
An Integrated Platform for Mobile, Context-
Aware, and Adaptive Enterprise Applications

Gerald Hübsch, Axel Spriestersbach, Thomas Springer, Thomas
Ziegert
{huebsch, springet}@rn.inf.tu-dresden.de
{axel.spriestersbach, thomas.ziegert}@sap.com

Abstract: In this paper we present an approach for the device-independent author-
ing of mobile, context-aware and adaptive web applications. We present concepts
for the semantic and syntactic adaptation of web dialogs to heterogeneous devices
based on the Dialog Description Language. We describe advanced concepts for
the integration of dynamic content and user interaction handling in device-
independent application engineering. Furthermore, the software architecture of
the Adaptation Framework, a runtime environment for dialog adaptation, is intro-
duced. Finally, we present an adaptive sample application and give an outlook to
future research topics.

Keywords: Adaptation, Context-Awareness, Dynamic Content, Mobile Devices,
Multimodality, MVC, Fragmentation, Single Source Authoring, XML

1 Introduction

According to a study conducted by IDC Research, the number of nomadic workers
spending at least 20 percent of their working hours away from home, their main
place of work, or both in Europe will increase to over 28.8 million by 2005. There
is a large target group of subscribers for Mobile Intranet/Extranet access [IDC00].
This development is set in motion through the rapidly increasing availability of
multiple wireless infrastructures such as public WLAN hotspots, GPRS, HSCSD,
CONNEXION [Co04] and the startup of UMTS services in Europe. Another ma-
jor driver for this development is the omnipresence of connected mobile devices
like notebook computers, PDAs, and data-capable mobile phones in today’s com-
panies. However, the heterogeneity of these devices can be seen as one of the
main obstacles for their pervasive deployment in enterprise scenarios. Mobile de-
vices differ in a wide spectrum of parameters. These include various input meth-
ods such as keyboard, stylus, numeric keypad and combinations thereof, display
size and resolution, supported bearer types, processor speed, power consumption,
attached peripherals, browser type, and supported media formats. This set of pa-

2 Hübsch, Spriestersbach, Springer, Ziegert

rameters together with application- and user-specific parameters forms the context
of use for a mobile application. Web-applications development is still mainly fo-
cused on desktop-style target platforms with fully-fledged browsers and neglects
the additional requirements and limitations imposed by the context of use. Auto-
mated adaptation to the context of use represents a promising solution to over-
come the increasing differences in mobile device technology while reducing the
overall costs and development efforts for multi-device support. Vital requirements
for web application authoring languages are concepts for dynamic content genera-
tion and user interaction handling. Dynamic content support provides means to
include backend data into the content delivered to the client. User interaction han-
dling provides means to monitor and evaluate user interaction events by triggering
event-specific calls to application logic. Both concepts require a dedicated runtime
platform support. In the following we present an integrated adaptation platform for
device independent authoring and provisioning of context-aware mobile applica-
tions based on the single-source authoring approach. Furthermore, novel language
and platform concepts for dynamic content generation and user interaction han-
dling in device-independent application engineering are presented.

2 Related Work on Adaptive Web Applications

Various approaches have been proposed to address the challenges of adapting web
applications to heterogeneous devices. The process of re-engineering a web-
application for every target platform is referred to as Manual Adaptation. While
this approach yields high quality results, it induces high development and mainte-
nance costs due to the large number of different versions of a single applications.
Supporting a new device always obliges a new version of the application. Other
approaches like M-Links [ScTr01] and Digestor [BiSc97] suggest the use of
transcoding proxies. Transcoding proxies are placed between the mobile device
and the content source. They apply heuristics to extract and adapt existing content
to the requirements of a specific device. The utilization of heuristics and the lack
of meta-information about the adapted source make these approaches too error-
prone for the adaptation of complex web applications. An approach for the exter-
nal definition of machine-readable meta-data for adaptation control using RDF is
described in [HoKo00]. Although it enables the expression of fine-grained meta-
information such as the importance and role of arbitrary elements in HTML source
documents, the external definition of meta-information bears consistency issues if
the described source is dynamically generated or changed without notice. UIML
[AbHe00] allows the description of user interfaces on an abstract level separating
content, structure and style. UIML thus basically enables device independent con-
tent description, but allows only for purely syntactic mappings that we have found
to be insufficient. UIML does not support meta-data annotations.

A Platform for Mobile and Adaptive Enterprise Applications 3

3 Concepts for Dialog Adaptation

In the following, the concepts of semantic and syntactic dialog adaptation based
on the Single Source Authoring approach are introduced. Semantic adaptation pre-
cedes syntactic adaptation. Alongside, our approach for a device-independent dia-
log description language realizing these concepts is presented by introducing the
Dialog Description Language (DDL).

3.1 Single Source Authoring

Single Source Authoring uses a single, generic content description that abstracts
from the final content presentation in a specific target markup. Dedicated adapta-
tion algorithms are applied to generate device-specific content representations (cf.
1). These algorithms are parameterized by context information. Additionally, se-
mantic meta-information about the processed content is evaluated by these algo-
rithms. The adaptation algorithms can be deployed directly on the content server
or a proxy server.

3.2 The Dialog Description Language (DDL)

We have developed the Dialog Description Language (DDL) for our Single
Source Authoring approach. The DDL is a single-source authoring language that
enables the separation of structure, presentation, and content of web application
dialogs and supports meta-data concepts for semantic adaptation. The DDL is
based on a simple XML meta-language model consisting of four basic elements:

Application

<container>
<label>

Das soll die
generische

Beschreibung
für die anderen

Texte sein.
</label>
<textfeld>

Generic
Description +
Semantic meta-
information

Adaptation algorithms

</table>
<textcell>

<f> Das ist aber egal </f>
<text>

Auf ihre Augen
kommt’s nicht an

</text>
</textcell>

<textblock>
<textline>

Dieser Text sagt
</textline>
<textline>

auch nichts aus.
</textline>

</textblock>
<textblock>

<textline>

Aber das sollte auch OK
sein. Es folgt ein Bild,

das
sagt mehr als tausend
Worte :

</p>
</body>

Description B Description CDescription A

Context
InformationApplication

<container>
<label>

Das soll die
generische

Beschreibung
für die anderen

Texte sein.
</label>
<textfeld>

Generic
Description +
Semantic meta-
information

Adaptation algorithms

</table>
<textcell>

<f> Das ist aber egal </f>
<text>

Auf ihre Augen
kommt’s nicht an

</text>
</textcell>

<textblock>
<textline>

Dieser Text sagt
</textline>
<textline>

auch nichts aus.
</textline>

</textblock>
<textblock>

<textline>

Aber das sollte auch OK
sein. Es folgt ein Bild,

das
sagt mehr als tausend
Worte :

</p>
</body>

Description B Description CDescription A

Context
Information

Context
Information

Figure 1 – Single Source Authoring

4 Hübsch, Spriestersbach, Springer, Ziegert

<ddl>, <dialog>, <part> and <property>. The <ddl> element is the document
root element of any DDL dialog, <dialog> encloses the content section of a DDL
document. The <part> element reprensents an arbitrary dialog element. It is util-
ized to generically describe element types (e.g. input fields, frames, tables etc.),
i.e. the element semantics, using a set of properties. It can be nested to allow for
ancestor-child relationship modelling. Properties are assigned to parts using the
<property> element. A type property defines the type of each part (cf. 2). All other
properties are type-specific, e.g. for describing the URL of a hyperlink element or
the caption of a text input field. Part properties are distinguished by a name attrib-
ute.

We have defined semantics, i.e. property sets, for the part types listed in table 1.
Note that there is no target markup mapping defined yet.

Part types Semantics

frameset, frame frameset and frame description

container description of element groups

table, head, row, data table elements for describing tables, table headers, ta-
ble rows and table cells

label text and text style description

image inline image description (image source URL etc.)

form form description (action URL etc.)

submit form submit element description

radiogroup, radiobutton radiogroup menu description

textinput form input field for text

select, option select menu description

checkbox checkbox item description

Table 1 – DDL part type semantics

Additionally, DDL supports the concept of inheritance. DDL inheritance allows
for the definition of part configurations, i.e. for property element value presets.
Syntactically, this concept is implemented by the DDL <class> element. It is
uniquely identified by its name attribute. Its children are <property> elements con-
taining preset property values. Parts inherit these properties through a class at-
tribute that references the class by name. The inheriting part is assigned all prop-
erty definitions within the respective class. DDL class definitions can be external-
ized in library documents and thus be imported and reused in multiple dialogs.

A Platform for Mobile and Adaptive Enterprise Applications 5

<ddl>

 <dialog>

 <property name="title">Stock quote</property>

 <part>

 <property name="type">form</property>

 <property name="method">GET</property>

 <property name="action">getQuote.ddl</property>

 <property name="layout">vertical</property>

 <part class="stockLabel" name="symbol">

 <property name="content">Symbol:</property>

 </part>

 <part class="stockSymInp" name="stockSymbol"/>

 <part class="quoteButton"/>

 </part>

 </dialog>

 <class name="stockLabel">

 <property name="type">label</property>

 </class>

 <class name="stockSymInp">

 <property name="type">textinput</property>

 </class>

 <class name="quoteButton">

 <property name="type">submit</property>

 <property name="default">Get Quote!</property>

 </class>

</ddl>

Figure 2 – Sample DDL dialog using DDL inheritance

6 Hübsch, Spriestersbach, Springer, Ziegert

Figure 2 depicts a simple DDL dialog containing a form to retrieve stock quotes
by entering the stock symbol. The form part uses inline definitions for all its prop-
erties. In contrast, the <class> elements ‘stockLabel’, ‘stockSymInp’ and ‘quote-
Button’ exemplify the inheritance concept. Type assignments to parts are high-
lighted in bold face.

3.3 Semantic Adaptation

Semantic adaptation utilizes semantic meta-information about the adapted content.
Information about dialog semantics is manually added at authoring time. Thus, the
programmer has full control over the semantic adaptation. In DDL, it controls dia-
log adaptation with respect to the concepts of selective content and dialog frag-
mentation. Selective content eliminates or selects alternative content, e.g. to avoid
the delivery of long explanatory texts to a small screen device. Dialog fragmenta-
tion is the process of splitting up complex dialog structures into less complex sub-
structures (fragments) and their sequential delivery to the client while maintaining
the logical structure of the dialog. Dialog fragmentation is required to meet dis-
play size, protocol and usability constraints of mobile devices. As opposed to the
delivery of large, complex pages, fragmentation reduces the need for extensive
scrolling and reduces transfer and rendering times for the single fragments. Addi-

tionally, we utilize fragmentation to generate specific target-markup constructs for
presentation control, e.g. for content distribution over several WML Cards in a
single WML Deck. From a technical point of view, fragmentation is indispensable
to meet packet size constraints imposed by the WAP 1.x protocol [WAP01].

In DDL, the concept of selective content is implemented by context queries over
context profiles. Context queries are formulated in XPath [W3C99a] that can be
attached to part and property elements through a test attribute. If the query condi-

<part test="/client/display='graphical'">

 <property name="type">image</property>

 <property name="src">logo.jpg</property>

</part>

<part test="not(/client/display='graphical')">

 <property name="type">label</property>

 <property name="content">ACME Corp.</property>

</part>

Figure 3 – Selective Content in DDL

A Platform for Mobile and Adaptive Enterprise Applications 7

tion is fulfilled, the respective element is left in the dialog, otherwise it is re-
moved. Figure 3 shows a sample DDL dialog snippet with context queries. The
logo image is shown on graphics-capable clients, a short text is displayed on other
clients.

To control dialog fragmentation, DDL provides means to define logical dialog
units (atoms) that must not be split up by fragmentation. Arbitrary DDL parts can
be marked as atoms by adding the DDL ‘atom’ property. Some part types such as
radiogroups or parts without descendants are atoms by default. Logical dialog
units are utilized to group dialog elements that have a semantic relationship. An
adaptation algorithm is responsible for the dialog fragmentation at runtime. In our
approach, the algorithm determines the weight (i.e. size in transfer encoding, dis-
play space required on the client device) for every atom in the dialog. These atoms
are assembled to fragments of maximum size w.r.t. the client constraints and inter-
linked to allow for user navigation. The runtime environment (see sect. 5) is re-
sponsible for delivering the requested fragments and for the collection of user in-
put from forms spanning several fragments.

Figure 4 depicts a DDL code snippet that groups a text input field with its caption
using an atomic DDL container to prevent their separation by dialog fragmenta-
tion.

<part>

 <property name="type">container</property>

 <property name="atom">true</property>

 <part>

 <property name="type">label</property>

 <property name="content">Symbol:</property>

 </part>

 <part name=="stockSymbol">

 <property name="type">textinput</property>

 </part>
</part>

Figure 4 – Logical dialog unit in DDL

8 Hübsch, Spriestersbach, Springer, Ziegert

3.4 Syntactic Adaptation

After semantic adaptation, the DDL dialog must be transformed into a target
markup language supported by the target platform. This process is called syntactic
adaptation. We use XSLT [W3C99b] for this task. Stylesheets have been imple-
mented for transformations from DDL into XHTML, HTML and WML 1.x. Our
approach is extensible towards the support for new target markup languages by
simply adding a new stylesheet.

4 Dynamic content and application logic interaction

To facilitate the implementation of adaptive web applications in DDL using the
MVC pattern, we have identified four major infrastructure components: (1) re-
sources implementing server side application logic and backend access, (2) dy-
namic content elements for retrieval and rendering of dynamic data, (3) eventing
to trigger application logic through user interaction, (4) a server-side data model
to maintain application-specific state information. In the following, the implemen-
tation of these concepts in DDL is described.

4.1 DDL Resources

DDL Resources implement application logic and backend access. DDL Resources
are implemented by Java classes. To model the class properties and method signa-
tures used for event handling and backend access, we have introduced the ele-
ments <resource>, <method>, <param> and <field> in DDL.

The <resource> element represents a Java class. Its name attribute contains a
unique name to reference this resource within the dialog containing the resource’s
definition. Its class attribute specifies the fully qualified name of the implementing
class (cf. 5).

The <method> element is a child element of resource. Every method element de-
scribes the signature of a method implemented by its ancestor. Additionally,
method results can be written to the data model (see sect. 4.4) using an optional
reference attribute. Fig. 5 shows two method definitions for validateLogin and
getStockQuote. The name parameter corresponds to the name of the implementing
method.

The <param> element is a child element of method. Every param element models
a single method parameter. Parameter values may either be read from HTTP re-
quest parameters or from the data model. A parameter value is identified by
matching its name attribute against all request parameter names. If no matching

A Platform for Mobile and Adaptive Enterprise Applications 9

request parameter is found, the parameter value is read from the data model using
the element’s reference attribute. In case of a successful match, the data model is
updated with the request parameter value. For example, the validateLogin method
defined in fig. 5 expects a mandatory ‘passwd’ request parameter to be present
upon its invocation. If the ‘user’ parameter is not present, it is read from the data
model.

The <field> element (cf. 5) is a child element of method. Every field element
models a single data item returned by a method utilized for backend access, i.e. it
represents a cell within a database table. In dynamic data sections (see sect. 4.2),
placeholders matching the field’s name attribute value are replaced with the corre-
sponding data item value.

4.2 Dynamic DDL Content

To support dynamic content, we have extended the DDL with the <dynamic>
element (cf. 6). The dynamic element has two attributes. The resource attribute
references the DDL resource that implements the backend access method identi-
fied by the method attribute.

<resource name="AppLog" class="app.StockQuote">

 <method name="validateLogin"
 reference="/model[@id='stock']/authenticated">

 <param name="user"
 reference="/model[@id='stock']/name"/>

 <param name="passwd"/>

 </method>

 <method name="getStockQuote">

 <param name="symbol"
 reference="/model[@id='stock']/symbol"/>

 <field name="__stockName"/>

 <field name="__price"/>

 </method>

</resource>

Figure 5 – DDL Resource definition

10 Hübsch, Spriestersbach, Springer, Ziegert

<part>

 <property name="type">table</property>

 <part>

 <property name="type">header</property>

 <part>

 <property name="type">data</property>

 <property name="content">Symbol</property>

 </part>

 <part>

 <property name="type">data</property>

 <property name="content">Price</property>

 </part>

 </part>

 <dynamic resource="AppLog" method="getStockQuote">

 <part>

 <property name="type">row</property>

 <part>

 <property name="type">data</property>

 <property name="content">__stockName</property>

 </part>

 <part>

 <property name="type">data</property>

 <property name="content">__price</property>

 </part>

 </part>

 </dynamic>

</part>

Figure 6 – DDL Dynamic element

A Platform for Mobile and Adaptive Enterprise Applications 11

We refer to DDL dialogs containing dynamic elements as DDL Templates. The
access method is invoked during dialog processing (cf. 10). For every data set re-
turned by the access method, the content enclosed by the dynamic element is re-
peated and the contained field references are replaced with backend data. Finally,
the dynamic element is eliminated from the dialog.

4.3 DDL Eventing

Means to monitor and evaluate user interaction on the client are indispensable for
web application development. A common strategy for reacting to user interaction
is to specify UI event listeners and event handlers. Missing or reduced client-side
support for UI event generation and event handling on mobile platforms must also
be addressed. Therefore, we have supplemented the DDL with concepts for device
independent event description and event handling. Our concept is independent
from the structure and the order of UI elements in the dialog.

We have introduced the <listener> element (cf. 7) to associate interaction events
with DDL form controls. Its event attribute describes the event type that deter-
mines its processing on the server. The handler attribute contains a reference to
the DDL Resource and the handler method’s name. The priority attribute controles
the processing order if several events are received simultaneously by the server.
For event propagation to the server, the listener element containing the event’s
type, priority and handler is marshaled into HTTP request parameters during the
syntactic adaptation of the dialog. Whenever the user issues a request (e.g. selects
‘Login’ in fig. 7) the related event is triggered on the application server by invok-
ing the associated DDL Resource method.

4.4 DDL Data Model

The DDL data model provides means to maintain the application state between
consecutive client requests. A DDL data model is represented as a well-formed

<part name="loginButton">

 <property name="type">submit</property>

 <property name="default">Login</property>

 <listener event="submission"
 handler="AppLog.validateLogin" priority="1"/>

</part>

Figure 7 – DDL listener element

12 Hübsch, Spriestersbach, Springer, Ziegert

XML structure enclosed by a model element with a unique id attribute (cf. 8). It is
defined by the application programmer according to application’s requirements.
Although DDL Re-
source instances
themselves are
stateful, the data
model provides
means to share
state information
among instances of
different DDL Re-
sources through
common model
references.

The data model can also be utilized for dialog content control based on the model
state. Therefore, we have introduced a reference attribute for DDL parts (cf. 9).
This attribute holds an XPath expression over the data model that is evaluated to a
Boolean value. Parts with unfulfilled conditions are removed from the dialog.

Our concept is similar to the XForms data model approach [W3C03], but is ex-
tended towards a closer integration with application logic to support the above-
named objectives.

<model id="stock">

 <authenticated>true</authenticated>

 <name>John Doe</name>

 <symbol>ACME</symbol>

</model>

Figure 8 – Sample DDL Data Model

<part reference="/model[@id='stock']/
 authenticated[./text()='true']">

 <property name="type">label</property>

 <property name="content">Logged In</property>

</part>

<part reference="/model[@id='stock']/
 authenticated[./text()='false']">

 <property name="type">label</property>

 <property name="content">Not Logged In</property>

</part>

Figure 9 – Model state based dialog content control

A Platform for Mobile and Adaptive Enterprise Applications 13

4.5 Runtime Integration

Fig. 10 depicts the three major steps of request processing within the Adaptation
Framework: Event Processing, Resource Processing and Dialog Adaptation.

At first, the Client Identification step adds context information to the client re-
quest.

Based on the event-driven MVC design, request handling starts with analyzing the
request for marshaled events and the invocation of event handlers (see sect. 4.3).
The Event Processor is the controller component of our architecture. It selects the
requested event-handler resource instance and utilizes the DDL Resource descrip-
tion (see sect. 4.1) to interact with resources. Event handling resources select the
next view by choosing the appropriate DDL Template.

The Template Loader retrieves Dialog Templates from a repository.

The Resource Processing step is responsible for DDL Dialog Template processing
(see sect. 4.2).

The Resource Initialization component parses resource definitions in the Dialog
Template. One resource instance is created for every resource definition found.
Furthermore, the instance is bound to its DDL-Resource description and added to
the resource instance set. Resource instances are managed as HTTP session ob-
jects. Thus, they are client specific and maintain their state among several HTTP
requests. The Dynamic Content Inclusion component invokes resources for
backend access referenced by the template’s dynamic elements and replaces the
enclosed field references in the template with backend data. Furthermore, this
component handles the model state-based dialog content control described in sect.
4.4. At this point, all template sections have been processed.

DDL Data Model

Figure 10 – Resource Processing and Dialog Adaptation

14 Hübsch, Spriestersbach, Springer, Ziegert

Finally, the Document Processing step transforms the device independent repre-
sentation into a target markup language through semantic and syntactic adaptation
described in sect. 3.

5 Adaptation Framework

The Adaptation Framework (cf. 11) is the runtime environment of our adaptation
system. The software design based on the “Chain of Responsibilities” [GaHe96]
design pattern, thus enabling easy extension, implementation reuse and flexible
reconfiguration even based on runtime conditions. Client requests are passed
through a chain of filter components. The filter chain is executed in a Java Servlet.

The implemented filters support our concepts for device independent event proc-
essing, resource processing and dialog adaptation. The system may be extended by
implementing additional filters. The following section gives a brief overview of
the filters and their functionality.

Figure 11: Filter chain of the Adaptations Framework

Adaptation Framework

ClientRecognizer

 Template Getter

XMLParser

XSLTProzessor

WMLCompiler

DDLPreprozessor

HTTP
Request

Fragment Measuring

Template
Storage

WML
smallHTML,

HTML

DOM

DOM

Fragmentation

DOM

XSLT-
Stylesheets

Business Logic

EventDispatcher

DynamicLoader
DOM

Model Inclusion
DOM

Context
Profile

Repository

Backend

HTTP
Response

A Platform for Mobile and Adaptive Enterprise Applications 15

The ClientRecognizer filter maps the HTTP User Agent header received by the
browser to a CC/PP [CCPP] device profile.

The EventDispatcher filter filters the events encoded in HTTP request and invokes
the appropriate event handler resources (see sect. 4.3) utilizing a prioritized event
queue to handle simultaneous occurrences of events.

The TemplateGetter filter retrieves DDL template according to the requested URI
from the Template Storage.

The XMLParser filter parses the DDL document and transforms it into the DOM
representation. The PreprocessorFilter preprocesses DDL dialogs. It is responsi-
ble for processing selective content exclusion and resolving inheritance hierar-
chies (see sect. 3).

The DynamicLoader filter implements the dynamic content processing described
in sect 4.2. It is furthermore responsible for the interpretation of DDL resource de-
scriptions and resource instantiation. Resource instances are bound to the HTTP-
session between the client and the framework implementation.

The filters Fragmentation and FragmentMeasuring collaborate to perform the dia-
log fragmentation algorithm described in sect. 3.3. Fragmentation divides the dia-
log into atoms and reassembles the dialog according to the parameters determined
for each atom by FragmentMeasuring. These parameters include memory size on
the target platform, size in transfer encoding and screen area occupation.

The ModelInclusion filter performs the model-state dependent content control de-
scribed in sect. 4.4.

The XSLTProcessor filter transforms DDL into a device specific mark-up through
XSL Transformations.

The WMLCompiler compiles WML into the binary WMLC (WAP 1.x transfer en-
coding). Although this is a typical task of a WAP-Gateway, the WMLC code is
required to probe the amount of space required by the dialog fragment within a
WSP-Service Data Unit.

6 Sample Application

In order to evaluate the concepts presented in this paper, we have implemented the
context-aware and adaptive Rent-A-Bike application shown in fig. 12. The appli-
cation allows users to create, view, update, and delete reservations on desktop
computers, PDAs and WAP mobile phones. All reservations and application-
specific user profiles are stored in a relational database backend. The application
logic and backend access is implemented by DDL Resources. User interaction is
monitored by DDL events. Dynamic content, for example the ‘Your current reser-

16 Hübsch, Spriestersbach, Springer, Ziegert

vations’ pull down menu list (Fig. 12(1) & 12(3)), is generated utilizing dynamic
DDL. All versions of the application are generated from a single source DDL de-
scription. The HTML desktop version (Fig. 12(1)) is fully featured. It allows full
access to the application’s functionality and has the most complex user interface.
The PDA version (HTML, Fig. 12(3)) has a reduced set of functions. It does not
support reservation modifications. The user interface is less complex than on the
desktop. In the PDA version, no icons are shown. The mobile phone version
(WML, Fig. 12(2)) is even further reduced in terms of user interface complexity
and application functionality. No headers, footers, and images are shown. There is
no possibility to edit the user profile, i.e. the ‘Profile’ menu item is dropped. In
contrast to the desktop version, reservations can be viewed, confirmed, and can-
celled. There is no quick view option.

7 Results and Future Work

We have found our approach, the combination of single source authoring with
manually added meta-information and automated on-the-fly adaptation at runtime,
to be a promising solution for the design and implementation of adaptive and con-
text-aware web applications. It must be mentioned that application complexity in
terms of user interface design and application logic behavior dramatically in-
creases with the number of supported devices. This fact sometimes yields to a high
amount of device-class specific DDL code, partly opposing the approach of highly

Figure 12 – Rent-A-Bike Application

A Platform for Mobile and Adaptive Enterprise Applications 17

device-independent dialog authoring. To overcome this deficiency, we are cur-
rently developing advanced concepts for structure-level and application-level ad-
aptation. Structure-level adaptation attempts to describe different navigation struc-
tures, dialog compositions and dialog flows. The dialogs necessary for this ap-
proach are assembled from semantic dialog units authored in DDL. Every seman-
tic dialog unit describes a well-defined step or transaction within the application.
Application-level adaptation aims at extending the description and definition of
adaptive application behavior into the software-engineering process from require-
ments engineering over application design to implementation, test and deploy-
ment. Furthermore, performance analysis and enhancement will be subject to fu-
ture work.

8 References

[AbHe00] Abrams, M., Helms, J.: User Interface Markup Language (UIML)
v3.0 draft specification, Harmonia Inc, 2000.

[BiSc97] Bickmore, T.W., Schilit, B.N.: Digestor: Device-Independent Access
to the World-Wide Web, Proceedings of the 6th International WWW
Conference, 1997.

[Co04] Connexion by Boeing. http://www.connexionbyboeing.com

[GaHe96] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns,
ISBN: 0-201-63361-2, Addison-Wesley, 1996.

[HoKo00] Hori, M.; Kondoh, G.; Ono, K.; Hirose, S.; Singhal S.: Annotation-
Based Web Content Transcoding, 9th International World Wide Web
Conference (WWW9), Amsterdam, Niederlande, 15.-19. Mai 2000.
http://www9.org/w9cdrom/169/169.html

[IDC00] IDC Research: Western European Teleworking: Mobile Workers and
Telecommuters, 2000-2005 (IDC #25698)

[ScTr01] Schilit, B.N., Trevor, J, Hilbert, D., Koh, T.K.: m-Links: An Infra-
structure for Very Small Internet Devices; Proceedings of the 7th An-
nual International Conference on Mobile Computing and Network-
ing, Rome, Italy, pp. 122-131, 2001.

[W3C99a] W3C: XML Path Language (XPath) Version 1.0. 1999.
http://www.w3c.org/TR/xpath

[W3C99b] W3C: XSL Transformations (XSLT) Version 1.0. 1999.
http://www.w3.org/TR/xslt

18 Hübsch, Spriestersbach, Springer, Ziegert

[W3C03] W3C : XForms 1.0, W3C Recommendation 14 October 2003.
http://www.w3.org/TR/2003/REC-xforms-20031014/

[WAP01] Wireless Session Protocol Specification, Approved Version 5-July-
2001, Wireless Application Protcol Forum Ltd.
http://www.openmobilealliance.org/tech/affiliates/wap/wap-230-
wsp-20010705-a.pdf

