed in detail below.

Asynchronous communication requires mes-
sage buffers. A very simple solution for this
approach is depicted in Fig. 5, with the buffer
located in the NRT container. It is notewor-
thy that it is basically impossible to commu-
nicate from the RT side to the NRT side with-
out the possibility of message loss. The thor-
ough discussion of this communication con-
stellation is subject of another publication [30],
where we propose a generic buffer compo-
nent, which is responsible for managing re-
quests sent from RT components to NRT com-
ponents. This component handles buffer re-
placement strategies and request delivery on
behalf of the sender. Using this generic buffer
component it is possible to transparently con-
nect RT and NRT components.

3.4 Component Contract Negotiation

The negotiation of component–component as
well as component–platform contracts [41] in
the contract manager is crucial for supporting
non-functional properties in our architecture.
Negotiation is responsible to find valid com-
ponent implementations for component nets
fulfilling the required properties of a particu-
lar client.

We use the terminology of CQML+ [33] for
contract negotiation, meaning that a contract
as well as QoS requirements and offers con-
sist of a set of quality statements. Each quality
statement formulates a Boolean expression us-
ing quality characteristics. Finally, quality char-
acteristics represent the current value of some
system state—for example, response time.

According to Cheesman and Daniels [2], a
(functional) component specification supports
a non-empty set of interfaces and it can be real-
ized by a number of implementations. In turn,
we require each QoS-aware component imple-
mentation to provide at least one QoS profile. It
represents a particular operating range of the
implementation and consists of offered and re-
quired quality statements as well as the re-
source demand. All this information spawns
a search space from which a component im-
plementation and profile must be selected by

9



the contract negotiation algorithm.

Contract negotiation is initiated when a client
wants to create a specified component in-
stance via the home interface of this compo-
nent. The client transmits QoS requirements
together with the create request to the con-
tainer. The actual contract negotiation is then
performed in three steps within the NRT part
of the container:

1. Component net computation: A request is
typically not handled by a single com-
ponent, but by a network of cooperating
components. In this step, the contract
manager recursively derives a representa-
tion of this component net from the ap-
plication assembly. The component net
representation exists entirely at the level
of (functional) component specifications,
no implementations have been selected so
far. Because it uses functional information
only, the result can already be determined
at component deployment time.

2. Component implementation and profile selec-
tion: Based on the initial QoS require-
ment of the client, only component imple-
mentations and profiles are selected that
mutually fulfill the required and offered
quality statements for each connection in
the component net.

3. Resource reservation: The contract manager
transmits the resource demand of the con-
crete component net found in the previ-
ous step to the resource manager. The
resource manager can either successfully
reserve the required resources or report
an error in case of insufficient system re-
sources. In the latter case the contract
manager must return to the previous step
and try to find another solution with a
smaller footprint. If the resource reserva-
tion has been completed successfully, the
contract manager returns a reference to
the requested component instance to the
client.

The component implementation and profile
selection step is the most important part of

the contract negotiation algorithm. We first
present a naı̈ve approach together with a dis-
cussion of its problems. Later we investigate
optimization strategies to overcome the iden-
tified challenges.

First, a list of available implementations is
created together with their QoS profiles for
each component specification of the compo-
nent net. Next, a particular implementation
and profile are chosen for each component of
the net from the previously created list. We
call such a selection a component net configura-
tion. Then, the required and provided quality
statements for each connection in the compo-
nent net are compared in order to find valid
contracts. Iff (if and only if) a valid contract
can be obtained for all connections in the com-
ponent net configuration, the current compo-
nent net configuration represents a possible
solution for the client request. In this case the
resource reservation step can be executed. If
reservation fails, another iteration is started
and the next possible configuration is chosen.

Figure 6: Contract negotiation in component
nets

Figure 6 depicts a simple example scenario
where a client creates a component net con-
sisting of two components. Each of the two
connected component specifications A and B

has two available implementations. Depend-
ing on the client’s QoS requirements, the con-
tract manager has to select one out of nine pos-
sible configurations (see Tab. 1). The example
is deliberately kept simple to allow a concise
illustration of our different approaches.

Table 1 shows all possible configurations to-
gether with a short explanation whether they
are valid. The first configuration selects imple-
mentation 1 with profile 1 for Spec A and im-
plementation 1 with profile 1 for Spec B (abbr.
A.1.1 resp. B.1.1). The configurations 2–9 are

10



Table 1: Possible component net configura-
tions for the example in Fig. 6

No. Configuration Contract negotiation result 

1 A.1.1 � B.1.1 Provided QoS of A.1.1 < required QoS of client 

2 A.1.1 � B.2.1 Provided QoS of A.1.1 < required QoS of client 
provided QoS of impl B.2 is not compatible with impl. A.1 

3 A.1.1 � B.2.2 Provided QoS of A.1.1 < required QoS of client 
provided QoS of impl B.2 is not compatible with impl. A.1 

4 A.1.2 � B.1.1 Provided QoS of A.1.2 < required QoS of client 

5 A.1.2 � B.2.1 Provided QoS of A.1.2 < required QoS of client 
provided QoS of impl B.2 is not compatible with impl. A.1 

6 A.1.2 � B.2.2 Provided QoS of A.1.2 < required QoS of client 
provided QoS of impl B.2 is not compatible with impl. A.1 

7 A.2.1 � B.1.1 Valid configuration 

8 A.2.1 � B.2.1 Negotiation ok, but insufficient resources 

9 A.2.1 � B.2.2 Valid configuration 

 

created accordingly.

The naı̈ve contract negotiation approach ap-
plied to the example successively verifies the
component net configurations—for example,
in the order depicted in Tab. 1. The two
component connections (Client to Spec A and
Spec A to Spec B) are tested for each configu-
ration to find valid contracts but the order of
these connection comparisons is chosen ran-
domly. An invalid contract for one connec-
tion stops the test and the algorithm continues
with the next configuration. Finally, configu-
ration 7 is found to be valid and the resources
are reserved successfully. This is a stop criteria
and the remaining configurations 8 and 9 are
not tested anymore.

Unfortunately, this algorithm has several
drawbacks:

Complexity. To illustrate the complexity con-
sider the following example: A compo-
nent net with only four components and
two available implementations for each
component with two profiles each already
results in 4

4
= 256 different configura-

tions that need to be searched. Obviously,
we need to limit the search space to avoid
this combinatorial explosion.

Negotiation and Reservation are unrelated.
The negotiation of contracts between
components in a component net is per-
formed independently from the ensuing
resource reservation. This is only a prob-
lem if resource reservation fails. In this
case, the next iteration may find any other

component net configuration even if that
configuration required more resources.
In fact, resource demand is completely
ignored during the contract negotiation
phase.

Finds any solution, but not the best.
Although the algorithm is guaran-
teed to find a possible solution if any
exists, it does not necessarily find the
best solution. This means that it may not
provide the best QoS possible for the
currently available system resources. Of
course, it would be possible to always
look for all solutions and then pick the
best one out of them. But this would
even increase complexity, rendering it
impracticable for large-scale applications.

To reduce complexity, we need to find stop
criteria for the implementation and profile
search. We also need to ensure that the best
possible solution is selected instead of an arbi-
trary one. Currently, we do not have a compre-
hensive strategy to solve these challenges, but
we have a couple of independent approaches
that, combined, lead to a good heuristic.

As a first approach, we try to minimize the
search space by selectively removing QoS
profiles or even component implementations
from the list of available profiles for a par-
ticular component specification. This can be
done if a profile does not match any profile
of the partner component—for example, if it
uses quality characteristics that no other pro-
file provides. The complexity of this step de-
pends linearly on the number of profiles.

Applied to our example, we can take out con-
figurations 2, 3, 5, and 6 because the profiles of
implementation B.2 are not compatible with
the implementation A.1.

The second approach optimizes the negotia-
tion between two components as well as be-
tween components and clients. All available
profiles for a particular component specifica-
tion are ordered by descending quality. Given
a quality requirement, profiles’ offers are now
checked in this order. The comparison can
be stopped as soon as the current profile’s of-

11



fer does not fulfill the requirement. Because
the profiles have been ordered by their qual-
ity, none of the remaining profiles can fulfill
the requirements. A lot of unneeded com-
parison steps are avoided this way. To order
the profiles, we combine two different order-
ings: (i) The order of the profiles for one im-
plementation is given in this implementation’s
non-functional specification (using CQML+’s
precedence-clause). (ii) Profiles of different
implementations are ordered using the qual-
ity semantics from the definition of the con-
strained characteristics, extended by a client-
defined precedence rule for resolving con-
flicts. We are currently investigating how con-
flicts between these two order relationships
can be resolved best when merging them.

In our example, profile A.1.1 does not fulfill
the client’s QoS requirements. Thus, if the pro-
files for one particular implementation are or-
dered by descending quality, profile A.1.2 can-
not fulfill the requirements either, because it
offers even less QoS than profile A.1.1. Con-
sequently, configurations 1–6 can be removed
from the search space.

To extend this approach to complete com-
ponent nets, we need to define an order in
which the contract manager negotiates bilat-
eral component–component contracts. Based
on their connections, we can define a par-
tial order on component specifications in com-
ponent nets as follows: A component C1 is
“smaller than” a component C2 iff C1 directly
or indirectly uses C2. Two components are
incomparable iff they have no direct or in-
direct usage relationship. By this order re-
lation the client (or the component directly
used by the client, respectively) is always the
minimal component. We can now use stan-
dard algorithms for sequencing partially or-
dered sets to determine a total order in which
contracts are negotiated. If the bilateral con-
tract negotiations are performed in this or-
der, potential conflicts can be detected early
and many—then unnecessary—comparisons
can be skipped.

The two component connections in our ex-
ample (cf. Fig. 6) define two order relations

(Client < Spec A and Spec A < Spec B) lead-
ing to the total order (Client < Spec A <

Spec B). Bilateral contracts are negotiated
in this order—first, the connection between
Client and Spec A and afterwards between
Spec A and Spec B. The negotiation of con-
tracts between Client and Spec A fails for the
configurations 1–6 because Spec A cannot ful-
fill the required QoS of the client. Since this
connection is negotiated first according to the
determined order relation, the second compo-
nent connection between Spec A and Spec B

does not need to be compared. Several unnec-
essary negotiations are avoided this way.

The third approach deals with the problem
that contract negotiation and resource reser-
vation are unrelated. This issue is more diffi-
cult to tackle. Currently, the resource reserva-
tion returns only a simple Boolean response.
We believe a more detailed response would be
more appropriate in case of reservation failure.
This information could then be used to find
another configuration for the component net,
requiring less resources.

We are currently working on these issues, in-
vestigating the various options for optimiza-
tion of the contract negotiation algorithm in
more detail.

4 Related Work

The OMG’s CORBA Component Model
(CCM) [27] forms the basis for many func-
tional concepts of our component model, but
it does not address special problems related
to non-functional properties—for instance,
dynamic selection of implementations at
runtime. Just like Sun’s Enterprise JavaBeans
(EJB) component model [4], CCM supports
only a limited, fixed set of non-functional
aspects like persistence, access control,
transactions, etc.

A fundamental building block of our com-
ponent container implementation is formed
by the extensible JBoss application server [7].
It features a slightly different variant of In-
terceptors as described in Schmidt’s Pattern-

12



oriented Software Architecture [35]. This vari-
ant is the foundation for the resource and com-
munication proxies in our component plat-
form architecture. We have already shown
in previous publications how this concept can
be exploited to support arbitrary middleware
functionality in such component platforms
[29, 9].

The project QuA [37, 36] aims at precisely
defining an abstract component architecture,
including the semantics for general QoS spec-
ifications. The proof of concept is pro-
vided by implementing an open framework
for platform-managed QoS. There are some
differences to our approach: First of all, we
do not only consider QoS in terms of timeli-
ness and accuracy of output but also with re-
spect to other non-functional properties such
as security aspects. While the abstract QuA ar-
chitecture could theoretically be implemented
on top of any real-time-capable combination
of operating system and middleware, our ap-
proach is closely tied to DROPS [16]. This al-
lows us to fully leverage the virtues of this
platform—for instance, its clean microkernel
architecture.

CIAO [40, 13], another related project, builds
a QoS-enabled CCM implementation on top
of TAO [34]. The project’s philosophy is a
strong adherence to existing OMG specifica-
tions such as RT/CORBA [28] and CCM, and
the extension of those. In contrast, we decided
to focus on the challenges of supporting non-
functional properties. Hence, we have tried
to keep the functional part of our component
model as lean as possible while still adopt-
ing tried and tested concepts. The consider-
able overhead of implementing or extending
a fully compliant CCM infrastructure would
have been counterproductive to a prompt re-
alization of our main targets.

The Real-Time Specification for Java (RTSJ)
[31] introduces the concepts of timeliness,
schedulability, and real-time synchronization
to Java-based applications. One of the biggest
challenges in this connection is to prevent the
garbage collector of Java’s memory manage-
ment to interfere with real-time task schedul-

ing. However, resource reservation is not ad-
dressed by this specification, which would
prevent an implementation of our concepts on
top of this platform. The reference implemen-
tation of Real-Time Java is based on TimeSys
Linux [39], which ensures dependability of
real-time applications by running critical sec-
tions in kernel mode. In contrast, our platform
DROPS [16] follows the philosophy of running
as much code as possible in user mode, thus
increasing system stability and safety.

Requirements for real-time extensions for Java
were defined in the NIST report [26]. The
NIST group proposes partitioning the execu-
tion environment into a real-time core provid-
ing the basic real-time functionality and a tra-
ditional JVM, which services normal Java ap-
plications. Based on these requirements, the
J Consortium defined the Real-Time Core Ex-
tensions for Java (RTCE) [21], which follow the
idea of a separate core for real-time services.
In contrast, in RTSJ all services are provided in
one JVM, as such containing the real-time and
the non-real-time applications. The architec-
tural RTCE approach is similar to the design
of DROPS, in that both run large and complex
parts in a classic non-real-time environment
and only small, predictable parts in a real-time
environment.

The 2K Operating System [22] implements a
resource management system targeted at dis-
tributed applications. It focuses on load bal-
ancing through global knowledge about re-
source utilization on local nodes [23]. All lo-
cal resources are monitored by a local resource
manager (LRM), which is also responsible for
admission, resource negotiation, reservation,
and scheduling of jobs. Resources are de-
scribed using a name-value pair: The name
identifies the resource, the value contains a
description of the resource properties. One
reservation can contain several resource de-
scriptions for different resources. In contrast,
COMQUAD uses heterogenous resource man-
agers and a generic description for resources
and reservation interfaces.

13



5 Conclusions and Outlook

Our report proposed an architecture for a real-
time-capable, component-based runtime en-
vironment, building on concepts for separat-
ing non-functional and functional concerns in
component-based system development [11].
We furthermore introduced a prototypical im-
plementation of this architecture, and ex-
plained various special issues thereof.

In detail, we presented the conceptual split
of our COMQUAD component container into
a lean real-time part and a larger non-real-
time part. The former is capable of giving
guarantees by enforcing resource reservations,
whereas the latter part has been built for run-
ning less time-critical code, including contract
negotiation for real-time components. Thus,
our container is an application server that acts
as a contract manager selecting component
implementations to be instantiated for appli-
cation assembly at runtime.

The container uses the information from as-
sembly, specification, implementation, and
quality (CQML+) descriptors (cf. [11]) to in-
stantiate and connect component implementa-
tions in such a way that non-functional prop-
erties required by clients of the system can
be guaranteed. We refer to this as Container-
Managed QoS. In the most simple, currently
implemented case of contract negotiation—
which we described in Sect. 3.4—the con-
tainer compares client requests with all pos-
sible component net configuration offers and
if they match (i.e., the component net of-
fers more than, or at least the same amount
as, the client requests), the container instan-
tiates the component net configuration. Var-
ious suggestions for improvement have al-
ready been made in Sect. 3.4—for example, to
selectively reduce the search space of poten-
tial implementations, to apply standard graph
serialization algorithms after defining a par-
tial order on required and provided quality
statements, or to augment the return type
of resource reservation. These enhancements
are currently being implemented and evalu-
ated. Related activities also include the unified
treatment of security and other non-functional

properties [8], where user-defined weighing of
different non-functional measures (e.g., confi-
dentiality vs. throughput) becomes an impor-
tant issue. This aspect forms an integral part
of our contract negotiation scheme.

Acknowledgements

COMQUAD—Components with Quantitative
properties and Adaptivity—is a DFG-funded
research group (FOR 428) at Technische Uni-
versität Dresden.

See http://www.comquad.org/ for details.

References

[1] Martin Borriss and Hermann Härtig. De-
sign and implementation of a real-time
ATM-based protocol server. In 19th Real-
Time Systems Symposium (RTSS), Madrid,
Spain, December 1998. IEEE.

[2] John Cheesman and John Daniels. UML
Components: A Simple Process for Specify-
ing Component-Based Software. Addison
Wesley Longman, 2001.

[3] U. Dannowski and H. Härtig. Policing of-
floaded. In 6th Real-Time Technology and
Application Symposium, Washington D.C.,
USA, May 2000. IEEE.

[4] Linda G. DeMichiel. Enterprise JavaBeans
Specification, Version 2.1. Sun Microsys-
tems, final release edition, 12 November
2003.

[5] Brit Engel. Entwicklung einer Laufzei-
tumgebung für Komponenten mit
Ressourcenanforderungen. Diplomar-
beit, Technische Universität Dresden,
30 April 2003. In German. English title:
Development of a runtime environment
for components with requirements for
resources.

[6] Norman Feske and Hermann Härtig.
Demonstration of DOpE — a window

14

http://www.comquad.org/


server for real-time and embedded sys-
tems. In 24th Real-Time Systems Sympo-
sium (RTSS) [20], pages 74–77.

[7] Marc Fleury and Francisco Reverbel. The
JBoss extensible server. In Markus
Endler and Douglas Schmidt, editors, In-
ternational Middleware Conference, volume
2672 of Lecture Notes in Computer Science,
pages 344–373, Rio de Janeiro, Brazil, 16–
20 June 2003. ACM / IFIP / USENIX,
Springer.

[8] Elke Franz and Christoph Pohl. Towards
unified treatment of security and other
non-functional properties. In Workshop
on AOSD Technology for Application-Level
Security (AOSDSEC’04), Lancaster, UK,
23 March 2004.

[9] Steffen Göbel and Michael Nestler. Com-
posite components support for EJB. In
Winter International Symposium on In-
formation and Communication Technologies
(WISICT’04), Cancun, Mexico, 5–8 Jan-
uary 2004. ACM.

[10] Steffen Göbel, Christoph Pohl, Ronald
Aigner, Martin Pohlack, Simone Röttger,
and Steffen Zschaler. The COMQUAD
component container architecture. In
Clemens Szyperski, editor, 4th Working
IEEE/IFIP Conference on Software Architec-
ture (WICSA), Oslo, Norway, 12–15 June
2004. IEEE.

[11] Steffen Göbel, Christoph Pohl, Simone
Röttger, and Steffen Zschaler. The
COMQUAD component model – en-
abling dynamic selection of implementa-
tions by weaving non-functional aspects.
In Karl Lieberherr, editor, 3rd Interna-
tional Conference on Aspect-Oriented Soft-
ware Development (AOSD’04), Lancaster,
UK, 22–26 March 2004. ACM Press.

[12] A. Gokhale and D. Schmidt. The per-
formance of the CORBA dynamic invo-
cation interface and dynamic skeleton in-
terface over high-speed ATM networks.
In Global Telecommunications Conference
(GLOBECOM ’96), pages 50–56, London,
England, November 1996. IEEE.

[13] Aniruddha Gokhale, Douglas C.
Schmidt, Balachandran Natarajan,
and Nanbor Wang. Applying model-
integrated computing to component
middleware and enterprise applications.
Communications of the ACM, 45, Octo-
ber 2002. Special Issue on Enterprise
Components, Service and Business
Rules.

[14] A. Haeberlen, J. Liedtke, Y. Park,
L. Reuther, and V. Uhlig. Stub-code
performance is becoming important. In
1st Workshop on Industrial Experiences with
Systems Software (WIESS), pages 357–363,
San Diego, CA, USA, 22 October 2000.
USENIX.

[15] Timothy H. Harrison, David L. Levine,
and Douglas C. Schmidt. The design and
performance of a real-time CORBA event
service. In Conference on Object-Oriented
Programming Systems, Languages and Ap-
plications (OOPSLA ’97), pages 184–200,
Atlanta, GA, USA, 5–9 October 1997.
ACM SIGPLAN.

[16] H. Härtig, R. Baumgartl, M. Borriss, Cl.-
J. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schönberg, and J. Wolter.
DROPS: OS support for distributed mul-
timedia applications. In 8th European
Workshop on Support for Composing Dis-
tributed Applications, Sintra, Portugal,
September 1998. ACM SIGOPS.

[17] H. Härtig, L. Reuther, J. Wolter, M. Bor-
riss, and T. Paul. Cooperating resource
managers.

[18] Hermann Härtig, Michael Hohmuth, and
Jean Wolter. Taming Linux. In 5th
Annual Australasian Conference on Parallel
And Real-Time Systems (PART ’98), Ade-
laide, Australia, September 1998.

[19] Michael Hohmuth. Pragmatic nonblocking
synchronization for real-time systems. PhD
thesis, Technische Universität Dresden,
Fakultät Informatik, September 2002.

[20] IEEE. 24th Real-Time Systems Symposium
(RTSS), Cancun, Mexico.

15



[21] J Consortium. Real-Time Core Extensions
(RTCE), September 2000. Available at
http://www.j-consortium.org/.

[22] F. Kon, R. H. Campbell, F. J. Ballesteros,
M. D. Mickunas, and K. Nahrstedt. 2K:
A distributed operating system for dy-
namic heterogeneous environments. In
9th Intl. Symposium on High Performance
Distributed Computing, Pittsburgh, USA,
August 2000. IEEE.

[23] F. Kon, T. Yamane, C. K. Hess, R. H.
Campbell, and M. D. Mickunas. Dy-
namic resource management and auto-
matic configuration of distributed com-
ponent systems. In 6th Conference on
Object-Oriented Technologies and Systems
(COOTS ’01), San Antonio, USA, January
2001. USENIX.

[24] Jork Löser and Hermann Härtig. Real
time on ethernet using off-the-shelf hard-
ware. In 1st Intl. Workshop on Real-Time
LANs in the Internet Age, Vienna, Austria,
June 2002.

[25] Nenad Medvidovic and Richard N. Tay-
lor. A classification and comparison
framework for software architecture de-
scription languages. IEEE Transactions on
Software Engineering, 26(1):70–93, January
2000.

[26] National Institute of Standards and
Technology. Requirements for Real-
time Extensions for the Java Plat-
form, September 1999. Available at
http://www.nist.gov/rt-java/.

[27] Object Management Group. CORBA
Components, 2001. ptc/01-11-03.

[28] Object Management Group. Real-Time
CORBA Specification, version 2.0 edition,
November 2003. formal/03-11-01, see
http://www.omg.org/realtime/.

[29] Christoph Pohl and Steffen Göbel. Inte-
grating orthogonal middleware function-
ality in components using interceptors.
In Kommunikation in Verteilten Systemen
(KiVS 2003), Informatik Aktuell, Leipzig,

Germany, February 2003. VDE/ITG & GI,
Springer.

[30] Martin Pohlack, Ronald Aigner, and Her-
mann Härtig. Connecting real-time and
non-real-time components. Technical Re-
port TUD-FI04-01, Technische Univer-
sität Dresden, February 2004.

[31] The Real-Time for Java Expert Group.
The Real-Time Specification for Java,
v1.0 edition, 12 November 2001.
http://www.rtj.org/.

[32] Lars Reuther and Martin Pohlack.
Rotational-position-aware real-time
disk scheduling using a dynamic active
subset (DAS). In 24th Real-Time Systems
Symposium (RTSS) [20], pages 374–385.

[33] Simone Röttger and Steffen Zschaler.
CQML+: Enhancements to CQML. In
Jean-Michel Bruel, editor, 1st Intl. Work-
shop on Quality of Service in Component-
Based Software Engineering, pages 43–56,
Toulouse, France, June 2003. Cépaduès-
Éditions.

[34] Douglas C. Schmidt, David L. Levine,
and Sumedh Mungee. The design of
the TAO real-time object request broker.
Computer Communications, 21(4), 1998.

[35] Douglas C. Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns
for Concurrent and Networked Objects, vol-
ume 2 of Software Design Patterns. John
Wiley and Sons, 2000.

[36] Richard Staehli and Frank Eliassen. QuA:
A QoS-aware component architecture.
Technical Report Simula 2002-12, Simula
Research Laboratory, 2002.

[37] Richard Staehli, Frank Eliassen, Gordon
Blair, and Jan Øyvind Aagedal. QuA: A
QoS-aware component architecture. In
Middleware2003 Companion, page 330, Rio
de Janeiro, Brazil, June 2003. PUC–Rio.

[38] Clemens Szyperski. Component Soft-
ware: Beyond Object-Oriented Program-

16

http://www.j-consortium.org/
http://www.nist.gov/rt-java/
http://www.omg.org/realtime/
http://www.rtj.org/


ming. Component Software Series.
Addison-Wesley, 2nd edition, 2002.

[39] TimeSys Corp. TimeSys Linux. See
http://www.timesys.com/.

[40] Nanbor Wang, Christopher D. Gill, Dou-
glas C. Schmidt, Aniruddha Gokhale,
Balachandran Natarajan, Craig Ro-
drigues, Joseph P. Loyall, and Richard E.
Schantz. Total quality of service pro-
visioning in middleware and applica-
tions. Microprocessors and Microsystems,
27(2):45–54, March 2003. Special Issue
on Middleware Solutions for QoS-
enabled Multimedia Provisioning over
the Internet.

[41] Steffen Zschaler and Simone Röttger.
Types of quality of service contracts
for component-based systems. In
Intl. Conference on Software Engineering
(IASTED SE 2004), Innsbruck, Austria,
17–19 February 2004. IASTED, ACTA
Press.

17

http://www.timesys.com/

	Introduction
	Approach
	Conceptual Architecture
	Real-Time and Non-Real-Time Parts

	Implementation
	Split Architecture
	Communication between RT and NRT Container Parts
	Communication between RT and NRT Components
	Component Contract Negotiation

	Related Work
	Conclusions and Outlook

