
Journal of Ambient Intelligence and Smart Environments 1 (2009) 1–5 1
IOS Press

Employing Description Logics in Ambient
Intelligence for Modeling and Reasoning
about Complex Situations
Thomas Springer and Anni-Yasmin Turhan a

a TU Dresden, Faculty of Computer Science, Chair for Computer Networks/Chair for Automata Theory
E-mail: thomas.springer@tu-dresden.de, turhan@tcs.inf.tu-dresden.de

Abstract.
Ambient Intelligence systems need to represent information about their environment and recognize relevant situations to

perform appropriate actions proactively and autonomously. The context information gathered by these systems comes with
imperfections such as incompleteness or incorrectness. These characteristics need to be handled gracefully by the Ambient
Intelligence system. Moreover, the represented information must allow for a fast and reliable recognition of the current situation.

To solve these problems we propose a method for situation modeling using the Description Logics based ontology language
OWL DL and a framework for employing Description Logics reasoning services to recognize the current situation based on con-
text. The benefits from the approach are manifold: the semantics of Description Logics allow for graceful handling of incomplete
knowledge. The well-investigated reasoning services do not only allow recognizing the current situation, but also can add to the
reliability of the overall system. Moreover optimized reasoning systems are freely available and ready to use.

We underpin the feasibility of our approach by providing a case study based on a smart home application conducting an eval-
uation of different Description Logics reasoners with respect to our application ontology as well as a discussion of Description
Logics systems in Ambient Intelligence.

Keywords: Situation-Awareness, Description Logics, Reasoning services, OWL DL, Modeling context information

1. Introduction

Research on Ubiquitous Computing and especially
Ambience Intelligence (AmI) aims at creating systems
able to interact in an intelligent way with the envi-
ronment, especially the user. Weiser characterized this
kind of system as: “machines that fit the human envi-
ronment instead of forcing humans to enter theirs will
make using a computer as refreshing as a walk in the
woods” [53].

A system able to recognize the environment’s state
can adjust its behavior according to that state. For in-
stance, an application for supporting mobile workers
during their tasks in the field could adapt the input
and output modalities to improve the interaction with
the user. Speech input and output could be used if the
workers’ hands are not free, or gesture input could be

used if the surrounding noise level is very high. In a
similar way an assistance application for elderly peo-
ple could intelligently support planning of daily ac-
tivities like selecting convenient connections of public
transportation systems for carrying out shopping activ-
ities, visiting the doctor or meeting relatives or friends.

To realize such systems, they have to be able to
capture information about the environment and the in-
volved users based on heterogeneous and distributed
information sources, mainly sensors but also extracted
application data, user monitoring or other methods for
gathering context information. The information cap-
tured in this way is usually low-level and has to be ag-
gregated and abstracted to create a higher-level repre-
sentation of the overall situation a system is currently
in. Only the recognition of complex situations enables

1876-1364/09/$17.00 c© 2009 – IOS Press and the authors. All rights reserved

2 Employing Description Logic systems in Ambient Intelligence

systems of this kind to operate in a more autonomous,
adaptive and intelligent way.

Thus, ambient intelligent systems should be aware
of the current situation. We understand situation-
awareness as the ability of a system to logically ag-
gregate a type of a situation from a complex set of
features of the system’s context. The derived situation
type should be meaningful to the system in the sense
that it can adjust its behavior in a defined way to the
current situation.

A generalized view on situation-aware systems
based on knowledge-based systems as we use it in this
paper is depicted in Figure 1 introducing four process-
ing phases. The first phase of the recognition of a sit-
uation starts with the capturing of information about
the environment using sensor devices. In the second
phase, this information is aggregated and abstracted by
different operations performed by the sensing devices
or components of a context service. The third phase
adds the preprocessed data in an adequate format to
the knowledge base. Then situation types are inferred
from an updated knowledge base. In the fourth phase,
the application triggers appropriate actions based on
the situation types inferred in phase three.

This process involves approaches from several ar-
eas of computer science, namely pervasive and ubiq-
uitous computing, context awareness and artificial in-
telligence, as it was stated in [40] and [36]. Sensors,
actuators and other miniaturized, low-cost computing
devices installed in buildings, devices or even clothes
and the human body help to capture usually low-level,
physical information about the environment like tem-
perature, light intensity, or blood pressure. These tech-
nologies are mainly adopted in the first phase. Systems
developed for context-awareness aim at generalizing
the access to these heterogeneous information sources
and to apply technologies for aggregating and abstract-
ing the sensed information to context information us-
able in applications [18,13,45]. Context models are
created to establish a shared understanding between all
providers of context information, the context middle-
ware and the context-aware applications [19,48]. The
cross-system sharing of context and the modeling of
different context features, especially the quality of in-
formation are further goals of context models [14,41].
To sum up, context-aware systems provide a set of con-
text information that has to match a context model.

The preprocessing of sensor data is only half the
way to situation-aware systems. Classical AI methods
come into play in phase two and three of situation-
aware systems as described in Figure 1. The second

phase uses AI methods as feature extraction and ap-
proaches for classification and aggregation of sensed
data to obtain higher-level context information, as de-
scribed in [27] and [32]. In the third phase, differ-
ent AI techniques could be used to derive a situation
type from a complex set of context features. While
approaches like Neuronal Networks or Bayesian Net-
works could be adopted in the whole process from sen-
sor data abstraction up to decision making, we focus on
AI systems with explicit representation of knowledge
as defined in Figure 1. A major advantage of such sys-
tems is the reproducibility of inferences and decisions.

In phase four, the AmI system derives a decision
from the recognized situation types. The decoupling
of situation recognition and decision making enables
a clear separation of concerns and introduces flexibil-
ity for the AmI system. Especially, the association bet-
ween situation types and actions to be triggered can be
adjusted at run-time.

In this article, we focus on phase three, the recogni-
tion of situation types. This phase comprises the setup
of a knowledge base containing a description of the
situations to be considered in the application and the
reasoning about the situation based on that description
involving context as information about the current sit-
uation. To this end we discuss the role of context for
this kind of systems.

1.1. The role of context in situation-awareness

Context is usually implicit information which has
to be sensed or gathered from distributed and hetero-
geneous sources in order to be usable in applications.
Caused by the way context is gathered and as well as
by the fact that context reflects the state of a highly dy-
namic environment, it has special characteristics which
influence the modeling and processing of context. A
certain piece of information which models a certain as-
pect of the physical environment is called a context fea-
ture. We can identify certain characteristics of single
context features:

Quality: Context represents a model of aspects of
the environment abstracting from the real world.
Dependent on the method used for gathering or
abstracting context features, they have a certain
quality. The quality comprises the relevance of
the gathered information in a certain situation or
related to a certain entity, the accuracy of a mea-
sured value and the probability of a derived con-
text feature.

Employing Description Logic systems in Ambient Intelligence 3

Fig. 1. Conceptual architecture of situation-aware systems.

Incorrectness: Since context features are sensed, ex-
tracted or derived, failures in measurement or
wrong assumptions for derivation may lead to in-
correct information. A system or user can also
provide incorrect information to attack context-
based authentication and authorization mecha-
nisms.

Multiple sources: Moreover, a certain context feature
can be gathered from multiple alternative sources.
For instance, location information can be gath-
ered by the client, either using a GPS device, a
WLAN-based approach, or by the environment.

Heterogeneous sources: Because of its nature, con-
text is in most cases not explicitly available but
has to be gathered from heterogeneous sources. A
context source can be any type of sensor system,
database, or monitoring component. It can also be
derived from user input or application data (see
[45]).

In contrast to a single context feature, a set of con-
text features has the following characteristics:

Inconsistency: A set of context features relevant for a
certain application can be inconsistent because of
contradictory information.

Incompleteness: It can further be incomplete due to
the unavailability of certain context sources.

Multidimensional: Context information is multidi-
mensional because it reflects heterogeneous in-
formation about the state of a highly dynamic
environment comprising physical and techni-
cal information as well as personal information
like activity, user preferences, social relations or
business-related information.

Different abstraction levels: Information from dif-
ferent sources might be available at different lev-
els of abstraction. While a sensor system provides
low-level information sensed from the physical
environment like temperature or light intensity,
application data is usually available on a more ab-
stract level like contact information of a person.

These characteristics of context features require
AmI systems that can handle this kind of imperfect in-
formation gracefully. More precisely, an AmI system
must be able to integrate context information and to de-
liver a “consistent” view of the current situation. Based
on this view its main task is to recognize the type of
the current situation in order to invoke the appropriate
actions – even if the provided information is incom-
plete. While context information is usually provided at
different abstraction levels, it has to be integrated into
the knowledge base seamlessly. In addition, inconsis-
tencies in the knowledge base could occur due to in-
correct context and have to be detected by the system.
Moreover, AmI systems have to be predictable, reli-
able and the selection of actions should be transparent
to the developer and the user.

In this article, we present an approach to and a
framework for modeling of complex situations and in-
ferring the type of the current situation based on con-
text information integrated into the situation model.
We use the DL underlying OWL DL as the knowledge
representation formalism and realize the task of situa-
tion type recognition by the use of Description Logic
reasoning services. OWL DL is a formalism with clear
semantics that offers reasoning services that remedy
the above mentioned problems, especially the handling
of incomplete knowledge, the discovery of inconsis-

4 Employing Description Logic systems in Ambient Intelligence

tencies and the integration of context information at
different levels of abstraction. The reasoning services
in use are well-investigated. Moreover, sound, com-
plete and terminating reasoning algorithms are avail-
able for the Description Logic underlying OWL DL. In
addition, these methods are implemented in highly op-
timized reasoning systems which are freely available.
By adopting a standard ontology language and off-the-
shelf reasoning tools one can significantly reduce the
development overhead and achieve faster prototyping.
In addition to the already tested reasoning services of
DL reasoners the AmI systems created according to
the presented approach are very robust and reliable.
Based on a case study and performance measurements
we will demonstrate the advantages and limitations of
our approach which employs DL systems for the real-
ization of Ambient Intelligence.

In other research work OWL DL is mainly used
for two purposes. Firstly, ontologies are created to es-
tablish a shared understanding between different com-
ponents or even systems about the context informa-
tion which is exchanged between them. Examples are
the Standard Ontology for Ubiquitous and Pervasive
Applications (SOUPA) and the CONtext ONtology
(CONON) [14,19]. In both approaches a common con-
text vocabulary is defined based on a hierarchy of
ontologies. An upper ontology defines general terms
while domain-specific ontologies define the details for
certain application domains. Secondly, context or sit-
uation descriptions are employed in combination with
different reasoning schemes to derive higher-level con-
text or even situations from context.

Often these solutions adopt rule-based reasoning
which could lead to undecidability as it is the case
for [14], [15] and [19]. Other approaches for situa-
tion recognition adopt OWL DL as the base formalism
for the knowledge base, but either adopt the formalism
to their needs – as in [2] fuzzy logic and in [37] first
order logic was used – or use other reasoning mecha-
nisms than DL systems for the recognition task , e.g.
in [47] decision trees were used. Closer to the work
presented here comes the approach presented in [28],
where TBox classification of OWL DL ontologies was
applied to solve situation recognition. ABox realiza-
tion as the means for recognizing situations is for in-
stance used in [31].

While the use of a standard ontology language and
off-the-shelf reasoning tools ensures soundness, com-
pleteness and decidability the approach has also some
limitations. Situations are described by concepts in the
TBox at design time and thus, have to be known to

and explicitly modeled by the system developer. Only
the context features relevant for situation detection are
filled dynamically into the ABox at runtime. Hence,
the situations which can be detected by the AmI sys-
tem are limited to the situations modeled by the sys-
tem developer at design time. Adding new situation de-
scriptions or changing existing one’s means changing
the TBox at design time.

Systems like Bayesian networks or decision trees
are able to model and especially to learn the associa-
tions between context features and situation types from
a set of training examples and can thus, also be used
to build situation-aware systems. A clear advantage of
such approaches is that the developer does not have to
specify the complete knowledge about situations man-
ually, since it can be learned by the system based on
examples. Major drawbacks of these approaches are
that usually a large set of training examples is required
to adjust the system and that the situation model is im-
plicit so that system decisions are hardly reproducible.

In addition, probabilistic approaches are able to deal
with uncertain knowledge by attaching a probability
to all inferred values. With ontologies and Description
Logics just facts can be handled.

In the following, we first give an overview of OWL
DL, Description Logic and their reasoning services.
Then we show how to model complex situations based
on OWL DL. Especially we present a systematic mod-
eling method by the composition of basic situations
to complex scenarios. Next we describe how to ap-
ply DL reasoners for recognizing situation types from
context features. By the use of a case study from the
smart home domain we demonstrate the feasibility of
our approach and give modeling examples. We assess
the usefulness of DL systems for realizing AmI sys-
tems with respect to the expressivity of the formalism,
the handling of imperfect context information and the
performance of the DL reasoners and provide an eval-
uation of today’s available Description Logic reason-
ers. We end the article with a summary and an outlook
to future trends.

2. Description Logics for situation-aware systems

Description Logics (DLs) are a family of knowledge
representation formalisms. The main asset of DLs is
two-fold: on the one hand they are based on formal se-
mantics and on the other they come with powerful rea-
soning services. These reasoning services make facts
that are captured only implicitly in the represented

Employing Description Logic systems in Ambient Intelligence 5

knowledge explicit. Most of the DL reasoning services
are nowadays readily available in tools.

Historically, DLs stem from semantic networks [33,
44], which were introduced as a graphical knowledge
representation formalism. Early versions of semantic
networks lacked a clear definition of the meaning of
the formalism. Thus reasoning algorithms developed
for this kind of knowledge representation depended on
the understanding of the developer. As a consequence
implementations of the reasoning algorithms delivered
different results for the same semantic network. To
remedy this problem DLs were introduced as represen-
tation formalisms equipped with formal semantics [6],
which then allowed to give formal definitions of their
reasoning services. This in turn is the basis for imple-
mentations to be used in practical applications, which
deliver predictable and reliable results.

DL research focuses on algorithms for DL reason-
ing services, the analysis of these algorithms in terms
of computational complexity and the development of
efficient implementations. For instance in case of sub-
sumption tests, algorithms for a whole range of DLs
has been investigated, see [7,25,23]. Moreover, there
is a collection of very efficient DLs systems avail-
able that implement the investigated algorithms in op-
timized ways, see for instance [21,5,50,43]. These DL
systems are employed in many different practical ap-
plications. The most prominent application area for
DLs is the bio-medical domain, where the huge termi-
nologies are built to represent facts from the biological
domain as, for instance, genomic information [8,55]
or from the medical domain, such as anatomy facts
or medical procedures, see [38,17,16,39]. In the bio-
medical domain, the modeling of the domain know-
ledge in a formal representation language is a bene-
fit in itself, since this formalizes and to some extent
standardizes what the community understands about
certain terms in an unambiguous way. Thus by agree-
ing upon an ontology and the definition of concepts in
it, a community can create a shared understanding of
their domain of study as [56]. The obtained ontologies
simply serve as a community knowledge reference and
thereby remove heterogeneity in the community.

In the last couple of years the application area of the
Semantic Web [11] brought more attention to DLs and
their powerful reasoning systems. The semantic web
is a future version of today’s World Wide Web, where
web content or services will be annotated with formal
representation of their meaning. The annotation can
state in which context a keyword is used. Based on a
formal description of the keywords in an ontology, bet-

ter search results or matching services can be obtained
using reasoning methods. Despite a future vision, the
semantic web is already a strong motivation for the de-
velopment of powerful reasoning algorithms for very
expressive DLs on the one hand and for the implemen-
tation of DL systems and DL tools on the other, see
[21,20].

An important step towards realizing the semantic
web was the standardization of the web ontology lan-
guage OWL [10,24] and its DL-based dialect OWL
DL, which we will discuss in more detail in Sec-
tion 2.1.3 and which was used in our application.

In the remainder of this section we give a brief intro-
duction to the main ingredients of a Description Logic
system. We introduce some of the reasoning services
employed in practice and emphasize those used in our
application of context-aware systems.

2.1. Description Logics and their reasoning services

Typically, a Description Logic system consists of
four parts:

1. Description Language formalism for capturing
the notions from the domain.

2. TBox: a collection of concepts, which capture the
main categories of the domain of interest,

3. ABox: a collection of facts about concrete in-
stances in the application domain, and

4. the reasoning component.

The elements in TBox and ABox are formulated in
the description language. Typically the TBox is also
referred to as ontology. However, in the OWL lingo,
where individuals are allowed in the TBox in the form
of nominals, the term OWL ontology can refer to TBox
and ABox collectively. We use both terms interchange-
ably throughout the paper. The TBox and ABox to-
gether are often referred to as the knowledge base. The
concept descriptions in the knowledge base are given
in the actual description logic. Next, we take a brief
look at the syntax and semantics of the description
logicALC. For a thorough introduction to Description
Logics we refer the reader to [6].

2.1.1. DL knowledge bases
The main ingredients for representing terminologi-

cal knowledge are concept descriptions. For example,
such a concept description can characterize the cate-
gory of ‘mother’ as a female person who has a person
as a child, in the following way:

Person u Female u ∃has-child.Person.

6 Employing Description Logic systems in Ambient Intelligence

In this expression Person and Female are concepts
and has-child is a so-called role — a binary relation.

Starting from a set of primitive names, complex
concept descriptions can be composed by using con-
cept constructors. In Table 1 we see the concept con-
structors provided by the DL ALC. ALC is the min-
imal propositionally closed DL. ALC provides nega-
tion, conjunction and disjunction of concepts. Further-
more, it provides existential restrictions and value re-
strictions. Intuitively, existential restrictions state that
for every individual i1 which belongs to the concept
∃r.C, there is an individual i2 that is of concept C and
i1 and i2 are related via the role r. Value restrictions
state that for every individual i1 which belongs to the
concept ∀r.C, all individuals that are related to i1 via
the role r belong to concept C.

The semantics of concept descriptions are given in
a set-theoretic way. The semantics is defined in terms
of an interpretation I = (∆, ·I). The domain ∆ of I
is a non-empty set of individuals and the interpretation
function ·I maps each concept name to a set AI ⊆ ∆.
Each role name r is mapped to a binary relation rI ⊆
∆×∆.

Starting from an interpretation of concept and role
names, the extension of ·I to arbitrary concept descrip-
tions is defined inductively, as shown in the third col-
umn of Table 1.

The TBox allows to introduce names for concept de-
scriptions. For instance we can store

Mother ≡ Person u Female u ∃has-child.Person

as a concept definition in the TBox. Besides definitions
there are other forms of TBox statements.

Definition 1 (TBox axioms) Let A be a concept name
and C and D be concept descriptions, then a

primitive concept definition is an expression of the
form A v C.

concept definition is an expression of the form A ≡ C.
general concept inclusion (GCI) is an expression of

the form C v D.
concept equivalence is an expression of the form

C ≡ D.

All of the above statements are called TBox axioms.
The semantics of TBox axioms are given by the inter-
pretation function: AI ⊆ CI , AI = CI , CI ⊆ DI

or CI = DI respectively.

Primitive concept definitions and GCIs give only nec-
essary conditions while concept definitions and con-

cept equivalence axioms state necessary and sufficient
conditions for the concept. Obviously, GCIs are the
most general type of concept axioms.

If in a concept definition A ≡ D the concept de-
scription D refers directly or indirectly to the concept
name A, we call such a concept A a cyclic concept.
Based on this, we define different notions of a TBox.

Definition 2 (TBox) Let A, B be concept names and
let C, D be concept descriptions. A finite set of TBox
axioms T is called a TBox.

unfoldable TBoxes only contain (primitive) concept
definitions, where each name appears at most
once on the left-hand side of a (primitive) defi-
nition and the TBox must be acyclic, i.e. without
cyclic concepts.

cyclic TBoxes may contain cyclic (primitive) concept
definitions.

general TBoxes may contain GCIs and concept equiv-
alence.

An interpretation is a model of a TBox, if for all A v
C ∈ T , A ≡ C ∈ T , C v D ∈ T and C ≡ D ∈ T
it holds that AI ⊆ CI , AI ≡ CI , CI ⊆ DI and
CI = DI . An interpretation I satisfies a TBox T iff I
satisfies every axiom in T . In this case I is a model of
T .

OWL supports all of the above mentioned TBox ax-
ioms for modeling. The kind of TBox axioms a TBox
contains has great effect on the computational com-
plexity of reasoning methods for TBoxes – unfoldable
TBoxes are often easier to handle than general ones.

Besides concept constructors many DLs provide
means to declare properties of roles in the TBox. For
instance, roles can be declared to be

– a transitive role, which is interpreted as a transi-
tive relation.

– the inverse role of another role inverse(R1, R2),
which are interpreted as RI2 = {(a, b) | (b, a) ∈
RI1 }.

– a super-role of another one. Role inclusion ax-
ioms R v S enforce that every pair (a, b) ∈ RI

is also (a, b) ∈ SI . The set of these kind of state-
ments forms the role hierarchy.

All of these role declarations are supported in OWL
DL to build ontologies.

The knowledge about individual entities from the
application domain can be expressed by so-called
ABox assertions. For instance, we can state that the in-

Employing Description Logic systems in Ambient Intelligence 7

Table 1
DL syntax and semantics ofALC-concept descriptions and the corresponding OWL syntax.

constructor name DL syntax semantics OWL syntax

negation ¬C ∆ \ CI complementOf
conjunction C uD CI ∩DI intersectionOf
disjunction C tD CI ∪DI unionOf
existential restriction ∃r.C {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI} someValuesFrom
value restriction ∀r.C {x ∈ ∆ | ∀y : (x, y) ∈ rI → y ∈ CI} allValuesFrom

dividual Alice is a software programmer and she has
the colleague Fred in the following way:

SoftwareProgrammer(Alice),
hasColleague(Alice, Fred)

There are two kinds of ABox assertions used for DL
systems—one kind expresses that an individual be-
longs to a concept and the other one specifies that two
individuals are related via a role.

Definition 3 (ABox, ABox assertion) Let C be an ar-
bitrary concept description, r a role name and i, j two
individual names be two individual names. Then a

concept assertion is a statement of the form C(i).
role assertion is a statement of the form r(i, j).

An ABox A is a set of concept assertions and role as-
sertions.

In order to capture ABoxes the interpretation function
is extended to individual names, which are mapped to
elements of the domain ∆.

Definition 4 (Semantics of ABox) Let C be an arbi-
trary concept, r be a role name and i, j be two individ-
uals. Then an interpretation I satisfies

– the concept assertion C(i) iff iI ∈ CI and
– the role assertion r(i, j) iff (iI , jI) ∈ rI .

An interpretation I satisfies an ABox A iff I satisfies
every assertion in A. In this case I is a model of A .

Equipped with the formalisms for TBoxes and ABoxes
and their meaning, we can turn to the reasoning ser-
vices available once we have represented our informa-
tion in this way.

2.1.2. DL reasoning services
Often the statements in the knowledge base cap-

ture other facts implicitly. To detect these facts and to
make them explicit is the idea behind DL reasoning
services. Furthermore the reasoning algorithms that in-

fer new facts must fulfill certain requirements to en-
sure that applications using these services are reliable.
To begin with, reasoning algorithms should be sound
and complete, i.e. every answer returned by the service
must be correct and we get all the answers. Further-
more the reasoning algorithm must be terminating so
that an answer is always obtained. Based on the formal
semantics of DLs, reasoning services can be defined
and, more interestingly for our application, the require-
ments for reasoning algorithms that provide these ser-
vices can be proven. These requirements hold for the
inference algorithms developed for DLs, and they are
implemented in today’s typical DL systems. In the fol-
lowing we introduce some of the reasoning services
that are readily available in DL systems and that we
have used in our application of context-aware systems.

When adding a concept definition to a TBox, it
is crucial to know whether the specified concept de-
scription contains a contradiction (w.r.t. the knowledge
base) or whether it could be fulfilled by any individual
and thus models something possibly meaningful. This
leads to the formal notion of consistency.

Definition 5 (Consistency) Let C be a concept de-
scription and T be a TBox. The concept description C
is consistent iff it has a model, i.e., there exists an in-
terpretation I where CI 6= ∅. In this case I is a model
of C. A TBox T is consistent iff every concept in T is
consistent.

If a concept or TBox is not consistent, it is called in-
consistent. Even for very expressive DLs inconsisten-
cies can be detected automatically by the DL reasoner.

Another terminological inference task is to deter-
mine whether one concept description is more general
than another, i.e., whether one concept description C is
implied by another concept description D. This is the
case, if every individual that is an instance of C also is
an instance of D. The following definition formalizes
this notion of subsumption.

Definition 6 (Subsumption) Let C, D be concept de-
scriptions and T a TBox. The concept description C

8 Employing Description Logic systems in Ambient Intelligence

is subsumed w.r.t. T by the concept description D
(C vT D), iff CI ⊆ DI holds in every model I of T .

By TBox classification we denote the computation of
all the subsumption relationships that hold for the
named concepts in a TBox. By testing for subsump-
tion relationships or by classifying the whole TBox the
modeler can determine whether relations between no-
tions from the domain are faithfully captured in the
TBox. For instance, if two concepts, which stand for
different notions in the application domain, turn out to
be equivalent in the TBox, more information needs to
be provided to distinguish them by means of their de-
scriptions. Thus the subsumption tester in DL systems
can help to spot these modeling deficiencies. This kind
of test was helpful when we built our KB for the appli-
cation scenario that we will describe in Section 3.1.

Beyond the concepts in the TBox there are also
reasoning services available for the individuals in the
ABox.

Definition 7 (Instance of, ABox realization) Let C
be an arbitrary concept description, i an individual
name and (T ,A) a DL knowledge base. The individual
i is an instance of C w.r.t. (T ,A), iff aI ∈ CI for every
model I of (T ,A).

ABox realization of i w.r.t. (T ,A) returns all con-
cepts C defined in T for which iI ∈ CI for every
model I of (T ,A).

So, instance checking denotes the task of testing
whether a given individual is an instance of a given
concept. Realization of an individual, in turn denotes
the retrieval of all (most specific) named concepts from
the knowledge base that a given individual is an in-
stance of. ABox retrieval realizes this task for all indi-
viduals described in the ABox. This reasoning service
is the central one to realize the task of recognition of
situation types in our approach.

Another ABox reasoning service that we only men-
tion briefly here and that is a good alternative to re-
alize situation type recognition are conjunctive ABox
queries. Here one can pose more sophisticated queries
to the knowledge base. The queries itself are com-
plex expressions – typically conjunctions – containing
variables. These variables are instantiated by the DL
reasoner with ABox individuals to answer the query.
Conjunctive ABox queries are a very powerful way to
query the DL knowledge base. However, in the remain-
der of the paper we resort to ABox realization, since
this service is provided by most of the current DL rea-
soner systems and thus is a better starting point for
evaluation.

2.1.3. The web ontology language OWL
In 2004 the W3C made the web ontology language

OWL a recommendation for the semantic web. The
OWL standard incorporates ideas from the earlier on-
tology language DAML+OIL and from RDF Schema.

The W3C recommendation for OWL specifies three
dialects. While the most expressive dialect OWL full is
beyond the expressivity of DLs and reasoning in it is
undecidable, the other two dialects correspond to DLs
for which sound and complete reasoning procedures
exist. OWL DL can express ontologies written in the
DL SHOIN 1. The less expressive OWL lite can ex-
press ontologies written in the DL SHIF2.

In OWL lingo concepts are called classes and roles
are referred to as object properties. In Table 1 on page 7
in the third column some of the concept constructors
available in OWL DL are displayed in correspondence
to the DL ones. The semantics of the OWL DL con-
structors is the same as for DLs. Thus all reasoning ser-
vices introduced in the last section are applicable for
OWL DL as well.

The standardization of OWL has brought DLs and
their reasoning systems to the attention of people
from many different application areas and the ontol-
ogy language is used in many novel application areas
– context-aware systems are some of them. Next, we
turn to the usage of DLs (or OWL DL resp.) in this
application domain.

2.2. DLs for context-aware systems

The main idea how to use DL systems for context-
aware systems is to build a TBox with the main no-
tions from the domain and the description of types
of situations relevant to the application. This kind of
TBox needs to be “hand-crafted” by a human mod-
eler at design time. This task can be supported by the
automated consistency tests and classification that DL
systems provide. At run-time of the context-aware sys-
tem a description of the current situation is generated
by the context application and written into the ABox
in form of ABox assertions. Based on this description,
the DL system can determine automatically into which
situation-type this situation falls by computing ABox
realization for the situation ABox.

1SHOIN is the DL ALC augmented with number restrictions,
nominals, functional roles, transitive and inverse roles and role hier-
archies.

2SHIF is the DLALC augmented with functional roles, transi-
tive and inverse roles, and role hierarchies.

Employing Description Logic systems in Ambient Intelligence 9

Fig. 2. Using DL systems for recognizing situation types.

Description Logics have several characteristics that
make them a well-suited choice for context-aware sys-
tems. As knowledge representation formalisms DLs
are designed to model hierarchies of notions from the
respective domain. Thus DLs naturally support the
requirement of context-aware systems to be able to
model information on different levels of detail or ab-
straction as a means to deal with heterogeneous infor-
mation sources. Moreover the formalism of DLs al-
lows to combine information from different sources
and combine them to aggregates in form of complex
descriptions capturing different aspects of an informa-
tional entity.

However, the most important feature of DLs that
makes them suitable for context-aware systems is their
open-world semantics. Intuitively, this kind of seman-
tics assume that the KB does not have complete in-
formation about the world, but that some information
might be missing. So, from the absence of a fact in the
KB, say SoftwareProgrammer(Alice) it cannot be in-
ferred that the negation ¬SoftwareProgrammer
(Alice) holds. In systems that adopt closed world se-
mantics, such as databases, the absence of a fact means
that the contrary holds, since these systems assume
complete knowledge about the world. For context-
aware systems open world semantics is clearly the bet-
ter option, since context information is often incom-
plete. Thus DL systems offer a way to handle this kind
of characteristics of context information in a graceful
way.

As a collection of reasoning services DLs have even
more to offer for context-aware systems. DL reason-
ing services support the building of the TBox by de-
tecting inconsistencies or missing subsumption rela-

tions early. The reasoning task of classification gives
the modeler an overview of how aggregated concepts
relate to each other. Furthermore, ABox reasoning ser-
vices can be used to infer the situation type of a cer-
tain situation and thus solve the problem of the actual
context recognition. Since the methods for these rea-
soning tasks are implemented in highly optimized rea-
soner systems, these services are available to the am-
bient intelligence community directly.

To the best of our knowledge this approach of us-
ing DL systems for context-aware systems was first de-
scribed by us in [52], but was also pursued by others in
[54] and in [1]. The next section introduces the whole
approach in detail.

3. Approach for ontology-based recognition of
situation types

Our approach for situation-aware systems is based
on DL systems. As described in the Section 2.1 a DL
system consists of a knowledge base defined using the
Description Logics based language OWL DL and a
reasoning component providing a set of reasoning ser-
vices. With OWL DL a knowledge base consists of
a TBox and an ABox which together represent the
knowledge of the AmI system about the current situ-
ation. The TBox contains concepts organized in a hi-
erarchy which model the aspects of the situations rele-
vant to the considered AmI system. The ABox contains
a collection of facts describing the current situation of
the AmI system.

At design time the TBox is created by the system
developer. All conceptual knowledge about situations

10 Employing Description Logic systems in Ambient Intelligence

which should be recognized by the system have to
be expressed by OWL DL elements. Part of the pre-
sented approach is a modeling methodology to sys-
tematically decompose complex real world situations.
The main idea of the methodology is to identify these
aspects of situations which are relevant for decision
making. Although the analysis of the application sce-
nario and the identification of situation types remains
an intuitive task, the modeler is assisted by the DL sys-
tem when building the TBox. First, inconsistent de-
scriptions can be detected automatically and second,
the concept hierarchy can be computed automatically
so that the modeler can discover unintended sub/super
category-relations between concepts directly.

At run-time context information is added to the
ABox as the information about the current situation.
The reasoning service ABox realization is used as a
means to recognize the type of situation from the sit-
uation description in the knowledge base. We propose
a framework consisting of a context service, a DL sys-
tem and an AmI system. The context management, es-
pecially the management and access of heterogeneous,
alternative and distributed sources is covered by the
context service. The AmI system specifies the rele-
vant context information in a context profile. The con-
cept definitions in the TBox are used as a common vo-
cabulary specifying context to be exchanged between
all system components. The DL system manages the
knowledge base and provides the DL reasoning tasks.
A summarized view on the proposed approach is de-
picted in Figure 2.

3.1. Intelligent door lock scenario

To illustrate our approach we use a scenario taken
from the smart home domain. An automatic door lock
should pick the next action to be taken depending on
the person ringing at the door. We assume that the door
system is equipped with a video camera and a micro-
phone and provides information about the ringing per-
son. Based on this information the door lock has to de-
termine one of the following actions:

1. Open the door, if the person is authorized.
2. Ask a resident in case the person is unknown.
3. Do not respond at all or let the ringing person

leave a message if no resident is available (simi-
lar to: nobody at home).

In a first step the person ringing is identified (e.g. as
a resident of the house or a neighbour) or classified as
a member of a group of persons (e.g. a fire fighter or a

Fig. 3. Intelligent door-lock scenario.

postman). Per definition the door opens for authorized
persons only (e.g. a resident or family member). If the
person at the door cannot be unambiguously classified,
the decision whether to open is forwarded to a resident.
The door tries to contact a resident taking her current
situation into account (e.g. her activity and currently
used devices). If a resident is watching TV, the image
captured by the camera can be redirected to the TV set
being used. If no resident is at home, the system tries
to contact a resident via a cellular phone or another
mobile device currently in use. If no resident can be
reached within a short while, the system informs the
person at the door, offers to leave a message and keeps
the door closed.

Example: For the holiday season a neighbour is
asked to water the flowers while the residents are on
vacation. The door lock system identifies the person
ringing as the neighbour. Furthermore, the door system
checks whether the ringing neighbour is authorized by
a resident to enter the house. If in addition all residents
are on vacation, the neighbour can be recognized as an
authorized person and the door opens. We decided to
use this fairly simple scenario for our first case study to
ensure that it is easy to model. Nevertheless, as the sce-
nario description already shows, if modeled in detail,
it becomes sufficiently complex to illustrate pitfalls of
context modeling and the use of reasoning services.

3.2. Ontology-based situation modeling

Recalling the conceptual architecture in Figure 1,
the DL system bridges the context-awareness and deci-
sion making phases. Thus, the goal of the modeling of
situations is to recognize the current situation in a way
that a decision can be made about the actions to be trig-
gered based on the recognized situation. For instance,
if our example AmI system is in the situation, that an

Employing Description Logic systems in Ambient Intelligence 11

authorized person is ringing the doorbell, it should be
able to derive the action to open the door immediately.

3.2.1. Decomposing the scenario
It is the task of the AmI system developer to analyze

the application scenario, to identify relevant situations
and to derive the conceptual knowledge about these sit-
uations. To handle this complex exercise the notion of
situation decomposition is introduced as a systematic
approach for creating ontology-based situation mod-
els.

The main idea is to use a task-based approach to
identify major situations relevant to the triggering of
actions in the AmI system so that the system can fulfill
its foreseen tasks. Therefore, for all tasks the system
should perform, situation types have to be identified,
which allow an unambiguous selection of the actions
to be triggered by the AmI systems to fulfill the ap-
propriate task. The identified situation types can then
be decomposed into a hierarchy of sub-situations. This
method is derived from our observations, that these
sub-situations can be modeled by independent aspects
of a situation which can later be composed to model
the identified situation types. For example, in the door-
lock scenario the ringing person and the situation of
the residents of the house are independent aspects of
the overall situation.

For a systematic decomposition, the applications
scenario can be analyzed according to so called “as-
pects of interest”. These aspects should be atomic in
the ideal case, but at least fine-grained enough to be
modeled by a small set of concepts. This usually re-
sults in a step-by-step decomposition with an increas-
ing granularity in each step. For instance, in the door-
lock scenario, the identity or role of the ringing person,
and the presence of the residents are aspects of inter-
est. Each of these aspects can be decomposed further.
For instance, for the presence of the residents the as-
pects of reachability and the willingness to communi-
cate are of interest, which again depend on the activity,
location and the devices nearby. The following criteria
can be used for scenario decomposition:

Spatial decomposition: In almost every scenario it
will be possible to adopt a spatial decomposition.
In our scenario, interesting locations are the door,
where the ringing person is situated and the rooms
of the house were the residents stay. Moreover,
also outside locations might be of interest in the
case that no resident is at home and should be
contacted remotely due to urgency.

Temporal decomposition: Temporal aspects should
also be taken into account when decomposing the
scenario. Usually, different points in time con-
tribute independently or in relation to the overall
situation. In our example the resident might have
left the house 10 minutes ago when a postman is
ringing. Knowing that the resident went just out to
buy a newspaper which usually takes him 15 min-
utes, the system could inform the postman that it
expects the resident to be back in 5 minutes.

Acting persons: In many scenarios several persons
play different roles. The roles they play can also
be modeled as independent aspects of the over-
all scenario. In the door-lock example we dis-
tinguish between residents, relatives, neighbours
and different types of professions like postman,
fire fighter or police man.

In addition to these criteria further scenario-specific
aspects can be identified. In our scenario the technical
reachability, activity and presence of persons play an
important role.

The goal of the decomposition is the identification
of basic situations which can be unambiguously identi-
fied based on a small set of context features. Moreover,
basic situations should also be processable indepen-
dent from other basic situations. Therefore, in parallel
to the decomposition of situations, the context features
relevant for describing particular situations have to be
identified. In the door-lock scenario for instance the
location and the capabilities of the devices used by a
resident are relevant context features to determine the
reachability of the resident.

3.2.2. Modeling situations in the TBox
After this aspect-wise decomposition, the identified

sub-situations have to be modeled in the TBox. More-
over, tests should be performed to validate the consis-
tency and correctness of the created model. In addition,
performance aspects play an important role, so perfor-
mance issues at run-time might lead to changes of the
TBox as well. According to our experiences gained in
the process of modeling several scenarios, we encoun-
tered four main activities of knowledge base develop-
ment:

1. Building of the TBox,
2. Building of the test ABox,
3. Testing the inferences for the ontology, and op-

tionally
4. Performance tuning of the ontology w.r.t. the

needed inferences

12 Employing Description Logic systems in Ambient Intelligence

These activities, however, should be performed in-
terlaced and should not be read as a strict sequence.

Building the TBox The set up of the TBox can be per-
formed in a task-oriented and incremental way. That
means, in the beginning one task of the AmI system
can be selected and all identified sub-situations con-
tributing to the decision for performing that task have
to be modeled. The modeling should start with the
most fine-grained sub-situations which are indepen-
dent of each other, as stated above. More situations can
be added step-by-step as soon as one task is completely
covered. The sub-situations can also be modeled step-
by-step and later on used to compose more complex
situation.

In our modeling approach the resulting TBox is
twofold. One part of the ontology contains situa-
tion descriptions and the second part consists of gen-
eral concepts required for the definition of situations.
Generic concepts of the door-lock example are for in-
stance location, device and person. A situation is usu-
ally described based on several generic concepts. Sit-
uations are introduced into the TBox as named con-
cepts which are ordered in the expected subsumption
order manually. The situation concepts might be pro-
vided with a definition later on. As mentioned in the
introduction, generic ontologies could be used as up-
per ontologies which are refined according to the sce-
nario requirements. The basic relations from the sce-
nario domain should be captured as roles in the TBox.

Once the basic situations are introduced as named
concepts, the definition for these concepts should be
provided (or successively refined). At the early stages
these definitions should be “close to the intuition” of
the notion to be modeled and all language constructs
that express this intuition best should be used. Gener-
ally, it is a good strategy to model the TBox with as
little redundancy as possible. This eases debugging of
the ontology, i.e., tracking the cause of inconsistencies.
Furthermore, keeping redundancy low is a good design
principle when developing an ontology in a team. Fur-
thermore, it is advisable to perform consistency checks
often when extending the TBox. Sources of inconsis-
tencies can be tracked more easily, if only a few def-
initions have been changed since the last consistency
check.

For our application it is desirable to have a fine-
grained concept hierarchy for the hierarchy of situa-
tion concepts and for collection of concepts from the
sub-domain that will be central to distinguishing dif-
ferent context concepts (such as the collection of dif-

ferent resident concepts in the Doors scenario). So, the
concept hierarchy should be computed and checked
against the intended hierarchy. In case intended sub-
sumption relations are missing the concept definitions
must be revised and in case concepts collapse (i.e., are
equivalent although intended as different concepts),
the concepts must be refined. Often this involves the
modeling of a new aspect, as devices or persons in our
context applications. Each subdomain models a differ-
ent aspect of the context concepts collection in a sepa-
rate hierarchy.

At run-time of the application another benefit of
the fine-grained hierarchy is to infer relatively specific
context concepts via realization even in cases where
information about the situation of the application is
incomplete. For example, when the exact location of
the resident is unknown, the situation that the Resi-
dent is out of home can still be inferred and appropri-
ate actions can be taken. In contrast, if there is no fine-
grained concept hierarchy, we can probably only infer
a generic situation type, if this information does not
suffice to derive that the resident is currently traveling,
for example.

Building the test ABox In activity 2, we build an
ABox for testing

1. whether the vocabulary in the TBox is already
elaborated enough to be used for a detailed situ-
ation description and

2. whether concept definitions in the TBox are al-
ready precise enough to give the expected rea-
soning results for a situation description in the
ABox.

The situation descriptions in this ABox should be sim-
ilar to what is to be expected to occur in the applica-
tion in terms of aspects that are supplied at run-time
by the context service. If it turns out that the concepts
defined in the TBox do not allow to describe a situa-
tion detailed enough, or if necessary “ingredients” for
such a description are simply missing, the TBox must
be extended appropriately. Thus, the activities 1 and 2
should be carried out in parallel.

Testing Activity 3 starts as soon as the TBox is filled
with a few concept definitions. At the early stages it
should be tested whether the TBox is consistent, i.e.,
whether it contains contradictions. These consistency
tests should accompany the whole process of building
the TBox. As soon as the concepts in the TBox are suf-
ficiently elaborated to represent (sub-)situations from
the application it is interesting to determine whether

Employing Description Logic systems in Ambient Intelligence 13

the achieved level of detail is enough to infer the de-
sired information. To this end classification tests and
realization tests are performed. On the one hand it
must be checked if the classification results meet the
intuition of the modeler, for instance, if unintended
subsumption relations are detected. On the other hand
ABox realization has to be performed to check if the
most specific concepts are detected for the situation. If
the results do not meet the expectation of the modeler,
the concept definitions should be refined.

Performance tuning Activity 4 is performance tun-
ing. Now the knowledge base is analyzed w.r.t. the syn-
tactic constructs in use and run-times for the inferences
(needed at run-time of the application). The analysis
of the syntactic constructs should yield what syntac-
tic constructs are used and also how often they occur.
If, for example, just one transitive role is used in the
knowledge base, it should be carefully checked if the
transitivity of this role is essential for intended result of
the inferences. If syntactic constructs that are notorious
for making reasoning harder and degrading the per-
formance of DL reasoner, can be omitted or replaced
by others without losing (important) inferences, these
constructs should be deleted or replaced. Please refer
also to Section 5.1.

Another way of enhancing performance of the rea-
soner is to add information to the TBox. One can add
subsumption information so-called told subsumers to
the (primitive) definition of concepts. For example, the
concept C1 is a sub-concept of C2, but is not defined
in terms of C2, then the reasoner has to “discover” this
subsumption relation, which can be costly in terms of
run-time. If this subsumption information is added to
the definition of C1, the reasoner only needs to test
for consistency. Similarly, one can also add “told non-
subsumption” information, e.g. by adding more dis-
jointness constraints, to avoid the effort of discovering
non-subsumption by costly methods.

3.3. Filling the ABox

If the TBox is created the AmI system is ready to
run. During the startup of the AmI system the TBox
has to be loaded into the DL system and classified once
before the first ABox realization service usage can be
performed. As stated above context information is used
as the information describing the current situation. It
has to be added to the ABox as individuals to be pro-
cessable in the DL system. To cover a subset of the
characteristics of context named in Section 1.1 of the

introduction, we assume the availability of a context
service. This context service should be able to inte-
grate and manage heterogeneous and geographically
dispersed context sources. By accessing this context,
context features representing facts about the current
situation are written into the ABox.

To identify the context feature which have to be re-
trieved we apply the creation of a so called context pro-
file. This context profile contains all concepts from the
TBox for which the context service can provide infor-
mation. This context profile have to be created manu-
ally or may be derived automatically. The latter can be
achieved if the information about the managed infor-
mation provided by the context service can be mapped
to the concepts in the TBox.

The context profile is then used for either request
all information at once in case that the AmI system
is requested to perform an action. In our example this
is the case if someone is ringing at the door. This is
similar to taking a snapshot of all relevant information
about the current situation at a certain point in time. If
the AmI system should act proactively, it can subscribe
for all situations in the profile to the context service.
The system is then notified by the context service about
the changes of any of the information in the context
profile. If a change notification is received by the AmI
system it can update the ABox and perform reasoning
in order to check whether the situation has changed in
a way that an action has to be performed.

3.4. Perform reasoning

As already described in the previous section reason-
ing can be performed on demand or event-based. In
both cases all relevant and available context informa-
tion have to be added as individuals to the ABox. To
compute the types of the current situation the situation
is itself modeled as an individual of the general situa-
tion concept. The context information is related to that
situation based on roles which set different individuals
in relation. To compute the types of a situation, ABox
realization is performed on the situation individual. As
a result the DL reasoner responds with a list of concept
names. In particular, this list contains the most specific
concepts for that situation individual.

Dependent on the available context information, the
computed situation types, i.e., the concept names, are
more or less specific. If not enough information about
the current situation is available, the reasoner responds
with a generic situation concept. For instance, if no
information about the resident of the house are avail-

14 Employing Description Logic systems in Ambient Intelligence

able, just a concept describing that the doorbell rings
can be computed. If a large set of context information
is available, a very specific situation type can be com-
puted. As an example, if it is known that the location
of the resident is the “living room”, the TV is “on” and
the ringing person is the postman, concepts describing
that a postman is ringing and the resident should be in-
formed by presenting a video on the TV can be com-
puted. Thus, dependent on the amount of context in-
formation available, the computed situation types are
more or less specific. A result is available in any case,
even if the provided context information is incomplete.

Based on the computed situation types it is the task
of the AmI system to determine the right action. This is
a separate step in our approach to decouple the identifi-
cation of the current situation and the decision process
in order to enable a high flexibility within applications
for context dependent decision making.

4. A case study of situation-awareness based on
DL systems

We use the scenario introduced in Section 3.1 to im-
plement a case study of validating the feasibility of
our approach. Especially, a framework was developed
which serves as the foundation for implementing var-
ious application scenarios. In the following we intro-
duce a framework for DL-based situation-awareness
and the situation model created for our scenario.

4.1. Framework architecture

The main components of our framework are the
Context Service, responsible for providing the required
context information, the AmI system which is inter-
ested in the current situation and the DL System, re-
sponsible for processing ontologies and performing
ABox realization for situation recognition (see Fig-
ure 4.1). A further component is the Context Profile
used by AmI systems for requesting context infor-
mation from the context service as described in Sec-
tion 3.3.

4.1.1. Context Service
In our implementation we use the distributed context

service described in [45]. The context service is avail-
able to each application in the form of a local compo-
nent which provides an access interface for contexts.
The context service is able to manage a large set of
highly distributed context sources and handles the ac-

cess, transformation and distribution of applications to
context information in a transparent manner. Where
and how the information is gathered is not visible to
the context application, it just uses a well-defined API
for requesting context information based on context
profiles.

The context management inside the context service
is based on meta-model derived from topic maps. It
contains entities which may have a set of attributes.
Relations between entities are modeled as associa-
tions. The semantics of these elements is defined based
on an ontology specified in OWL DL. Thus, we de-
fined a mapping between the context domain model
supported by the context service as described in [45]
and our scenario ontology. Based on an extension of
the API for accessing context information we sup-
port now a profile-based access of context informa-
tion. Each time the Door-lock system should react on
the ringing of the door bell, it sends the context pro-
file with a request to fill it to the context service. The
context service responds with the requested informa-
tion integrated into the profile. The profile might be
completely or partially filled according to the current
availability of context sources.

4.1.2. DL system
The DL system is the second component of the

framework. It is able to maintain multiple ontologies
and provides the service to perform reasoning tasks
on these ontologies. An AmI application can register a
knowledge base (i.e., an OWL DL based ontology) at
the DL system, which processes the TBox of the on-
tology and builds up an internal representation of the
processed TBox. Each registered ontology is assigned
with a unique identifier for later referral. During the
run-time of context applications we assume a constant
TBox allowing the reuse of the internal representation
of the TBox built up at registration time. At run-time
the AmI application requests reasoning tasks based on
varying ABoxes.

Thus, the DL system is a system service which
can be used by several context applications in paral-
lel. It can be placed on a high-performance system
server residing within the infrastructure. Especially,
this enables the remote processing of reasoning tasks
for applications running on mobile or resource lim-
ited devices. The DL system is represented by off-the-
shelf DL reasoner systems, e.g., RACERPRO [22], the
FACT++ system [51] or PELLET [42]. They all imple-
ment the DIG interface [9] and thus, can be exchanged
on that basis.

Employing Description Logic systems in Ambient Intelligence 15

Fig. 4. Architecture of the framework for situation-awareness.

4.1.3. AmI Application
The AmI application is the component which coor-

dinates the context access and reasoning. It registers an
application specific ontology at the DL system and re-
quests reasoning tasks from this DL system. The con-
text is gathered from the context service component
which can be local to the application component or re-
mote on an infrastructure server. The context applica-
tion uses a context profile to request the context values
required for classifying the current situation or a cer-
tain aspect of a situation. The context service responds
with a filled context profile containing at least a subset
of the context values requested by the application.

The context values are used to create individuals of
an ABox according to the defined context ontology.
These individuals belong to a certain situation individ-
ual. The ABox is then sent to the DL system which
performs realization on the situation individual to clas-
sify the situation. Based on the classification of the sit-
uation, the context application can determine what ac-
tion has to be performed. Thus, the determination of
the action to perform is separated from the situation
detection.

The implementation of the AmI application is based
on a set of up-to-date technologies. We used Java as
implementation language for the framework according
to the Java 5.0 specification. For the integration of on-
tologies and deterministic reasoning schemes we used
the Semantic Web Framework Jena in Version 2.5.1.
In addition to using the DIG interface we also inte-
grated the DL reasoner Pellet in Version 1.5. via its
provided Java interface. To publish our upper ontol-
ogy we used Apache 2.2 as the web server. In ongoing
work we also embedded this framework in a more gen-
eral framework for situation-awareness. The extended
framework is described in [46] and covers the inte-
gration of heterogeneous sensors (e.g., wireless sensor

networks, microphones and other stand-alone sensing
devices), the integration of classifiers for these sensors
and the use of various reasoners for situation detection.

4.2. Implementing the intelligent door-lock scenario

We describe now how to model the ontology for the
door-lock scenario according to the methodology in-
troduced in Section 3. Starting with the decomposition
of the scenario and the identification of relevant con-
text information, the situation types for the door-lock
scenario were identified and modeled in the TBox.

4.2.1. Decomposing the scenario
The scenario can be decomposed based on the cri-

teria described in Section 3.2. Starting with the tasks
of the system – opening the door, asking a resident or
keeping the door closed – aspects of the overall situ-
ations can be identified. For all tasks a spatial decom-
position is relevant, i.e., aspects are the situations in
front of the door and in the house. Moreover, acting
persons can be identified and their current situations
can be modeled. For opening the door the identity and
role of the ringing person is relevant. For instance for
a resident or an authorized neighbour the door can be
opened immediately, while if the ringing person is not
authorized, the task of “asking a resident” has to be
performed.

Relevant context. To reason about the situation of the
door scenario, the following contextual information is
relevant: The identity and social relations of and bet-
ween persons or group of persons can be used to dis-
tinguish between residents, their relatives, friends and
neighbours (e.g., while some of them may be autho-
rized to enter the house, while others may only enter
if another person is already at home) and categories of
persons which can be determined by their clothes or

16 Employing Description Logic systems in Ambient Intelligence

Fig. 5. Context concepts for the intelligent door scenario.

other characteristic features (e.g., the uniform of a po-
lice man or fire fighter, or the pizza boy carrying pizza
boxes).

The location is relevant for persons who are resi-
dents or otherwise able to help the system to decide
about the action related to the ringing person, i.e., to
authorize ringing persons to enter. Especially of inter-
est is the location of the residents. Time as contextual

information is relevant in combination with other in-
formation, e.g. to determine the activity or current lo-
cation of a person (e.g. person is working if it is 8 am
and located at his office room). Information about the
presence describes if and how persons/residents would
like to be contacted (e.g. a resident is working at his
office and do not want to be disturbed by anybody).

Employing Description Logic systems in Ambient Intelligence 17

The concept activity of a person is relevant for
determining the presence of a person. Information
about the activity is usually not directly available but
has to be extracted out of several information, e. g. the
schedule, the activity, time, and persons nearby.

Information about the devices a person owns and
which of them are currently active and in use (e.g.
located close to the person) is relevant to determine
how to contact a person. In combination with the cur-
rent connectivity of the devices information can be ex-
tracted to describe how to contact a person (e. g. if the
device and connection supports audio and video com-
munication or email/text communication only).

4.2.2. Modeling situations in the TBox.
We modeled the doors ontology according to our ap-

proach described in Section 3.2 with the task based no-
tion of context in mind. The resulting ontology con-
tains concepts for describing the relevant context and
roles for describing the interrelations between these
concepts. Furthermore, the ontology contains concepts
describing the situation itself in form of a hierarchy of
contexts which describe certain aspects of the situation
(e.g., who is ringing, the presence, activity and loca-
tion of the residents and the interrelations between the
residents and the ringing person).

Modeling locations. Location is a fundamental con-
cept in the door scenario. We use the four basic con-
cepts InDoor, OutDoor, Mobile, and ImMobile to
describe the basic features of a location. Each loca-
tion in the ontology is a sub-concept of either InDoor
or OutDoor as well as either Mobile or ImMobile
using multiple inheritance. The role nearby defines
that two locations are close together. The properties
hasLightLevel and hasNoiseLevel describe the
features of locations relevant in our scenario to derive
the activity of a person at a certain location.
Building is a sub-concept of InDoor and Im−

mobile and consists of several parts (e.g., Rooms).
A sub-concept of Building is House which enables
the description of any house relevant to the situations
of the door lock scenario. Another sub-concept Home
describes the building which contains the “intelligent
door lock” system. For Home and House a close dis-
tance can be defined using the nearby role to describe
the neighbourhood of the home.

Each Building can consist of parts. We currently
defined only Rooms as parts. The other way around,
each room is part of a certain building described by
the role isPartOf. Several sub-concepts of Room are
defined to model the rooms relevant to the scenario

(e.g. LivingRoom, Kitchen, BathRoom, BedRoom,
and OfficeRoom). Locations of the category OutDoor
and Mobile are also defined within the ontology (e.g.
Car, Plane, Bus, and Train). These locations are rel-
evant for describing activities of residents.

Modeling of identity and social context. The identity
and social context of the persons relevant to the door
scenario are modeled based on the person concept.
Each person has a current location (role locatedAt)
and lives at a certain location (role livesAt). A
person which lives at Home is defined as a resident
Resident ≡ Person u ∃livesAt.Home. A res-
ident at home is described by: ResidentAtHome ≡
Resident u ∃locatedAt.(Home t ∃isPartOf.
Home). Similarly a resident currently out of home is
described by: ResidentOutOfHome ≡ Resident u
∃locatedAt.(Home t (∃isPartOf.Home)). The
social relations between residents and other persons
are modeled based on the concepts neighbour and
relative. A neighbour is a person who lives not at
home but at a house nearby home: Neighbour ≡
Person u ∃livesAt.(¬ Home u (∃nearby.Home)).

A relative is a relative of a resident by definition:
Relative ≡ Person u ∃isRelativeOf.Resident.
Service persons like police man or pizza boy are mod-
eled as sub-concepts of person. In the ontology several
service persons are modeled for example.

Modeling activity. The activity of residents is essen-
tial for determining the current presence of residents.
Because activity usually can not be captured directly, it
has to be derived from available information like time,
location and schedule.

For modeling features of a location we use so called
value partitions. A Value Partition is a design pat-
tern to define an exhaustive list of values for a cer-
tain set. For instance, for describing the light level of
a room the set of possible values can be defined by a
value partition LightLevel. The possible values are:
full, dimmed and off. Because Description Logics are
based on the open world assumption, value partitions
have to be used to restrict the valid values of a cer-
tain set (otherwise, further (currently undefined) values
could be elements of this set). A covering axiom has
to be defined to make the list of value types exhaus-
tive. The value partition Lightlevel can be defined
in form of a value partition as follows: LightLevel ≡
Off t Dimmed t Full (where Off, Dimmed and Full
are mutually disjoint).

18 Employing Description Logic systems in Ambient Intelligence

1. AudioEnabledDevice ≡ Handy t SmartPhone t PDA t Laptop t Phone t DoorBell

2. SMSEnabledDevice ≡ Handy t SmartPhone t CellularPhone

3. AudioEnabledConnectedDevice ≡ AudioEnabledDevice u
∃isConnectedVia.(∃ hasBandwidthLevel.(LowBandwidth t MediumBandwidth t HighBandwidth))

4. SMSEnabledConnectedDevice ≡ SMSEnabledDevice u ∃isConnectedVia.(WAN t PSTN)

5. AudioEnabledResidentContext ≡ ∃ hasContextResident.(Resident u (∃uses.AudioEnabledConnectedDevice))
6. DoorbellEnabledResidentContext ≡ ResidentAtHomeContext

7. ReachableInUrgencyContext ≡ ∃hasContextAgent.(FireFighter t Policeman)

8. DoNotDisturbResidentContext ≡
∃hasContextResident.(SleepingResident t VacationResident t (∃hasPresence.DoNotDisturb))

9. AudioReachableResidentContext ≡ AudioEnabledResidentContext u ReachableResidentContext

Fig. 6. Concept definitions from the Doors ontology.

The activity of a person can be set by definition or
can be derived from contextual information. We have
defined to classes of activities:

– Vacation containing the sub-concepts
BusinessTrip and Holiday

– Working containing the sub-concepts
Reading and Writing

To derive the activity of a resident the location
and its features are used. For instance the activity
sleeping of a resident is derived from the location
BedRoom and the LightLevel of the BedRoom which
have to be Dimmed or Off: SleepingResident ≡
Resident atHome u ∃locatedAt.(BedRoom u
(∃hasLightLevel.(Dimmed t Off))).

Modeling devices, connectivity and presence. The
reachability of a resident can be modeled based on the
used devices and their connectivity. It describes how
a resident can be contacted at a certain point in time
from a technical point of view. The ontology contains
concepts and properties to model the devices owned
(role isOwnedBy) and used (role isUsedBy) by a cer-
tain person and the network links which are supported
by these devices (role supportsLink).

Devices are modeled as sub-concepts of the root
concept Device. A basic feature of each device is its
mobility. Thus, each device is a sub-concept of either
Stationary or Mobile. Stationary devices relevant
for the scenario are PC and the Doorbell, relevant mo-
bile devices are CellularPhone, PDA and Laptop.
A device can be connected via a certain network link
(role isConnectedVia).

Network links are discriminated into wired and
wireless links. Wired links are for instance DSL
and Ethernet, wireless links are subdivided into PAN,
LAN and WAN links containing wireless links such as
Bluetooth, WLAN, GSM and UMTS. Each network has a
certain bandwidth level (role hasBandwidthLevel).

To describe the options of the door system to contact
a resident the communication categories of text, au-
dio and video are defined. Text communication can be
further discriminated into SMS messages and instant
messages. For each device the supported communica-
tion categories are defined, describing the communica-
tion capabilities of the devices (see definitions 1 and 2
in Figure 6.

To involve the bandwidth of the network connec-
tion the concept of the EnabledConnectedDevice is
defined. Examples are the definitions 3 and 4 in Fig-
ure 6. The inferred concept hierarchy for the modeled
devices is depicted in Figure 7.

Modeling situation types. A situation is described by
the concept Context and its sub-concepts. Each situa-
tion is described by a person or group of persons ring-
ing at the door (role hasContextPerson) and the res-
idents of the house (role hasContextResident). In
Figure 4.2 the complete hierarchy of situation concepts
of the door-lock scenario are depicted.

To enable a decision of the door system to open
the door automatically, ask a resident or let the ring-
ing person leaving a message, two basic contexts
are modeled which are called DoorContext and
PresenceContext. The DoorContext contains con-
cepts describing the aspects of the ringing person and
if residents are at home or not. This supports the de-
cision to open the door immediately if an authorized
person is ringing (i.e., a resident or a person autho-
rized by a resident). Furthermore, based on a black list
the system can immediately decide to keep the door
closed and to let the ringing person leave a message
without contacting a resident. A necessary prerequisite
therefore is to identify the person or their category.

If no clear decision is possible, one of the residents
should be contacted. To decide how to contact a resi-
dent the system reasons about the PresenceContext.

Employing Description Logic systems in Ambient Intelligence 19

The PresenceContext describes at one hand what
communication modes can be used to contact a resi-
dent from the technical point of view with the concept
ConnectedContext. On the other hand the willing-
ness of a person to communicate is modeled with the
concept ReachableContext. The ConnectedContext
is defined in definition 5 and 6 in Figure 6.

To describe the presence of a resident we use for in-
stance the definitions 7 and 8 in Figure 6. To combine
the aspects of technical connectivity and reachability,
the PresenceContext has been defined as in defini-
tion 9 in Figure 6.

4.2.3. Testing
To demonstrate the usage of the ontology we have

defined several situations based on individuals of the
concept hierarchy in the ABox. Two types of situa-
tions have been defined as instances of the concepts
DoorContext and PresenceContext.

5. Evaluation

The proposed approach of modeling situations with
OWL DL and the adoption of ABox realization for rec-
ognizing situation types focuses on the employment of
DL systems. The choice of DL systems for the imple-
mentation of AmI systems has several consequences
regarding the performance of DL reasoners, the ex-
pressivity of the formalism and the handling of imper-
fect context information. Therefore, we take a closer
look at DL systems to assess their usefulness with re-
spect to these requirements. Especially, we want to
point out the advantages and limits of the presented
approach.

5.1. Performance evaluation

The complexity of ABox reasoning for the DL em-
ployed in our case is NExpTime complete in the worst
case, see [49]. However, these worst case complexities
do not need to appear in concrete scenarios. Moreover,
there exist a couple of highly optimized DL reason-
ers for OWL DL that behave well in practice. Since
applications for Ambient Intelligence usually expect
computation times no longer than a couple of seconds
or even might require response within milliseconds in
some application domains, it is interesting to get an im-
pression of the performance of the reasoners for clas-
sification and realization. Some language constructs
have higher worst case complexity and thus, might

require longer computation times. A natural question
is whether it is advisable to disallow these constructs
from the ontology.

To answer these questions, benchmarks have been
performed using Protegé-OWL 3.4 beta from Stand-
ford University running under Windows XP. As hard-
ware platform a Lenovo T60 Laptop with 2 GByte of
memory and an Intel Centrino Duo processor running
at 2 GHz was used. To compare the performance of
the reasoners the times for classifying the concepts de-
fined in the TBox and for computing the inferred types
from the individuals in the ABox of our ontology were
measured. For the tests three different variants of our
Doors ontology were used:

Doors: The knowledge base (KB) described in the last
Section. contains 6 Situation individuals.

Doors-no-GCIs: Door KB without GCIs, i.e., dis-
jointness and domain and range restrictions for
roles were deleted.

Doors-easy-roles: transitivity, symmetric role and in-
verse roles statements as well as all domain and
range restrictions were deleted. Functional roles
were left in the TBox, since they do not increase
the run-time dramatically.

The DL expressivity of the Doors and Doors-no-
GCIs ontology variants is ALCHIF, while the DL ex-
pressivity of the Doors-easy-roles ontology is ALCF.
All ontology variants contain 135 concepts, 98 individ-
uals and 27 object properties. We tested four DL rea-
soners that implement ABox realization for OWL DL.
We used the well-known system RACERPRO [22], the
FACT++ system [51] and PELLET [42].

FACT++: is a successor system of the FACT sys-
tem [26], that was a ground-breaking TBox rea-
soning system developed in the late nineties.
FACT was the first DL system that could han-
dle GCIs in an efficient way. FACT++ is imple-
mented in C++. We used version 1.2.0 (25.9.2008)
of FACT++ for our tests. In contrast to the other
tableau-based systems, FACT++ implements an
eager approach for realization. It sets up its data
structures for realization already during the clas-
sification phase of the TBox. This results in
longer run-times for classification, but speeds-up
realization considerably, as we will see.

PELLET: The PELLET system is developed at the Uni-
versity of Maryland in 2003. It supports DL rea-
soning services for the DL SHOIQ(D) - where the
qualified number restrictions are limited to 1 or 0

20 Employing Description Logic systems in Ambient Intelligence

Fig. 7. Inferred concept hierarchy of device concept in the doors ontology.

and the concrete domains to what the OWL stan-
dard supports. Thus the PELLET system supports
the full range of concept constructors of OWL
DL. Besides the classical DL reasoning services,
PELLET offers a range of additional functionality.
For a full overview, please refer to the PELLET

web pages [42]. In our evaluation of the systems
we used PELLET 1.5.2 (1.5.2008).

RACERPRO: is the successor system of RACER pro-
vided by RacerSystems. This system is a com-
mercial system with free licenses for academic in-
stitutions. In comparison to RACER, RACERPRO

shows a much better performance. Furthermore,
RACERPRO offers more functionality than most
other DL reasoners [34,35], which helps to main-
tain and query the KB. As its successor RACER-
PRO also supports more expressive concrete do-
mains than the OWL standard demands. For our
evaluation we used the currently available stable
version 1.9.0 of RACERPRO and the beta version
of RACERPRO 1.9.2 beta.

With KAON2 [29] and HermiT [30] other DL reason-
ers are available. We have not included these reason-
ers in our test because of the lack of ABox realization
reasoning service adopted in our approach.

The measured run-times are shown in Table 2. It
contains measured times for the four reasoners. For
each reasoner we measured the times for classifying
all concepts of the TBox in our test ontologies and to
perform ABox realization, as stated in Definition 7.
The measured times for the classification task are be-

low 1s, except for PELLET. While classification is only
performed once during the start of the AmI system,
these times are mainly relevant for the design time.
Fast computation times especially allow for an inter-
active development of ontologies. The results for this
reasoning tasks are much more heterogeneous. For the
Doors ontology FACT++ needs orders of magnitude
less time than PELLET. As stated in the description
of FACT++ above, an eager approach was used for
the implementation of the ABox realization. Thus, data
structures for realization are already set up during the
classification of the TBox. Compared to RACERPRO

1.9.2 beta, FACT++ needs a little more time for classi-
fication than RACERPRO. The ABox realization task is
than performed much faster using FACT++ than using
RACERPRO.

For the Doors-no-GCIs ontology the deletion of
GCIs (see Definition 1) speeds-up the realization of
the individuals. Especially, PELLET profits from that
deletion. It performs the classification and realization
tasks one order of magnitude faster than for the com-
plete Doors ontology. But also both RACERPRO ver-
sions need less time for processing the Doors-no-GCIs
ontology. The reduction of the Doors ontology to the
Doors-easy-roles ontology causes an improvement of
the computation times of classification for all reason-
ers. Anyway, only the both versions of RACERPRO

can profit with respect to ABox realization. FACT++
and PELLET need more time for the realization of the
Doors-easy-roles ontologies ABox than for the Doors
ontology ABox.

Employing Description Logic systems in Ambient Intelligence 21

Table 2
TBox classification and ABox realization run-times (in s)

Doors Doors-no-GCIs Doors-easy-roles
TBox ABox TBox ABox TBox ABox

classification realization classification realization classification realization

FACT++ 0,8 0,02 0,71 0,02 0,73 0,06
PELLET 3,79 18,45 0,66 2,19 2,57 30,85
RACERPRO 1.9.0 0,6 2,02 0,48 1,13 0,38 0,76
RACERPRO 1.9.2 beta 0,62 0,74 0,39 0,2 0,26 0,51

At one hand the reduction of language constructs
used in the ontology may improve the performance of
DL reasoners. On the other hand reduction comes at
the cost of missing implicit subsumption or instance
relations. For the Doors-no-GCIs ontology several of
these relations can no longer be detected and not the
most specific context can be recognized from the in-
formation available. So, it is clearly not advisable for
this application to degrade expressivity to obtain better
run-times. In general, this trade-off should be consid-
ered during the development of AmI systems follow-
ing the proposed approach.

To sum up, today’s DL reasoners can compute re-
alization for ABoxes in a run time acceptable for the
the intelligent door lock scenarios. FACT++ provides
the best performance for ABox realization. While both
newer version of RACERPRO also responds in times
below 1s for ABox realization, PELLET is signifi-
cantly slower with that task. Compared to previous
measurements carried out with older versions of the
reasoners but using the same ontologies [52], reason-
ers show up significant improvements in performance
for both TBox classification and ABox reasoning. Be-
cause all reasoners are currently under development
performance improvements can be expected in the fu-
ture.

5.2. Expressivity Considerations

In addition to the performance of DL reasoners it is
also important to what degree OWL DL supports the
developer with the creation of situation descriptions.
Major questions are how complex a situation descrip-
tion can be, what aspects of a situation can be mod-
eled and which not, if it is transparent how situation
types are recognized and to what degree situation mod-
els can be refined and adjusted at run-time and during
the AmI systems life-cycle. Moreover, the modeling
effort should be assessed.

From the experiences of the authors the modeling of
aspects of situation types in the TBox is an intuitive

task. Situation aspects are described as concepts, re-
finements of concepts can be expressed by defining a
more specific context as a subconcept of an already de-
fined concept. This way of thinking about the world is
intuitive for developers, especially if they are familiar
with object orientation. Similar to this approach, child
concepts in OWL DL inherit all properties of their par-
ent concepts. Based on the creation of a concept hierar-
chy even complex scenarios remain to be manageable
when modeled with OWL DL.

In addition, the recognition of situation types is
completely transparent for the system developer. If the
design methodology proposed in Section 3 is adopted,
during the activity of testing the developer creates a
test ABox and performs ABox realization on the on-
tology to compute the most specific concepts charac-
terizing a situation. If the TBox is specified correctly,
the system behaves according to that specification. In
contrast to DL systems, in case of adopting neuronal
networks or Bayesian networks for situation recogni-
tion the phase for decision making is also performed
by the network. For the developer it is not transparent
how and why a certain situation was detected and a
particular action was triggered.

Anyway, OWL DL also has some limitations a de-
veloper should be aware of. One of the most obvious
limits of OWL DL was the limited expressivity and
reasoning capabilities regarding numbers. One would
like to specify ranges of numbers to map them to quali-
tative measures, like slow := has-velocity. (< 0) and (>
50). Another application of numbers would be to com-
pare, for example the velocity of the user with the max-
imal velocity that is supported by a certain network
technology. Although OWL DL offers XML data types
for the use of numbers in ontologies, they do not allow
to model the facts just mentioned, since there are only
unary predicates available in OWL. One would like to
model these facts by the use of concrete domains [4],
which are supported by RACERPRO. We tried to emu-
late the ranges by number restrictions in an earlier ver-
sion of the ontology, but since it was a very unintuitive

22 Employing Description Logic systems in Ambient Intelligence

way of modeling and the performance of the reasoners
was slowed down drastically, we gave up this approach
immediately.

Often one would like to express facts such as “the
provider of the available network is the same provider
that the user has a contract with” – sometimes called
agreements. The underlying DL concept constructor
for this is called role value maps (or feature chain
agreements). Unfortunately it is a well-known result
that these constructors make reasoning for even small
fragments of OWL DL (e.g.,ALC) undecidable. Thus,
these concept constructors were not included in OWL
DL. We tried to capture the above mentioned facts by
the use of inverse roles. Sometimes the above men-
tioned agreements do not only refer to a single concept,
but to roles. For example the role one would like to
add “hasUncle ≡ hasParent ◦ hasBrother” to the
ontology. These kind of statements are not supported
in OWL 1.0. However, it is planned to include them in
the forthcoming OWL 1.1 standard.

In the step of the authoring of the knowledge base
some typical effects can occur that lead to unexpected
or unintuitive reasoning results.

Primitive definition vs. full definition: Sometimes
when only necessary, but not the sufficient condi-
tions are supplied for a concept C, by giving only
a primitive definition and a subsumption relation
seems to be missing.

Open world vs. closed world: Especially for users
who have worked with systems that use closed
world semantics (such as Prolog or Data bases)
find it unintuitive, if from leaving out the fact that
an individual is, for example located in the house,
it cannot be derived that the individual is outside
of the house. An insistent case of this are at-most
restrictions, which can hardly ever be derived, but
have to be supplied by the modeler in most cases.

Value restrictions vs. domain & range restrictions:
often it is not clear whether the restriction of role-
fillers to a certain type of concepts is only valid
for a concept C or whether it is a property of a
role.

Last but not least, the extensibility of the knowledge
base at run-time plays an important role, especially in
very dynamic scenarios. As a fact, situation descrip-
tions are modeled at design time. That means, all rele-
vant situations have to be known at design time. More-
over, situation descriptions depend on a static set of
context features, i.e., new context types can’t be in-
volved in the situation model at run-time. Especially,

new aspects of a situation can’t be added at run-time
even if our situation model is extensible at design time.

5.3. Handling of context characteristics

For our approach we see the handling of the de-
scribed characteristics at different stages of context
processing which we understand as a stepwise exe-
cution of operations for context interpretation, aggre-
gation and derivation to produce higher-level context
which can be used at application level. We assume that
most of the processing is done within a context service
(see Figure 4.1). While the application requests as set
of context features according to a context profile at a
certain point in time (what we call “to make a snap-
shot”) the context service is responsible for handling
dynamics to provide up to date information. This in-
cludes to provide the history if requested by the ap-
plication. As for a certain context value multiple alter-
native sources can be available, they have to be main-
tained by the context service. These alternatives can
be exploited to handle incorrectness and quality vari-
ations. The context service can apply operations for
choosing the context value with the highest available
quality out of several alternative values. Furthermore,
it can compare alternative values to detect incorrect
values.

Moreover, DL reasoning can handle incomplete in-
formation gracefully. Incompleteness can be detected
by the context service based on the context profile.
Nevertheless, we can handle it in the DL system be-
cause meaningful reasoning is also possible on incom-
plete data.Even if the context service can provide a
subset of the requested context information, realization
still is able to recognize concepts, even if they might be
more general. However, even in such cases the system
is still able to recognize context and the application can
perform actions associated with that context.

Inconsistency can also be detected by the DL system
and can cause the context application to request addi-
tional, clarifying information from the context service.
We currently see the handling of data quality out of
scope of the application level model, assuming that the
handling is done by the context service as described
above. We have so far focused on modeling the appli-
cation domain, especially the context concepts useful
for certain application tasks and reasoning about the
situation the application is within.

Moreover, the approach to use DL reasoning for the
recognition of contexts offers a graceful way of han-
dling incomplete data. In such a case the realization

Employing Description Logic systems in Ambient Intelligence 23

would simply return contexts that might be too gen-
eral, but still a context is recognized and an action as-
sociated with the returned context will be performed.
Furthermore, the separation of context recognition and
choice of action allows adapting this association at
run-time according to user preferences.

6. Conclusions and Future work

We proposed a method for situation modeling us-
ing the Description Logics based ontology language
OWL DL and a framework for employing Description
Logics reasoning services to recognize the current sit-
uation based on context. Especially, we employed the
DL reasoning service ABox realization to identify the
most specific types of a situation, representing the cur-
rent situation. According to the introduced framework,
the application then determines the actions to be per-
formed in correspondence to the current situation.

The benefits from the approach are manifold: the se-
mantics of Description Logics allow for graceful han-
dling of incomplete knowledge. The well-investigated
reasoning services do not only allow recognizing the
current situation, but also can add to the reliability of
the overall system. Moreover optimized reasoning sys-
tems are freely available and ready to use.

On the one hand the explicit specification of the sit-
uation model in the TBox may limit the ways in which
an AmI system can adapt at run-time to changing situ-
ation types, but on the other hand the explicit specifi-
cation clearly provides transparency to application de-
velopers and users and thus contributes to the reliabil-
ity of the overall system. In addition, our approach re-
quires neither a learning phase nor a large amount of
training examples to set-up the initial knowledge base.
However, it does not support full dynamic adaptation
despite the separation into situation type inference and
decision making, which allows a certain degree of flex-
ibility at run-time.

The feasibility of the approach has been demon-
strated with a case study based on a smart home
application. The aspects of situations from that sce-
nario could be modeled completely. The evaluation has
shown that DL systems support the characteristics of
context, especially the issue of incomplete knowledge
can be handled very well. Further characteristics like
heterogeneous and distributed context sources as well
as multiple alternative context sources can also be han-
dled in our framework, this is achieved by the context
service adopted in our framework.

The performance of DL reasoners is appropriate for
scenarios which can tolerate response times of a few
seconds. Dependent on the chosen reasoner, the con-
structs used in the ontology and the number of con-
cepts, roles and individuals run-times in the range of
below 1s up to several second can be achieved by the
currently available reasoning tools. While these tools
are under development, mainly driven by the strong
community of Semantic Web research, significant per-
formance improvements can be expected for the future.

As pointed out in the evaluation in Section 5.2 there
are also some limitations of the expressivity of DLs, a
developer of AmI systems should be aware of. Solu-
tions to overcome these limitations exists. Especially,
mathematical or classification operations dealing with
numbers can already be performed during the context-
awareness phase. The approach presented in [46] sup-
ports a step-wise abstraction process of sensor mea-
surements and can be seen as one possible solution for
the issue of missing expressivity and reasoning capa-
bilities regarding numbers in DLs. Another solution is
to model these facts by the use of concrete domains [4],
which are supported by RACERPRO.

To sum it up, OWL DL is extremely helpful as a
standard, since it encourages the implementation of a
lot of ontology tools and reasoners helpful for context
applications. As a modeling language it offers wide
range of language constructs that allow to model a lot
of complex notions from context applications. How-
ever, some concept constructors central to modeling
with numbers are missing in OWL DL.

The research work presented in this article was par-
tially sponsored by Siemens AG. Moreover, the au-
thors would like to thank Bootawee Suntisrivaraporn
from TU Dresden and Michael Pirker from Siemens
AG, Intelligent Autonomous Systems for their helpful
comments on earlier versions of this paper.

References

[1] A. Agostini, C. Bettini, and D. Riboni. A performance evalua-
tion of ontology-based context reasoning. In Proc. of Fifth An-
nual IEEE International Conference on Pervasive Computing
and Communications - Workshops, pages 3–8. IEEE Computer
Society, 2007.

[2] C. B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymi-
ades. Situational computing: An innovative architecture
with imprecise reasoning. Journal of Systems and Software,
80(12):1993–2014, 2007.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editors. The Description Logic Handbook:

24 Employing Description Logic systems in Ambient Intelligence

Theory, Implementation, and Applications. Cambridge Univer-
sity Press, 2003.

[4] F. Baader and P. Hanschke. A Schema for Integrating Con-
crete Domains into Concept Languages. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelli-
gence (IJCAI-91), pages 452–457, Sydney, 1991.

[5] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a
polynomial-time reasoner for life science ontologies. In
U. Furbach and N. Shankar, editors, Proc. of the 3rd Int.
Joint Conf. on Automated Reasoning (IJCAR-06), volume 4130
of Lecture Notes In Artificial Intelligence, pages 287–291.
Springer-Verlag, 2006. CEL download page: http://lat.
inf.tu-dresden.de/systems/cel/.

[6] F. Baader and W. Nutt. [3], chapter Basic Description Logics,
pages 43–96. Cambridge University Press, 2003.

[7] F. Baader and U. Sattler. An overview of tableau algorithms
for description logics. Studia Logica, 69:5–40, 2001.

[8] P. Baker, C. Goble, S. Bechhofer, N. Paton, R. Stevens, and
A. Brass. An ontology for bioinformatics applications. Bioin-
formatics, 15(6):510–520, 1999.

[9] S. Bechhofer. The dig description logic interface: Dig/1.1.
Technical Report, 2003.

[10] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL web
ontology language reference. W3C Recommendation, Febru-
ary 2004. http://www.w3.org/TR/owl-ref/.

[11] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Scientific American, 284(5):34–43, 2001.

[12] R. Brachman and H. Levesque. Readings in Knowledge Rep-
resentation. Morgan Kaufmann, Los Altos, 1985.

[13] G. Chen, M. Li, and D. Kotz. Design and implementation of
a large-scale context fusion network. pages 246 – 255, Aug.
2004.

[14] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications. In Inter-
national Conference on Mobile and Ubiquitous Systems: Net-
working and Services, Boston, MA, August 2004.

[15] E. Christopoulou, C. Goumopoulos, and A. Kameas. An
ontology-based context management and reasoning process for
ubicomp applications. In sOc-EUSAI ’05: Proceedings of the
2005 joint conference on Smart objects and ambient intel-
ligence, pages 265–270, New York, NY, USA, 2005. ACM
Press.

[16] R. Cornet and A. Abu-Hanna. Using description logics for
managing medical terminologies. In P. B. M. Dojat, E. Kerav-
nou, editor, Artificial Intelligence in Medicine: 9th Conference
on Artificial Intelligence, in Medicine in Europe (AIME 2003),
Lecture Notes in Computer Science, pages 61–70. Springer,
2003.

[17] R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu.
The systematized nomenclature of human and veterinary
medicine. Technical report, SNOMED International, North-
field, IL: College of American Pathologists, 1993.

[18] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications. Human-Computer Interaction
(HCl) Journal, 16(2–4):97–166, 2001.

[19] T. Gu, H. Pung, and D. Zhang. Toward an OSGi-based infras-
tructure for context-aware applications. IEEE Pervasive Com-
puting, 3(4):66–74, Oct.-Dec. 2004.

[20] V. Haarslev, R. Möller, and M. Wessel. Querying the seman-
tic web with racer + nrql. In In Proceedings of the KI-2004
International Workshop on Applications of Description Logics
(ADLŠ04, 2004.

[21] V. Haarslev and R. Möller. Racer: A core inference engine for
the semantic web. In Proc. of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON2003), located
with ISWC, pages 27–36, 2003.

[22] V. Haarslev, R. Möller, and M. Wessel. RacerPro reasoner,
2005. See http://www.racer-systems.com/.

[23] C. Haase and C. Lutz. Complexity of subsumption in the EL
family of description logics: Acyclic and cyclic tboxes. In
M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. Avouris,
editors, Proc. of the 18th European Conference on Artificial In-
telligence (ECAI08), volume 178 of Frontiers in Artificial In-
telligence and Applications, pages 25–29. IOS Press, 2008.

[24] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology lan-
guage. Journal of Web Semantics, 1(1):7–26, 2003.

[25] I. Horrocks and U. Sattler. A tableau decision procedure for
SHOIQ. J. of Automated Reasoning, 39(3):249–276, 2007.

[26] I. R. Horrocks. Using an expressive description logic: Fact or
fiction. pages 636–647, 1998.

[27] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Kernen, and E.-J. Malm.
Managing context information in mobile devices. IEEE Perva-
sive Computing, 2(3):42–51, 2003.

[28] M. Luther, Y. Fukazawa, M. Wagner, and S. Kurakake. Situ-
ational reasoning for task-oriented mobile service recommen-
dation. The Knowledge Engineering Review, 23(Special Issue
01):7–19, 2008.

[29] B. Motik and U. Sattler. A Comparison of Techniques for
Querying Large Description Logic ABoxes. In M. Hermann
and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, volume 4246 of Lecture Notes in
Computer Science, pages 227–241, Phnom Penh, Cambodia,
November 13–17 2006. Springer. KAON2 download page:
http://kaon2.semanticweb.org/.

[30] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning
in Description Logics using Hypertableaux. Lecture Notes in
Artificial Intelligence, pages 67–83, Bremen, Germany, July
17–20 2007. Springer.

[31] B. Mrohs, M. Luther, R. Vaidya, M. Wagner, S. Steglich,
W. Kellerer, and S. Arbanowski. OWL-SF–a distributed se-
mantic service framework. In Proc. of the Workshop on Context
Awareness for Proactive Systems (CAPS’05), Helsinki, pages
67–77, 2005.

[32] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa.
Computational auditory scene recognition. In In IEEE In-
tŠl Conf. on Acoustics, Speech, and Signal Processing, pages
1941–1944, 2002.

[33] M. R. Quillian. Word concepts: A theory and simulation
of some basic capabilities. Behavioral Science, 12:410–430,
1967. Republished in [12].

[34] Racer Systems GmbH & Co. KG. Racerpro reference manual
version 1.9, dec. 2005., 2005.

[35] Racer Systems GmbH & Co. KG. Racerpro User’s guide ver-
sion 1.9, dec. 2005., 2005.

[36] C. Ramos, J. C. Augusto, and D. Shapiro. Ambient intelligence
– the next step for artificial intelligence. IEEE Intelligent Sys-
tems, 23(2):15–18, March-April 2008.

Employing Description Logic systems in Ambient Intelligence 25

[37] A. Ranganathan and R. Campbell. An infrastructure for
context-awareness based on first order logic. Personal and
Ubiquitous Computing, (7):353–364, 2003.

[38] A. Rector. Medical informatics. In [3], pages 406–426. Cam-
bridge University Press, 2003.

[39] S. Schulz, B. Suntisrivaraporn, and F. Baader. SNOMED CT’s
problem list: Ontologists’ and logicians’ therapy suggestions.
In Proceedings of The Medinfo 2007 Congress, Studies in
Health Technology and Informatics (SHTI-series). IOS Press,
2007.

[40] N. Shadbolt. Ambient intelligence. IEEE Intelligent Systems,
18(4):2–3, 2003.

[41] K. Sheikh, M. Wegdam, and M. van Sinderen. Middleware
support for quality of context in pervasive context-aware sys-
tems. In PERCOMW ’07: Proceedings of the Fifth IEEE In-
ternational Conference on Pervasive Computing and Commu-
nications Workshops, pages 461–466, Washington, DC, USA,
2007. IEEE Computer Society.

[42] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In
V. Haarslev and R. Möller, editors, Proc. of the 2004 De-
scription Logic Workshop (DL 2004), number 104 in CEUR
Workshop, 2004. See also http://www.mindswap.org/
2003/pellet/index.shtml.

[43] E. Sirin and B. Parsia. Pellet system description. In B. Parsia,
U. Sattler, and D. Toman, editors, Description Logics, volume
189 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[44] J. F. Sowa, editor. Principles of Semantic Networks. Morgan
Kaufmann, Los Altos, 1991.

[45] T. Springer, K. Kadner, F. Steuer, and M. Yin. Middleware
support for context-awareness in 4G environments. In World of
Wireless, Mobile and Multimedia Networks, 2006. WoWMoM
2006. International Symposium on a, pages 203–211, 26-29
June 2006.

[46] T. Springer, P. Wustmann, I. Braun, W. Dargie, and M. Berger.
A comprehensive approach for situation-awareness based on
sensing and reasoning about context. In F. E. Sandnes,
Y. Zhang, C. Rong, L. T. Yang, and J. Ma, editors, UIC, volume
5061 of Lecture Notes in Computer Science, pages 143–157.
Springer, 2008.

[47] V. Stankovski and J. Trnkoczy. Application of decision trees
to smart homes. In Designing Smart Homes, volume 4008 of
Lecture Notes in Computer Science, pages 132–145. Springer

Berlin / Heidelberg, 2006.
[48] T. Strang and C. Linnhoff-Popien. A context modeling sur-

vey. In In: Workshop on Advanced Context Modelling, Reason-
ing and Management, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England,
2004.

[49] S. Tobies. The complexity of reasoning with cardinality restric-
tions and nominals in expressive description logics. Journal of
Artificial Intelligence Research, 12:199–217, May 2000.

[50] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-
soner: System description. In Proc. of the 3rd Int. Joint Conf.
on Automated Reasoning (IJCAR-06), 2006. FaCT++ down-
load page: http://owl.man.ac.uk/factplusplus/.

[51] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-
soner: System description. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 4130:292–297,
2006.

[52] A.-Y. Turhan, T. Springer, and M. Berger. Pushing doors for
modeling contexts with OWL DL – a case study. In J. Indul-
ska and D. Nicklas, editors, Proceedings of the Workshop on
Context Modeling and Reasoning (CoMoRea’06), pages 13–
17. IEEE Computer Society, March 2006.

[53] M. Weiser. The Computer for the 21st Century. Scientific
American, pages 66–75, Sep 1991.

[54] M. Wessel, M. Luther, and M. Wagner. The difference a day
makes – recognizing important events in daily context logs. In
P. Bouquet, J. Euzenat, C. Ghidini, D. L. McGuinness, L. Ser-
afini, P. Shvaiko, and H. Wache, editors, Proc. of the Interna-
tional Workshop on Contexts and Ontologies: Representation
and Reasoning (C&O:RR), volume 298 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[55] K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler,
R. Stevens, and D. Turi. A little semantic web goes a long
way in biology. In Proc. of the 2005 International Semantic
Web Conference (ISWC 2005), number 3729 in Lecture Notes
in Computer Science, pages 786–800. Springer, 2005.

[56] K. Wolstencroft, P. W. Lord, L. Tabernero, A. Brass, and
R. Stevens. Protein classification using ontology classification.
In In Proceedings 14th International Conference on Intelligent
Systems for Molecular Biology ISMB’06 (Supplement of Bioin-
formatics), pages 530–538, 2006.

