
A Stochastic Model for Estimating the Power
Consumption of a Processor

Waltenegus Dargie, Senior Member, IEEE

Abstract—Quantitatively estimating the relationship between the workload and the corresponding power consumption of a multicore

processor is an essential step towards achieving energy proportional computing. Most existing and proposed approaches use

Performance Monitoring Counters (Hardware Monitoring Counters) for this task. In this paper we propose a complementary approach

that employs the statistics of CPU utilization (workload) only. Hence, we model the workload and the power consumption of a multicore

processor as random variables and exploit the monotonicity property of their distribution functions to establish a quantitative

relationship between the random variables. We will show that for a single-core processor the relationship is best approximated by a

quadratic function whereas for a dualcore processor, the relationship is best approximated by a linear function. We will demonstrate the

plausibility of our approach by estimating the power consumption of both custom-made and standard benchmarks (namely, the SPEC

power benchmark and the Apache benchmarking tool) for an Intel and AMD processors.

Index Terms—DC power consumption, processor power, power model, multicore processor, processor workload analysis, stochastic model,

processor power consumption estimation

Ç

1 INTRODUCTION

THE power consumption of multicore processors has
been a subject of extensive research. For example, it has

been studied (1) to understand the power density character-
istic of chip microprocessing [1], (2) to design realistic and
efficient cooling systems [2], (3) to develop energy- and
thermal-aware schedulers [3], [4], (4) to support runtime
task migration [5]; (5) to implement dynamic power man-
agement policies (dynamic voltage and frequency scaling)
[6], and (6) to quantify the energy consumed by a piece of
software [7] or an application [8]. More recently, it has
become a subject of research in cloud and high performance
computing to examine the proportionality between the
power consumed by servers and the work they accomplish
[9], [10], [11], [12].

As a result, a substantial body of work exists on power
consumption estimation models for multicore processors
[13]. In most cases events emitted by hardware perfor-
mance counters (or performance monitoring counters
(PMC)) are employed because they provide a useful insight
into the activities of the various micro-architectural compo-
nents of a processor. The number and types of events that
should be captured depend on such factors as the type of
workloads (benchmarks) used to train and test the model,
the architecture of the target processor cores, and the
desired granularity of the model. Often the level of correla-
tion between the events and the power consumption of
the processor is studied to select the best representative

counters. There are also models which combine CPU utili-
zation information with hardware events because the for-
mer is easy to obtain [13], [14].

Regardless of the types of inputs, most existing models
focus on estimating the instantaneous power consumption
of a processor. While this approach enables a direct transla-
tion of the CPU activity level into power consumption level,
it does not provide comprehensive knowledge about the
power consumption characteristic of the processor. Similarly,
it does not reveal sufficient insight into the characteristic of
the workload which induces the power consumption.
Understanding these two characteristics is useful for run-
time adaptation such as energy-aware task scheduling, load-
balancing, or workload consolidation. More importantly,
the existing models consider the relationship between the
workload and the power consumption of a processor as
deterministic and invariable, which is not the case in reality.
In contrast, a probabilistic approach can accommodate
imprecise relationship and uncertainty about the input.

In this paper, we propose a stochastic power consump-
tion estimation model for a multicore processor. In addition
to the instantaneous power consumption, it estimates the
statistics (CDF and pdf) of the power consumed by a proces-
sor and relates it to the statistics of its workload. Our
approach has three useful purposes: (1) It enables a sched-
uler to estimate the power budget of a future workload, so
that it can decide where to execute it; (2) it captures the
magnitude and frequency of power fluctuations; and (3) it
can estimate the probability that a workload execution
crosses a certain power threshold (budget) that may result
in overloading or underutilizing the processor.

The remaining part of this paper is organized as follows:
In Section 2, we summarize the approaches similar to ours
and outline howour approach differs from them. In Section 3,
we justify the rationale for the selection of the model’s input.
In Section 4, we describe in detail the experiment setting for

� The author is with the Chair of Computer Networks, Faculty of Computer
Science, Technical University of Dresden, 01062 Dresden, Germany.
E-mail: waltenegus.dargie@tu-dresden.de.

Manuscript received 1 Jul. 2013; revised 6 Jan. 2014; accepted 25 Mar. 2014;
date of publication xx xx xxxx; date of current version xx xx xxxx.
Recommended for acceptance by R. G. Melhem.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2315629

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014 1

0018-9340 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



our approach. In Section 5, we develop an abstract stochastic
model to establish the relationship between a processor’s
workload and its power consumption. In Section 6, we fur-
ther develop the stochastic model to estimate the power con-
sumption of a single-core processor. In Section 7, we extend
the stochastic model to estimate the power consumption of a
multicore processor. In Section 8, we provide a quantitative
account of the model’s estimation error and in Section 9, we
compare our model with some of the proposed models.
Finally, in Section 10, we provide concluding remarks.

2 RELATED WORK

Estimation of the power consumption of a processor due to
a piece of workload involves measuring the actual power
consumption and then relating it to some observable
parameters that reflect the activity or the utilization of the
processor. The idea is to establish a quantitative relation-
ship between the observable parameters and the power
consumption, so that the estimation task can bypass the
need to actually measure the power consumption (which
may involve intrusive and expensive instrumentation).

Most existing models employ performance monitoring
counters along with micro benchmarks. A contemporary
CPU provides one or more model-specific registers (MSR)
that can be used to count certain micro-architectural events
(or performance monitor events, PME). For example, such
an event will be generated when the processor retires (fin-
ishes) an instruction or when it accesses the cache. The types
of events that should be captured by a PMC is specified by a
performance event selector (PES), which is also a MSR. The
amount of countable events has been increasing with every
generation, family, and model of processors. At present, a
processor can provide more than 200 events. The motivation
for using PMC is that accounting for certain events may
offer detailed insight into the power consumption character-
istics of the processor [5], [15].

Performance monitoring counters do not require the
modification of or intrusion into the hardware structure.
Moreover, the events they capture can accurately reflect
the activity levels of the processor or the memory subsys-
tem. The main difference between the models that use
PMC lies in the types and amount of counters they
employ. Bircher provides a valuable guideline for identi-
fying the hardware events that should be selected as
model inputs to estimate the power consumption of a pro-
cessor [16]. For example, the author argues that events
reflecting the fetched m-ops (micro-operations) per cycle
minimize the models estimation error while events reflect-
ing m-ops retired may increase the estimation error. Isci
and Martonosi [6] express the power consumption of a
Pentium 4 CPU as the sum of the power consumption of
the processors 22 major subunits. The idea is further
refined by Bertran et al. [17] who determine more than 25
architectural components and classify them into three cat-
egories, namely, in-order engine, out-of-order engine, and
memory. The authors remark that the activities of some of
the components in the in-order engine cannot be detected
with distinct PME. The memory engine is further divided
in three parts: L1 cache, L2 cache, and the main memory,
the latter including the front side bus. Likewise, the out-

of-order engine is divided in three parts: INT unit, FP
unit, and SIMD unit. Accordingly, the authors identify
eight so-called power components and develop 97 micro-
benchmarks that should stress each of these components
in isolation under different scenarios. Their aim is to
detect those PME that reflect the activity level of these
components best.

Chen et al. identify five hardware events showing strong
correlation with the power consumption of a processor [18].
These are the number of L1 data cache references per sec-
ond, number of L2 cache references per second, number of
L2 cache misses per second, number of floating point
instructions retired per second, and number of branch
instructions retired per second, respectively. The active
power consumption of the processor is then expressed as a
linear and weighted combination of these event rates. Singh
et al. first classify performance monitoring counters into
four basic categories, namely, Float Point Units, Memory,
Stalls, and Instructions Retired, then they identify one per-
formance monitoring counter from each category based on
the exhibition of a strong correlation with the power con-
sumption of the processor [19]. For their case, the perfor-
mance monitoring counters they identify, with respective
order, are: L2 CACHE MISS:ALL, RETIRED m-ops,
RETIRED MMX AND FP INSTRUCTIONS:ALL, and DIS-
PATCH STALLS. Then they apply a piece-wise linear
regression function to estimate the power consumption of a
processor. Lewis et al. argue that the power consumption of
a processor due to a specific workload directly correlates
with the change in core die temperature and the ambient
temperature per processor [20]. Therefore, they propose a
superposition model in which the temperature information
is used together with transaction events in high speed data
buses and L2 cache-miss events.

Dhiman et al. employ a combination of PMC and CPU
utilization to estimate the power consumption of a virtual
machine [21]. The PMC consists of instructions per cycle
(IPC), memory accesses per cycle (MPC), and cache transac-
tions per cycle (CTPC). The input values form a vector
x ¼ xipc; xmpc; xctpc; xutil; xpwr

� �
which are assigned to differ-

ent classes (or bins). Depending on the CPU utilization, bin
sizes range from 20 percent utilization (5 bins) to 100 percent
CPU utilization (1 bin). Within every bin the data vectors
are quantized using a Gaussian Mixture Vector Quantiza-
tion (GMVQ) technique [22]. The outputs of this quantiza-
tion are multiple Gaussian components gi that are
determined by the mean and covariance of m ¼ mipc;

�
mmpc;mctpc;mutil;mpwrÞ . To train the model, the xpwr compo-
nent is removed from the x vectors and the resulting vectors
are compared with those in the training set. The GMVQ
algorithm then finds the nearest vector m in the training set
to the input vector, and the value for the mpwr component is
retrieved. The retrieved value is compared to the actual xpwr

value from which the accuracy of the model is determined.
This part of the training phase is repeated multiple times
with different sizes of utilization bins. The bin size resulting
the smallest error is selected as the model parameter. The
same method is applied during the running phase: PMC
values are obtained and the vector is compared to the model
where the GMVQ algorithm finds the nearest (training) vec-
tor and returns the average power value.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014



There are some challenges with employing hardware
performance counters: First, one should have knowledge
of the low-level counters in order to be able to translate
hardware events into a power consumption profile.
Second, the identification of the relevant counters is
dependent on the nature of the benchmark and the pro-
cessor architecture. Third, in most processor architectures,
one may be restricted by the number of counters that can
be read at the same time. In contrast, our approach deals
with a single quantity and makes use of its statistics
which can be obtained in any platform. Furthermore, a
stochastic model enables us to deal with variations in
measurement resolutions as well as unpredictable and
unobservable dynamics both inside the processor and the
workload. Our approach is most useful for servers whose
workload size exhibits considerable fluctuation. In which
case the CPU utilization reveals sufficient statistics about
the power consumed by the processor.

Our model employs the statistics of CPU utilization
information only. This makes the model lightweight and
the input easily accessible virtually in any sever platform.
The usefulness of CPU utilization is first observed by Fan
et al. [23] who report a remarkable estimation accuracy.
Unfortunately, the authors do not provide a detail statisti-
cal account pertaining to the model’s performance. A work
closer to ours is the one proposed by Pedram and Hwang
[24] in which the relationship between the power consump-
tion and the utilization level of a multicore processor (a
quad core Xeon E5410 processor) is investigated. The
authors employ CPU-, memory-, and IO-intensive work-
loads; configure the processor to operate at different fre-
quencies; and vary the number of active cores. Their
investigation reveals that regardless of the type of work-
load and the processor’s configuration, the power con-
sumption and the utilization level are related linearly.
However, each configuration results in different coeffi-
cients in the linear equation. Our investigation partially
confirms this observation. The main difference between
their approach and our approach is that while they consider
the two quantities as deterministic quantities, we model
them as random variables. The advantage of our approach
is that the statistical properties (max, min, mean, CDF, vari-
ance, pdf, autocorrelation, etc.) of one of the quantities can

be sufficiently determined from the statistics of the other
quantity. This aspect is useful for making energy-aware
planning, as we alreadymentioned in Section 1.

3 MODEL INPUT

Through repeated experiments, we have observed that a
strong correlation existed between the power consumption
and the the CPU utilization of a multicore processor. For
example, Fig. 1 shows the CPU utilization and the power
consumption of a D2461 Siemens-Fujitsu server integrating
a 4 GHz AMD Athlon 64 dual core processor running an
online music search and download application. The applica-
tion was randomly downloading music files (with an aver-
age size of approx. 4 MB) at 100, 200, 300, 400 and 800
requests per minutes. As the request rate increases, the CPU
utilization as well as the power consumption of the proces-
sor increases. Likewise, Fig. 2 shows the relationship
between the CPU utilization and the power consumption of
a D2581 Siemens-Fujitsu server integrating a 3.4 GHz Intel
E8500 dualcore processor running the SPEC power_ssj2008
benchmark, which utilizes the entire utilization spectrum.

Arguably a processor may consume a different amount
of power when executing different types of tasks even
though it may have the same CPU utilization statistics for
these tasks. For example, a 3.6 GHz Intel I5-680 dualcore
processor consumes on average 37.98 W (pio) when

Fig. 2. The relationship between the CPU utilization and the power con-
sumption of a D2581 Siemens-Fujitsu server running the SPEC Power
(2008) benchmark.

Fig. 1. The relationship between the CPU utilization and the power consumption of a D2461 Siemens-Fujitsu server running an online music search
and download application. The request rate to the application was from left to right: 100, 200, 300, 400, and 800 requests per minutes.

DARGIE: A STOCHASTIC MODEL FOR ESTIMATING THE POWER CONSUMPTION OF A PROCESSOR 3



executing the 401.bzip2 benchmark (an integer opera-
tion) at approx. Sixty percent CPU utilization and 40.08 W
(pfpo) when executing the 482.sphinx3 benchmark (a
floating point operation)1 at approx. Sixty percent CPU utili-
zation. Furthermore, the processor consumes on average
8 W when it is idle (pi). In this case, ðDactive ¼ jpfpo � piojÞ is
significantly smaller than either ðDio;idle ¼ pio � piÞ or
ðDfpo;idle ¼ pfpo � piÞ. If the processor experiences a frequent
idle state, which is not unusual in real world servers, then
Dio;idle and Dfpo;idle dominate Dactive.

Fig. 3 shows the cumulative distribution functions of the
power consumption of the Intel I5-680 dualcore processor
when executing the two benchmarks. Whereas the distribu-
tion functions show a slight variation in power consump-
tion for a comparable CPU utilization level, the variation is
remarkably small. If the processor executes similar tasks,
then Dactive becomes even smaller.

We shall show in this paper that our model accurately
captures the statistics of the power consumption of a proces-
sor from the statistics of the CPU workload, provided that
the CPU workload experiences significant fluctuations,
including the existence of an idle state power consumption.
We have tested our model with two different server plat-
forms and three different benchmarks and the results we
observed are encouraging.

4 EXPERIMENTAL SETTING

The power consumption of a processor has “static” and
dynamic components. The “static” power consumption is
required to power the processor and to make it ready to do
some work. This component does not depend on the work-
load of the processor. It is not really static but it can be con-
sidered as such because its variation in time is small when
compared to the variation of the dynamic component. The
dynamic component, on the other hand, depends on the
workload of the processor. Moreover, it is the sum total of
the dynamic power consumptions of the different architec-
tural components of the processor.

A piece of workload is a high-level request to the proces-
sor and consists of several low-level tasks such integer oper-
ations, floating point operations, read and write operations
to the memory or the disk, etc. In general, the workload of a

processor of an Internet server should be modeled as a sto-
chastic process, since it is difficult to determine in advance
the type and the size of the workload that will arrive at the
processor. We assert that there is a strong correlation
between the statistics of the processor’s workload and the
statistics of the processor’s utilization. Therefore, examining
the statistics of the processor’s utilization enables us to esti-
mate the power consumption of the processor due to the
workload. Because of this assertion we use the term workload
and CPU utilization interchangeably.

We used four types of server platforms to obtain statistics
pertaining to the workloads and the power consumptions of
single-core and dualcore processors. We tested our model
on two of these platforms. The first one was built on a
D2581 Siemens-Fujitsu motherboard integrating a 3.4 GHz
Intel E8500 dualcore processor. The second server was built
on a D2461 Siemens-Fujitsu motherboard integrating a
4 GHz AMD Athlon 64 dual core processor. Our model was
able to estimate the power consumption of the two servers
with comparable accuracy. We will frequently use the statis-
tics of the D2581 (E8500) server to introduce our model.

The motherboard of the D2581 server provides two DC
power connectors to supply the various subsystems with
power. One of them is a 12 V, four-pole connector whereas
the other is a 24-pole connector with 12, 5 and 3.3 V rails
(among others). The 12 V rail of the four-pole connector is
exclusively used by the voltage regulator of the processor—
a two-phase voltage regulator controlled by an ISL 6326
Pulse Width Modulator (PWM) controller—to generate the
processor core voltage. The output of each phase is supplied
to the processor 50 percent of the time. This voltage regula-
tor draws some amount of power from the 5 V rail of
the 24-pole connector to control the PMW controller, but the
amount is small. The 3.3 V is predominantly used by the
Low Pin Count (LPC) IO controllers.

The power drawn through the 12 V and the 3.3 V rails of
the 24-pole do not exhibit appreciable variations throughout
the operation of the server, regardless of the type of work-
load we run on the server. This is also true for the other
servers we employed. On the contrary, the powers drawn
through the 12 V rail of the four-pole connector and the 5 V
rail of the 24-pole connector exhibit variations that are pro-
portional to the size of a workload. Of these two, however,
the power drawn through the 12 V rail was much more sen-
sitive to the variations in workload size; and its magnitude
is significantly greater than the power drawn through the
5 V rail. We will consider the power drawn through the
12 V rail as the power consumption of the processor.

The measurement devices we employed were the
Yokogawa WT210 digital power analyzers. The devices
can measure DC as well as AC power consumption at a
maximum rate of 10 Hz and a DC current between 15 A
and 26 A with an accuracy of 0.1 percent.

5 STOCHASTIC MODEL

Before we begin with the introduction of our model, we will
explain how we represent variables. A boldface lower case
letter (w) refers to a random variable. A normal lower case
letter (w) refers to a real number associated with the random
variable w. An upper case F refers to a probability

Fig. 3. The CDF of the power consumption of a 3.6 GHz Intel I5-680
dualcore processor executing the 482.sphinx3 (float point operation)
and 401.bZip (integer operation) from the SPEC CPU 2006 benchmarks
at approx. Sixty percent utilization level.

1. http://www.spec.org/cpu2006/.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014



distribution function (or simply a distribution function)
while a lower case f refers to a probability density function
(or simply a density function).

The central question we would like to address in this arti-
cle can be stated as follows: Suppose we provide a processor
a piece of workload and it executes the workload within a
certain amount of time. If we study the distribution or the
density functions of the CPU utilization and the power con-
sumption of the processor during this period, is it possible
to estimate a quantitative relationship between the CPU uti-
lization and the power consumption of the processor? We
will show that by modeling the processor as a non-linear
memoryless system with a stochastic input we can answer
this question.

Thus, the CPU utilization and the dynamic power con-
sumption of a processor will be characterized as random
variables w and p, respectively, and our aim will be to
express the statistics of p in terms of the statistics of w and
vice versa. In Section 6, we will experimentally demonstrate
that the assumption of a memoryless system is plausible.

5.1 Known Relationship

To highlight our point, we shall begin by assuming that the
relationship between w and p is already known. Hence, we
wish to determine the distribution of one of the random var-
iables (the one whose statistics we do not know) in terms of
the other (whose statistics we do know). For example, if the
power consumption of a processor is expressed as

p ¼ awþ b a; b > 0; (1)

then, F ðpÞ ¼ Pfp � pg ¼ Pfawþ b � pg ¼ P w � p�b
a

� �� � ¼
Fw

p�b
a

� �� �
, where FwðpÞ refers to the distribution of w

expressed in terms of p. Likewise, the probability density
function of p can be expressed as d

dp F ðpÞð Þ ¼ 1
a fwð½p�b

a �Þ,
where fwðpÞ refers to the density of w expressed in terms of
p. If, for instance, the density of w is exponential: fðwÞ ¼
�e��wUðwÞ, � > 0, then, fðpÞ ¼ �

a e
��ð½p�b

a �ÞUðp�b
a Þ.

One may ask why this knowledge is important. The
answer is straightforward. For example, if we have F ðwÞ,
we will be able to determine from it the probability that the
processor power consumption exceeds a certain threshold
and how long it may stay above or below this threshold.
This can be done even before the workload is executed, so
that a scheduler can plan when and where to execute it.

5.2 Unknown Relationship

A more interesting problem is determining the relationship
between the two random variables given that we have their
distribution and density functions. Alternatively, we can
state the problem as follows: we are given the distribution
of w and wish to find a function gðwÞ such that the distribu-
tion of p ¼ gðwÞ equals a specified function F ðpÞ. This is
typically the case when we attempt to estimate the power
consumption of a processor’s workload. Initially, the pro-
cessor can be given a workload of known statistics and the
power consumption of the workload can be measured and
analyzed. Then, we can establish the relationship between
the two random variables. Once the relationship is estab-
lished, the power consumption of the processor can be esti-
mated for any arbitrary workload.

If the relationship between p and w can be considered as
a one-to-one function, i.e., every element of the range of p
corresponds to exactly one element of the domain of w,2

then P p � pif g equals to P w � wif g because p � pi if and
only if w � wi. This can be better visualized in Fig. 4 which
displays a one-to-one function. From the figure it is appar-
ent that the value p2 corresponds to w2. Therefore,
P p � p2f g corresponds to P w � w2f g. Similarly, P p � p1f g
corresponds to P w � w1f g. From this, we can conclude that
for a one-to-one function:

F ðpiÞ ¼ F ðwiÞ; 8i 2 R: (2)

Subsequently, using Equation (2), we can express p in
terms of F ðpÞ and F ðwÞ as follows3:

p ¼ F�1
P ðFwðwÞÞ; (3)

where F�1
p refers to the inverse of F ðpÞ [25]. For example, if

we observe that the distribution of the power consumption
of a processor for an exponentially distributed workload
(1� e��w) is uniformly distributed in the interval (10, 50),
then, using Equation (2): 1� e��w

� � ¼ 1
40 p, from which,

p ¼ 40ð1� e��wÞ ¼ 40F ðwÞ.

6 EXPERIMENT

In this section, we illustrate how we applied the concept
we developed in Section 5 to establish the relationship
between w and p of a single-core processor. To make the
discussion tractable, we will give a summary of what
will follow shortly.

In the first step, we disabled one of the cores of the E8500
Intel processor. Then, we generated a one hour uniformly
distributed CPU-bound workload and supplied it to the
server. The workload is produced by a program that com-
putes the convolution of discrete functions (a mixture of
integer and floating point operations). The CPU is utilized
100 percent when the program is executed, but remains idle
when the program is not executed. In order to generate

Fig. 4. Exploiting the one-to-one relationship between p and w and the
monotonic nature of distribution functions to determine a quantitative
relationship betweenw and p.

2. For example, the function p ¼ awþ b is a one-to-one function,
since p has exactly one solution 8w. Likewise, p ¼ aw2 þ b has a single
solution for w > 0.

3. From the relationship between variables and functions, we know
that if y ¼ fðxÞ, then x ¼ f�1ðyÞ. If y can be expressed in the form of
another function gðwÞ, then x ¼ f�1ðgðwÞÞ.

DARGIE: A STOCHASTIC MODEL FOR ESTIMATING THE POWER CONSUMPTION OF A PROCESSOR 5



the desired density function of the workload, we divided
time into a set of one-second none overlapping windows.
We then generated a set of random numbers in the interval
[0, 100] using the runif function of the R statistical tool.
The function generates uniformly distributed random num-
bers. For each time window, we picked out one of the uni-
formly distributed random numbers and determined with it
the portion of the one-second time slot the CPU should be
fully utilized by the convolution operation. In order to avoid
unpredictable performance, the CPU utilization for the sub-
sequent eight windows was made the same. This means
that there was an apparent correlation between the eight
consecutive windows; otherwise, the random numbers we
picked out were independent. We measured the overall
power consumption of the server as well as the power
drawn through the 12 V rail of the four-pole connector.

In the second step, we approximated the probability dis-
tribution function of the actual power consumption using
R’s nls curve fitting tool. This step is useful to obtain g(w)
using p ¼ F�1

p F ðwÞð Þ.
Once we have g(w), we tested the model’s accuracy by

using both a custom-made workload and standard bench-
marks (SPEC power_ssj2008 benchmark and the Apache
benchmarking tool for an HTTP server4). The custom-made
workload was the same discrete convolution, but this time it
had an exponential and normal (for the AMD processor) dis-
tributions instead of a uniform distribution. The SPEC
power_ssj2008 “is the first industry-standard SPEC
benchmark that evaluates the power and performance
characteristics of volume server class and multi-node class
computers”.5 The full SPEC power benchmark run for
70 minutes. The Apache benchmarking tool is used to evalu-
ate the number of requests the Apache installation can serve
per second. We used it to download video files by varying
the request arrival rate from 500 to 5,000 requests perminute.
The size of the videos we downloaded varied between 5 and
100 MB. The custom-made benchmark was tested on both
the E8500 and the AMD servers, but the standard bench-
marks were tested on the E8500 server only. Finally, we com-
pared fðpÞ and F ðpÞ of the actual power consumed during
the test phase with fðpÞ and F ðpÞ of the power we estimated
using p ¼ F�1

p F ðwÞð Þ.

6.1 Relationship between w and p

To establish the relationship between w and p, we gener-
ated five uniformly distributed workloads using the discrete
convolution operation, i.e., the CPU workload in percent: U

(0, 100), U(10, 90), U(20, 80), U(30, 70), and U(40, 60). There
was, however, a certain disparity between the intended
(theoretical) distribution and the distribution of the actual
workload we generated. For each test case, we measured
the power consumption of the processor and plotted its
F ðpÞ. Then, using the nls curve fitting toolbox, we approxi-
mated F ðpÞ. Except for U(40, 60), F ðpÞ can be best approxi-
mated by a quadratic function, F ðpÞ ¼ a1p

2 þ a2pþ a3,
where a1, a2, and a3 are the coefficients of the quadratic
function. For U(40, 60), F ðpÞ is best approximated by the lin-
ear function a1pþ a2, where a1 ¼ 0:05075 and a2 ¼ 0:5163 in
the interval [10.17, 30.13]. Table 1 summarizes the parame-
ters of the distribution functions that are approximated by
the quadratic functions. Fig. 5 displays the experimental
and approximated F ðpÞ for U(0, 100) workload.

Hence, for the quadratic functions, we have

F ðpÞ ¼ a1p
2 þ a2pþ a3 plow � p � phigh; (4)

F ðwÞ ¼ w� b

c� b
b � w � c; b; c > 0; (5)

where b and c are the lower and upper bounds of the uni-
formly distributed workload. From the experiment results
in Table 1, it is clear that a1 < 0, a2 > 0, and a3 < 0. With
this knowledge and inserting Equations (4) and (5) into
Equation (3), we obtain

p ¼ �a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � 4a1 � a3 � w� bð Þ= c� bð Þð Þp

2� a1
: (6)

Equation (6) can be expressed as

p ¼ K1 þ K2wþK3ð Þ12; (7)

whereK1 ¼ � a2
2a1

,K2 ¼ 1
a1ðc�bÞ, andK3 ¼ a2

2
4a1

� b
a1ðc�bÞ � a3

a1
.

Equation (7) is the desired relationship we wished to
establish between the CPU workload and the power con-
sumption. Using this relationship, it is now possible to
determine the distribution and density of p in terms of the
distribution and density of w for any arbitrary w. Earlier,
we showed that F ðpÞ can be expressed as Pfp � pg ¼
PfgðwÞ � pg. Hence,

F ðpÞ ¼ P K1 þ K2wþK3ð Þ12
	 


� p
n o

b � w � c: (8)

TABLE 1
Summary of the Estimated Parameters of FpðpÞ

(p1p
2 þ p2pþ p3) for the Intel E8500 Dual Core Processor

Minimum confidence bounds of 95 percent.

Fig. 5. The actual (measured) and estimated F ðpÞ for the Intel E8500
dual core processor for Uð0; 100Þ.

4. http://httpd.apache.org/docs/2.2/programs/ab.html.
5. http://www.spec.org/power_ssj2008/.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014



Expressing Equation (8) in terms of F ðwÞ yields

FwðpÞ ¼ P w � p�K1ð Þ2�K3

K2

( )
b � w � c; (9)

which is the same as Fwð p�K1ð Þ2�K3
K2 Þ. Likewise, the density of

p can be expressed as

fðpÞ ¼ 2

K2
ðp�K1Þ

����
����fw p�K1ð Þ2�K3

K2

 !
: (10)

6.2 Theoretical F ðpÞF ðpÞF ðpÞ and fðpÞfðpÞfðpÞ
Using the relationship expressed in Equation (7) and the
parameters obtained from the experiment and listed in
Table 1, it is possible to compute the distribution and den-
sity functions of p for a workload of arbitrary probability
density function. We shall demonstrate this by computing
the theoretical density and distribution functions of p for an
exponentially and normally distributed workloads. In the
section that follows we shall compare the theoretical results
with the ones we obtained from experiments.

6.2.1 Exponentially Distributed Workload

When w is exponentially distributed (fðwÞ ¼ �e��w;m ¼ 1
� ;

w > 0), its distribution function equals

F ðwÞ ¼ 1� e�
w
m: (11)

And the probability density function of p can be
expressed as follows:

fðpÞ ¼ 2

K2
ðp�K1Þ

����
����e� p�K1ð Þ2�K3ð Þ=K2ð Þ=m: (12)

The distribution function of p is expressed as

F ðpÞ ¼ FwðpÞ ¼ 1� e� p�K1ð Þ2�K3ð Þ=K2ð Þ=m; (13)

where p is in the interval [plow, phigh� (see Table 1) and FwðpÞ
refers to the probability distribution function of w
expressed in terms of p.

6.2.2 Normally Distributed Workload

Similarly, when w is normally distributed, its distribution
function is given as

F ðwÞ ¼ G
w� m

s

	 

¼ 1

2
1þ erf

w� mffiffiffi
2

p
s

� 
� 

; (14)

where erfðwÞ ¼ 2ffiffiffi
p

p
Rw
0 e�t2dt. Therefore, the distribution and

the density functions of p, using the relationship expressed
in Equation (7), can be expressed using Equations (15) and
(16), respectively,

FwðpÞ ¼ 1

2
1þ erf

ðð p�K1ð Þ2�K3Þ=K2Þ � mffiffiffi
2

p
s

 ! !
; (15)

fðpÞ ¼ 2

K2
ðp�K1Þ

����
���� 1ffiffiffiffiffiffi

2p
p

s
e
� p�K1ð Þ2�K3ð Þ=K2ð Þ�mð Þ2

2s2 (16)

In Equation (15) and (16), p is in the interval [plow, phigh]
(see Table 1).

6.3 Experimental F ðpÞF ðpÞF ðpÞ
After having established the relationship between p andw,
we tested the validity of our model by generating normally
distributed and exponentially distributed workloads and
by executing the workloads on the two servers. The work-
loads with the exponential distribution had m ¼ 5; 10; 15
and 20. The workload with the normal distribution (for the
AMD processor) had the following parameters: Nðm ¼ 30;
s ¼ 5Þ. We also employed two additional standard bench-
marks, namely, the SPEC power benchmark and the
Apache benchmarking tool to test our model. These bench-
marks stressed the CPU in quite different ways.

Equation (7) can be directly applied to estimate the
instantaneous relationship between w and p as well as
the statistics of p because of Equation (9). Fig. 6 displays the
actual and estimated instantaneous power consumption of
the E8500 single-core processor when it executed the SPEC
power benchmark. As can be seen from the figure, the
model estimated the power consumption fairly accurately
and followed the variation patter accurately as well.

To estimate the theoretical distribution functions of
all the test cases, we used the coefficients of F ðpÞ obtained
for the U(0, 100) in Table 1, since the domain of the uni-
formly distributed workload in the interval (0, 100) sub-
sumes the domains of all the test cases.

Fig. 7 (left) displays the theoretically estimated and
the experimentally obtained F ðpÞ for the exponentially
distributed workloads of the E8500 processor. The same
figure (right) displays the theoretically estimated and the
experimentally obtained F ðpÞ for the exponentially (left)
and normally (right) distributed workloads for the AMD
Athlon 64 processor. As can be seen from both figures,
when the test workload was similar in type with the
training workload (for our case, the convolution opera-
tion), its power consumption could be accurately pre-
dicted regardless of the processor type (with an average
error of 0.76 percent) even though the statistics of the
workloads were dissimilar.

Fig. 6. A snapshot of the actual and estimated power consumption of the
Intel E8500 single-core processor when executing the SPEC power
benchmark.

DARGIE: A STOCHASTIC MODEL FOR ESTIMATING THE POWER CONSUMPTION OF A PROCESSOR 7



Our model estimated the power consumption of the
Apache workload with an estimation error of 2.7 percent
(see Fig. 9 (extreme left)). The Apache server operated in
one of the two extreme utilization regions: in the region
near 0 percent when the request rate was small or in the
region near 100 percent when the request rate was high, as
shown in Fig. 8 (left).

The model’s estimation error increased to 7.37 percent on
average for the SPEC power benchmark. The SPEC power
benchmark utilized the CPU in a variety of manners, with
different types of operations and utilizing the various archi-
tectural components with different intensities. Fig. 8 (right)
shows the range of the density function of the CPU work-
load when executing the SPEC power benchmark. The
theoretically estimated and experimentally obtained F ðpÞ
for the SPEC power benchmark is displayed in Fig. 9 (the
second from left).

7 MULTICORE MODEL

In a multicore processor, it is possible to capture (and condi-
tion) the distribution of theworkloads of individual cores but
it is difficult to separately measure the power consumption
of individual cores. Therefore, the best approach to represent
the relationship between the workload and the power con-
sumption of the processor is to use a Multiple-Input-Single-
Output (MISO) memoryless stochastic model. In this case,
we should first determine the overall workload of the proces-
sor,wt, and then establish a relationship betweenwt and p.

7.1 Workload Model

The overall workload of a multicore processor is given as
wt ¼ w1 þw2 þ � � � þwn, where wi refers to the workload
of the ith core of the processor. The workloads of the indi-
vidual cores are random variables and the summation rule
of random variables applies to determine the density and
the distribution functions of wt.

6 For a dualcore processor,

given the random variables w1 and w2 and wt ¼ w1 þw2,
the distribution ofwt can be expressed as

F wtð Þ ¼ Pfwt � wtg ¼ Pf w1 þw2ð Þ � wtg
¼ Pf w1 þw2ð Þ 2 Dwtg;

(17)

where Dwt in the w1w2 plane represents the region in which
the inequality ðw1 þ w2Þ � wt is satisfied. The density func-
tion of wt can be obtained as the convolution of fw1

ðw1Þ and
fw2

ðw2Þ7:

fwtðwtÞ ¼
Z wt

0

fw1
ðwt � w2Þfw2

ðw2Þdw2 wt � 0; (18)

where fw1
ðwt � w2Þ is fw1

ðw1Þ expressed in terms of w1 ¼
wt � w2.

7.2 Relationship betweenwt and p

In the single-core processor model, we used a uniformly
distributed workload to establish the relationship between
p and w. The uniform distribution was chosen because it
simplified the calculation of p ¼ F�1

p ðF ðwÞÞ. For a dualcore
processor, however, conditioning the distribution of the
overall workload wt to assume a uniform distribution was
difficult, because one has to deal with multiple monotoni-
cally increasing distribution functions. The suitable
approach is to generate uniformly distributed w1 and w2

in the interval [0; 100 percent] and to supply them to the
two cores. As long as the operating system (scheduler)
controls the workload distribution between the two cores,
we can assume that w1 and w2 are statistically indepen-
dent. Consequently, the distribution of wt (using Equation
(17)) is given as8:

F ðwtÞ ¼ 0:5� 10�4
� �

w2
t ; 0 � wt � 100;

1� 0:5� 10�4
� �ð200� wtÞ2; 100 < wt � 200:

�
(19)

Fig. 8. The density of the Intel E8500 processor workload when execut-
ing the Apache benchmark (left) and the SPEC power benchmark (right)
in a single-core mode.

Fig. 7. The actual (A) and estimated (E) F ðpÞ of the Intel E8500 (left) and
AMD (right) processors when executing exponentially distributed
workloads.

6. The density of wt tends to be normally distributed as the number
of cores becomes large, complying with the Central Limit Theorem.
The power consumption estimation model for a multicore processor, in
addition to the workload of individual cores, should, therefore, take the
power consumption due to the inter-core communication into account.
This task requires knowledge of the processor’s architecture. The extra
power consumption can be neglected if we assume that w1;w2; . . . ;wn

are statistically independent, which is the case for our model. With this
assumption, as far as establishing the relationship between p and wt is
concerned, there is no difference between the models of a multicore
and a dualcore processor. Therefore, we will focus on a dualcore pro-
cessor to make the investigation tractable.

7. Sometimes we add subscripts to density and distribution func-
tions in order to avoid confusion. For example, fw1

ðw1Þ should be
understood as the density function ofw1.

8. Since the overall workload is a function of two independent, uni-
formly distributed random variables, its distribution is determined as:

F ðwtÞ ¼
Rwt
0

Rwt�w2
0 dw1dw2; 0 � wt < 100;

1� R 100wt�100

R 100
wt�w2

dw1dw2; 100 � wt < 200:

(
(20)

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014



Likewise, the density ofwt (after differentiating Equation
(19)) is given as:

fðwtÞ ¼
10�4
� �

wt; 0 � wt � 100;

10�4
� �

200� wtð Þ; 100 < wt � 200:

8<
: (21)

Fig. 10 (left) shows the actual and the theoretical distribu-
tions of the overall workload (the discrete convolution oper-
ation we mentioned in Section 6) we executed for one hour
on the E5800 dualcore processor (each core executing a uni-
formly distributed workload simultaneously).

A closer examination of both the theoretical and the
experimental F ðwtÞ reveals that it has a convex property
for 0 � wt � 100 and a concave property for 100 <
wt � 200. Through repeated test we have observed that
this property remains unchanged, confirming that w1 and
w2 can indeed be considered statistically independent
and estimating the actual distribution with Equation (20)
is reasonable. Fig. 10 (right) displays the distribution of
the processor’s corresponding power consumption (the
solid line). Similar to F ðwtÞ, F ðpÞ has two components,
namely, for 0 � wt � 30:5 it exhibits a convex property
while for 30:5 < wt � 50, it exhibits a concave property.
We used Matlab to approximate the actual distribution
with the following expression:

F ðpÞ ¼ 2:47� 10�4
� �

wt � 10:5ð Þ2; 10:5 � p � 30:5;

1� 2:37� 10�4
� �ð42:2� wt � 10:5ð Þ2Þ; 30:5 < p � 50:

(

(22)

Clearly, associating the convex part of F ðpÞ with the con-
vex part of F ðwtÞ and the concave part of F ðpÞ with the con-
cave part of F ðwtÞ shows that there is a linear relationship
betweenwt and p:

p ¼ K4wt þK5 K4 > 0: (23)

With,

F ðpÞ ¼ PfK4wt þK5 � pg ¼ Fwt

p�K5

K4

� 

: (24)

Combining Equation (19) and Equation (24) yields:

F ðpÞ ¼
0:5�10�4

K2
4

� 

p�K5ð Þ2; 10:5 � p < 30:5;

1� 0:5�10�4

K2
4

� 

200K4 � p�K5ð Þ2; 30:5 � p � 50;

8>><
>>:

(25)

whereK4 ¼ 0:2 andK5 ¼ 10:5.

7.3 Theoretical F ðpÞF ðpÞF ðpÞ and fðpÞfðpÞfðpÞ
If w1 and w2 are exponentially distributed with the same
�1 ¼ �2 ¼ 1

m
, the distribution of the overall workloadwt,

F ðwtÞ ¼ Pfw1 þw2 � wtg

¼
1� 1þ wt

m

	 

e�

wt
m ; 0 � wt � 100;

1� 200�wt
m

� 1
	 


e�
wt
m � e�

200
m ; 100 � wt � 200:

8><
>:

(26)

Therefore, the theoretical distribution of p, given the lin-
ear relationship betweenwt and p is expressed as:

F ðpÞ

¼
1� 1þ p�K5

K4m

	 

e
� p�K5ð Þ

K4m ; 0 � wt � 100;

1� 200K4�pþK5
K4m

� 1
	 


e
� p�K5ð Þ

K4m � e�
200
m ; 100 � wt � 200:

8><
>:

(27)

7.4 Experimental F ðpÞF ðpÞF ðpÞ
Similar to what we carried out in Section 6, we tested the
validity of our model by using custom-made exponential
workloads as well as the SPEC power benchmark and the
Apache benchmarking tool. We carried out our test using
the Intel E8500 dualcore processor. Fig. 11 (left) shows the
exponentially distributed overall workload of the dualcore
processor for m ¼ 5 and m ¼ 15 and in the same figure
(right) the distribution of the actual and the estimated power
consumptions of the dualcore processor while executing the
exponentially distributed workloads is displayed. The linear
relationship approximated better when m ¼ 5 (error ¼ 0.3
percent) than when m ¼ 15 (error ¼ 0.7 percent). The reason
is that as the value of m increased, the CPU utilization fluctu-
ation range increased as well, potentially increasing the
deviation of the estimated power consumption from the
actual power consumption. This problem becomes more vis-
ible when we consider the standard benchmarks.

The density of the workload generated by the Apache
benchmarking tool was similar in pattern with the density
of the single-core Apache workload. The density of the
actual and estimated power consumption, fðpÞ, of the E8500
dualcore processor when executing the Apache benchmark
is displayed in Fig. 9 (the third from left). The estimation
error was comparable with that of the error for the single-
core processor. During the execution of the SPEC power
benchmark, the CPU utilization of the E8500 dualcore pro-
cessor, similar to the case with the single core processor,
occupied the entire CPU utilization spectrum with a visible

Fig. 9. The actual and estimated fðpÞ of the power consumption of the Intel E8500 processor when executing, from left to right, the Apache bench-
mark (single-core mode), the SPEC power benchmark (single-core mode) the Apache benchmark (dualcore mode), and the SPEC power benchmark
(dualcore mode).

DARGIE: A STOCHASTIC MODEL FOR ESTIMATING THE POWER CONSUMPTION OF A PROCESSOR 9



dominant utilization at the two ends of the spectrum (i.e., 0
and 100 percent). The density of the actual power consump-
tion is shown in Fig. 9 (extreme right, the black solid line).
There is an apparent deviation between the actual and the
estimated fðpÞ in the interval (15, 33) Watt. The average esti-
mation error amounts to 5.2 percent, a slight improvement
compared to the single core model. It is noteworthy that in
all the estimation assignments, both for the single-core and
the dualcore models, our approach was responsive to the
changes in the power consumption, which we consider as
an indication of the quality of our model.

It must be remarked once again that our model is capable
of estimating the instantaneous power consumption by
directly applying Equation (23). Fig. 12 shows the actual and
estimated instantaneous power consumption of the Intel
E8500 dualcore processor when executing the SPEC power
benchmark. 67 percent of the time, the model’s estimation
error was within 	5 Watt range. The density of the estima-
tion error for the instantaneous power is displayed in Fig. 13.

8 ERROR

There are three types of errors in our estimation model. The
first type of error stems from the imperfection of the work-
load we used to train the model. The second type of error
stems from the approximation of the actual (measured)
F ðwÞ and F ðpÞ before applying Equations (7) and (23) (i.e.,
the error due to a curve-fitting process). The third type of
error stems from the deviation of the estimated or theoreti-
cal F ðpÞ (obtained by using the relationships expressed in
Equations (7) and (23)) from the actual or measured F ðpÞ.
We refer to the last type of error as the estimation error.

The first and third types of error are inherent to all types of
power consumption estimation errors. As long as the future
workload of the processor is unknown and the server hosts a
large number of services, it is difficult to train the model with
a representative workload. For example, Bertran et al. [26]
develop 97 different types of micro-benchmarks to deal with
this problem. Specific to ourmodel is the second type of error.

We use the root-mean-square error (RMSE) and the sum
of squared errors (SSE) [27], [28] to quantify the model’s
errors. We use the RMSE to quantify the first two error types
and the SSE to quantify the estimation error. These two
quantities essentially measure the differences between the
values estimated by our model and the values we actually
observed (measured). The essential difference between
them is that the former expresses the expected error value
whereas the latter is an expression of the accumulated
(total) error. We employ SSE to quantify the estimation error
because the distribution (density) function describes the
entire domain of a random variable.

Of the three types of errors, the one which affected our
model most was the curve-fitting error. In the single-core
processor, this can be seen in Fig. 5; the deviation between
the actual and the approximated F ðpÞ increased signifi-
cantly for p > 30 W. This region corresponds to w > 80%.
Hence, the estimation error of Equation (4) increased for
w > 80%. The magnitude of this error depends on how
often the workload of the processor exceeds the 80 percent
threshold, i.e.,

R 100
80 fðpÞdp. For example, for the SPEC power,

this error amounts on average to 5.2 percent. For the Apache
benchmarking tool it was 2 percent. In the dualcore proces-
sor, the error in the curve-fitting approximation lied in the
coefficient K4 ¼ 0:2 (see Equation (25)). The reason can be
seen in Fig. 10; in the figure approximating the lower part
of the actual power consumption (for wt � 100) resulted in
SSE ¼ 22.28 and approximating the upper part (wt > 100)
resulted in SSE ¼ 1.556. The average RMSE of the curve-fit-
ting process equals to 3.65 percent. Hence, when we used

Fig. 12. A snapshot of the actual and estimated power consumption of
the Intel E8500 dualcore processor while executing the SPEC power
benchmark.

Fig. 13. The estimation error density for the instantaneous power con-
sumption of the Intel E8500 dualcore processor when executing the
SPEC power benchmark.

Fig. 10. (Left): The actual (A) and the estimated (E) distribution of the
overall workload (Fwt ðwtÞ) of the E8500 dualcore processor as the con-
volution of two uniformly distributed workloads executing on each core.
Right: The corresponding actual (A) and estimated (E) F ðpÞ.

Fig. 11. F ðwÞ of the exponentially distributed workloads executed on the
E8500 dualcore processor(left) and the corresponding actual (A) and
estimated (E) F ðpÞ (right) – m ¼ 5 and m ¼ 15.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014



K4 ¼ 0:2, the estimated power consumption was always
less than the actual power consumption of the dualcore pro-
cessor for all the test cases, irrespective of the type or the
distribution of the workload. When we readjusted this value
to K4 ¼ 0:35, the estimation error significantly reduced for
all the test cases.

9 COMPARISON

The models which are closer in purpose as well as in
approach (the creation of a lightweight model) to ours are
the ones proposed by Fan et al. [23], Heath et al. [29],
Economou et al. [30], and Bircher [16]. Fan et al. employ,
similar to us, the CPU utilization as the input of a non-linear
model together with an empirically obtained “correlation”
or “calibration” factor. Similarly, Heath et al. employ CPU
and disk utilization as the input parameters of a linear
regression model. The model of Economou et al. employs
events emitted from a selected number of performance
monitoring counters in addition to CPU utilization, memory
access, disk IO rate, and network IO rate. These three mod-
els have been comparatively evaluated by Rivoire in [14].

The evaluation was carried out on different server plat-
forms, including a high-performance Xeon server (2x Intel
Xeon E53459). On each system ran CPU-, memory- and IO-
bound benchmarks: SPECfp, SPECint and SPECjbb (as CPU
intensive workloads), stream (as a memory intensive work-
load), and ClamAV virus scanner, Nsort, and SPECweb (as
IO intensive workloads). Overall the model of Economou
et al. performed well, producing the smallest average esti-
mation error. Even so, its performance on the Xeon system
displayed stark, workload dependent variations. For exam-
ple, it had an estimation error of 9.5 percent for the SPECint
benchmark suite whereas the models of Fan et al. and Heath
et al. scored an estimation error of less than 4.5 percent for
the same benchmark. Moreover, the model of Heath et al.
had an estimation error of 2.25 percent for the SPECfp bench-
mark while this was 8 percent for the model of Economou
et al. This indicates that PMC-basedmodels are not necessar-
ily more accurate than models based on CPU utilization, but
that accounting for nonlinear properties reduces the estima-
tion error evenwhen abstract model inputs are used. Having
said this, the smallest maximum estimation error across all
the benchmarks considered was observed with the model of
Economou et al., whereas in the other models the difference
between the smallest and the largest estimation error was
considerably high, suggesting that thesemodels can be unre-
liable for some benchmarks (workload types).

The model of Economou et al. was also evaluated by
McCullough et al. in [31]. For best comparison, we consider
here their results for the Intel Core i7-820QM10 and the
SPECfp benchmarks (povray, soplex, namd, zeusmp,
sphinx3). The average estimation error of the model was 4.23
percent which is comparable with the observation made in
[14]. However, for other benchmarks, it performed poorly—
up to 15 percent estimation error was observed. McCullough
et al. explain that this is due to the existence of “hidden
states” in the multicore CPU architecture producing nonlin-
ear behavior that cannot be captured by the model.

The model of Birch et al. employs a single event cap-
tured by a performance monitoring counter—fetched

micro-operations/cycle—to establish a linear relationship
between a CPU’s activity and its power consumption. The
authors argue that the event representing the amount of
fetched micro-operations better capture the CPU’s activity
than the event representing the amount of micro-opera-
tions retired, since the number of fetched micro-opera-
tions comprises both retired and canceled micro-
operations. They train and test their model with the
SPEC2000 benchmark suite, splitting the benchmarks into
10 clusters. From each cluster one program is used for
training the model while the remaining are used to test the
model. In addition to the SPEC2000 suite, the authors
employ custom-made benchmarks to examine the mini-
mum (with minimum instruction per cycle) and the maxi-
mum (with maximum instruction per cycle) power
consumption of the CPU. The model’s average estimation
error was 2.6 percent. The authors further reduced this
error to 2.5 percent by considering an additional event
(uop_queue_writes) because floating point operations con-
sist of complex microcode instructions that cannot be suf-
ficiently captured by the previous event [32].

In terms of model complexity, our model is comparable
with the models of Fan et al. and Bircher . The model of
Economou et al. cannot be considered lightweight. Unlike
the models of Fan et al. and Heath et al., our model was
tested by considerably varying the CPU utilization. Further-
more, our test environment involves more diverse bench-
marks, both standard and custom-made. In terms of
estimation error, our model is comparable with the model
of Economou et al. The maximum estimation error we
observed was below 8 percent whereas this figure was
below 10 percent for the model of Economou et al. How-
ever, the model of Economou et al. has been tested by a
third party on a variety of server platforms. In contrast, our
model was tested on two server platforms only. It will be
interesting to see a third party evaluating our model and
compare it with other contending models.

10 CONCLUSION

We characterized the power consumption of a processor
and its workload as random variables and employed their
probability distribution functions to establish a quantita-
tive relationship between them: p ¼ F�1

p ðF ðwÞÞ. For a sin-
gle-core processor, the relationship between w and p was
best expressed as a quadratic relation whereas for a dual-
core processor, the relationship was best expressed by a
linear function.

Our approach is useful as long as the processor can be con-
sidered as a memoryless system with a stochastic input. A
sufficient precondition for this assumption is that the autocor-
relation of p,Rppðt2; t1Þ 
 0 for t2 6¼ t1 if the autocorrelation of
w, Rwwðt2; t1Þ 
 0 for t2 6¼ t1. This requirement can be satis-
fied by carefully choosing a suitable sampling interval during
measuring the power consumption of the server. We have
experimentally observed that for a sampling interval of a few
hundredmilliseconds, this requirement can be satisfied.

We tested our models with custom-made workload as
well as with standard benchmarks, namely, with SPEC
Power ssj2008 benchmark and the Apache benchmarking
tool. Unlike the SPEC CPU benchmark families or similar

DARGIE: A STOCHASTIC MODEL FOR ESTIMATING THE POWER CONSUMPTION OF A PROCESSOR 11



benchmarks, the SPEC power benchmark stresses a proces-
sor with different magnitudes, generating a wider utiliza-
tion spectrum, (0, 100 percent). This type of benchmark
better represents the workload of servers hosting a large
number of Internet applications. Likewise, the Apache
benchmarking tool is specifically designed to test the perfor-
mance of an Apache Internet installation.

Even thoughwe trained themodels with a predominantly
integer and floating point operations, the custom-made pro-
gram performed well for all the training cases. Understand-
ably, the estimation error was larger for the SPEC power
benchmark than for all the other test workloads. This is due
to the wider workload spectrum. Of all the error types, the
error due to the approximation of the actual F ðwÞ and F ðpÞ
with a curve-fitting tool was the largest. Reducing this error
is possible but it comes at the expense of making the models
more complex. Even so, both models were able to detect
changing characteristics in the power consumption of the
processor. This aspect is desirable because it helps the server
to quickly adapt to a changingworkload.

ACKNOWLEDGMENTS

Thiswork has been partially funded by theGermanResearch
Foundation (DFG) under agreement SFB 912/1 2011.

REFERENCES

[1] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas, “Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance,” SIGARCH Comput. Archit.
News, vol. 32, no. 2, pp. 64–75, Mar. 2004.

[2] T. Horvath and K. Skadron, “Multi-mode energy management for
multi-tier server clusters,” in Proc. 17th Int. Conf. Parallel Arch.
Compilation Techn., 2008, pp. 270–279.

[3] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware
task scheduling in MPSOCS,” in Proc. Conf. Des., Autom. Test in
Eur., San Jose, CA, USA, 2007, pp. 1659–1664.

[4] E. Seo, J. Jeong, S. Park, and J. Lee, “Energy efficient scheduling of
real-time tasks on multicore processors,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 19, no. 11, pp. 1540–1552, Nov. 2008.

[5] A. Merkel and F. Bellosa, “Balancing power consumption in mul-
tiprocessor systems,” SIGOPS Oper. Syst. Rev., vol. 40, no. 4, pp.
403–414.

[6] C. Isci and M. Martonosi, “Runtime power monitoring in high-
end processors: Methodology and empirical Data,” Electrical Eng.
Dept., Princeton Univ., Princeton, NJ, USA, Tech. Rep. EE-2003-
09, Dec. 2003.

[7] N. Kavvadias, P. Neofotistos, S. Nikolaidis, C. A. Kosmatopoulos,
and T. Laopoulos, “Measurements analysis of the software-related
power consumption in microprocessors,” IEEE Trans. Instrum.
Meas., vol. 53, no. 4, pp. 1106–1112, Aug. 2004.

[8] C.-H. Lien, Y.-W. Bai, and M.-B. Lin, “Estimation by software for
the power consumption of streaming-media servers,” IEEE Trans.
Instrum. Meas., vol. 56, no. 5, pp. 1859–1870, Oct. 2007.

[9] L. A. Barroso and U. H€olzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[10] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu,
“Energy proportional datacenter networks,” SIGARCH Comput.
Archit. News, vol. 38, no. 3, pp. 338–347, 2010.

[11] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” in Proc. IEEE
Conf. Comput. Commun., Apr. 2001, pp. 1098–1106.

[12] W. Dargie and A. Schill, “Analysis of the power and hardware
resource consumption of servers under different load balancing
policies,” in Proc. IEEE 5th Int. Conf. Cloud Comput., Washington,
DC, USA, 2012, pp. 772–778. [Online]. Available: http://dx.doi.
org/10.1109/CLOUD.2012.30

[13] C. Mobius, W. Dargie, and A. Schill, “Power consumption estima-
tion models for processors, virtual machines, and servers,” IEEE
Trans. Parallel Distrib. Syst., vol. 99, no. PrePrints, p. 1, 2013, DOI:
10.1109/TPDS.2013.183

[14] S. Rivoire, “Models andMetrics for Energy-EfficientComputer Sys-
tems,” PhdDissertation, StanfordUniv., Stanford, CA,USA, 2008.

[15] F. Bellosa, “The benefits of event: Driven energy accounting in
power-sensitive systems” in Proc. 9th Workshop ACM SIGOPS Eur.
Workshop: Beyond the PC: New Challenges Oper. Syst., New York,
NY, USA, 2000, pp. 37–42.

[16] W. Bircher, “Complete system power estimation using processor
performance events,” IEEE Trans. Comput., vol. 61, no. 4, pp. 563–
577, Apr. 2012.

[17] R. Bertran, M. G. Tallada, X. Martorell, N. Navarro, and E.
Ayguade, “A systematic methodology to generate decomposable
and responsive power models for CMPs,” IEEE Trans. Comput.,
vol. 62, no. 7, pp. 1289–1302, Jul. 2013.

[18] G. Chen, W. He, J. Liu, S. Nath, and L. Rigas, “Energy-aware
server provisioning and load dispatching for connection-inten-
sive internet services,” in Proc. 5th USENIX Symp. Netw. Syst.
Design Implementation, San Franciso, CA, USA, pp. 337–350.

[19] K. Singh, M. Bhadauria, and S. a. McKee, “Real time power esti-
mation and thread scheduling via performance counters,” ACM
SIGARCH Comput. Arch. News, vol. 37, no. 2, pp. 46–55, Jul. 2009.

[20] A. Lewis, S. Ghosh, and N.-F. Tzeng, “Run-time energy consump-
tion estimation based on workload in server systems,” in Proc.
Conf. Power Aware Comput. Syst., 2008, p. 4.

[21] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power
prediction in virtualized environments using Gaussian mixture
models,” in Proc. 47th Design Autom. Conf., New York, NY, USA,
2010, pp. 807–812.

[22] R. Gray, “Gauss mixture vector quantization,” in Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Process., 2001, vol. 3, pp. 1769–1772.

[23] X. Fan, W.-d. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” ACM SIGARCH Comput. Archit.
News, vol. 35, no. 2, pp. 13–23, Jun. 2007.

[24] M. Pedram and I. Hwang, “Power and performance modeling in a
virtualized server system,” in Proc. 39th Int. Conf. Parallel Process.
Workshops, 2010, pp. 520–526.

[25] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Sto-
chastic Processes. 4th ed. New York, NY, USA: McGraw Hill, 2002.

[26] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E.
Ayguade, “Decomposable and responsive power models for mul-
ticore processors using performance counters,” in Proc. 24th ACM
Int. Conf. Supercomput., New York, NY, USA, pp. 147–158.

[27] N. Levinson, “The Wiener RMS (root mean square) error criterion
in filter design and prediction,” J. Math. Phys. Mass. Inst. Tech.,
vol. 25, pp. 261–278, 1947.

[28] D. Allen, “Mean square error of prediction as a criterion for select-
ing variables,” Technometrics, vol. 13, no. 3, pp. 469–475, 1971.

[29] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini,
“Energy conservation in heterogeneous server clusters,” in Proc.
10th ACM SIGPLAN Symp. Principles Practice Parallel Programm.,
New York, New York, USA, pp. 186–195.

[30] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan,
“Full-system power analysis and modeling for server environ-
ments,” in Proc. 2nd Workshop Modeling, Benchmarking, Simul.,
Boston, MA, USA, 2006, pp. 70–77.

[31] J. C. Mccullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy,
A. C. Snoeren, R. K. Gupta, and I. Labs, “Evaluating the effective-
ness of model-based power characterization,” in Proc. USENIX
Conf. USENIX Annu. Tech. Conf., Berkeley, CA, USA, 2011, p. 12.

[32] C. Isci and M. Martonosi, “Runtime power monitoring in high-
end processors: Methodology and empirical data,” in Proc. IEEE/
ACM Int. Symp. Microarchit., Dec. 2003, pp. 93–104, doi: 10.1109/
MICRO.2003.1253186

Waltenegus Dargie (SM’12) received the BSc
degree from the Nazareth Technical College,
Ethiopia, and the MSc degree from the Technical
University of Kaiserslautern, Germany, in 1997
and 2002, respectively, both in electrical engi-
neering. He received the PhD degree in computer
engineering from the Technische Universit€at
Dresden in 2006. He is an associate professor at
the Technische Universit€at Dresden. He is a
member of the editorial board of the Journal of
Network andComputer Applications. His research

interest is related to wireless sensor networks, stochastic processes, and
energy-efficient computing. He is a senior member of the IEEE.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXXX 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


