Monitoring for Control in Role-oriented Self-Adaptive Systems

Ilja Shmelkin
ilja.shmelkin@tu-dresden.de
Faculty of Computer Science

Technische Universitat Dresden
Dresden, Germany

ABSTRACT

Self-adaptive Systems (SASs) are one way to address the ever-
growing complexity of software systems by allowing the system
to react on changes in its operating environment. In today’s sys-
tems, self-adaptation is typically realized with a control loop, for
which the MAPE-K feedback loop is a prominent example. Research
uses the notion of patterns to describe the distribution and decen-
tralization of individual control loop components or control loops
and their underlying managed subsystems. While there are some
well-accepted standards about which components a managed sub-
system has to implement so that it can interact with the control
loop, research still lacks best practices for communication within
and across control loops. This paper aims to identify several re-
search challenges that exist currently in this domain. Furthermore,
ideas on upcoming research to create distributed SASs that rely
on roles, benchmarking and inter- and intra-loop communication
for control loops will be presented. Furthermore, ongoing work on
a self-adaptive distributed benchmarking application will be dis-
cussed. Finally, an evaluation strategy will be presented to provide
evidence for viable results to the community.

CCS CONCEPTS

« Computer systems organization — Distributed architec-
tures; - Networks — Network performance analysis.

KEYWORDS

self-adaptive systems, roles, control loops, monitoring, metrics

ACM Reference Format:

Ilja Shmelkin. 2020. Monitoring for Control in Role-oriented Self-Adaptive
Systems. In [EEE/ACM 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 20), October 7-8, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3387939.3391598

1 INTRODUCTION

Self-adaptive systems (SASs) can adapt themselves by reacting on
changes in their operating environment, their goals, failure of indi-
vidual components, resource demand, and many more. Typically
SASs consist of multiple components interacting with each other in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS 20, October 7-8, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7962-5/20/05....$15.00
https://doi.org/10.1145/3387939.3391598

a way that is defined during system design time. Most of them use
control loops to reason about and organize adaptations of an under-
lying managed subsystem of which the MAPE or MAPE-K (Monitor,
Analyse, Plan, Execute, and Knowledge) control loop is one promi-
nent example [7]. The authors use the terms autonomic manager
to refer to the (intelligent) control loop and managed resources for
the system which comprises the application logic and provides the
actual SASs functionality. Other researchers use different terms
(e.g. architecture layer, reflective subsystem or adaptation engine for
the autonomic manager and system layer, base-level subsystem or
core function for the managed resources) to make the same dis-
tinction [9, 26, 35]. As Weyns et al. [36] state, it makes sense to
avoid confusion by sticking to the terms managing subsystem (i.e.
the control loop) and the managed subsystem. Further, they clarify
the distinction between a distributed and a decentralized SAS from
which the former refers to the physical distribution of an SAS across
multiple nodes which are connected with each other through a com-
puter network, and the latter defines how control decisions within
an SAS are made, based on information communicated between
individual components of the control loop. To better understand
the decentralization aspect of SASs, the authors introduce patterns
that describe the communication paths between controlling compo-
nents of the SAS, whereby the components that communicate can
be individual parts of a control loop (e.g. only monitoring compo-
nents communicate with other monitoring components), individual
control loops with each other, nested loops [11] or even sub-loops
where the interaction is not bound to the logical sequence of the
MAPE-K control loop [31].0ne important task in this research field
is to establish standards to accelerate progress and allow new re-
searchers and students to gain a foothold in the community of SASs.
While there are some well-accepted standards about which compo-
nents a managed subsystem has to implement [36] (e.g. sensors and
effectors, however different names exist) so that they can interact
with the managing subsystem, research still lacks standardization
for communication within and, in cases where the SAS is decentral-
ized, across control loops [33, 36] and therefore introduces potential
bottlenecks. Creating standardized communication interfaces and
protocols could be one way to address this problem. Another, so
far not well-addressed task is to create suitable benchmarking ap-
plications so that researchers can compare their work on new SAS
architectures. Although such benchmarks exist [6, 34, 37], they are
commonly ignored by the community.

The remainder of this paper is structured as follows. Section 2
presents the idea of using the notion of roles to incorporate adaptiv-
ity into software (i.e. the managed subsystem). Section 3 shows a
general outline of how the author plans to solve the just introduced
tasks in his dissertation, already ongoing work as well as a strategy
for the evaluation of results. Section 4 concludes this paper.


https://doi.org/10.1145/3387939.3391598
https://doi.org/10.1145/3387939.3391598
https://doi.org/10.1145/3387939.3391598

SEAMS 20, October 7-8, 2020, Seoul, Republic of Korea

2 ROLE-ORIENTED SOFTWARE
INFRASTRUCTURES

While the community predominantly agrees on the use of control
loops in managing subsystems, there are multiple approaches to de-
sign the underlying managed subsystems. One of them is centered
around the notion of roles, which was introduced by Bachmann
way back in 1977 [2]. Roles encapsulate dynamic behavior of static
players, which, in theory, can be used to build adaptivity into soft-
ware by allowing dynamic binding and unbinding of roles during
run time. More recent notions of roles allow capturing context-
dependent properties of objects [14, 15, 21]. Since, for a long time,
there was no common understanding of roles, Kithn et al. [22] de-
noted 26 classifying role features (based on 15 role features from the
work of Steimann [27]), from which a subset can provide adaptivity
during run time [28]. Even though there are many modeling lan-
guages supporting roles [2, 4, 10, 12, 14, 17, 25, 27], they commonly
use different views on relationships and their context-dependency.
This research, therefore, sticks to more recent approaches for role-
based modeling, which focus heavily on the context-dependent
nature [10, 14, 25], some of them allowing relationships to play
roles themselves, as Kiithn et al. [21] conclude. This enlarges the
flexibility by allowing to stack roles. The approaches above use dif-
ferent naming conventions for expressing context-dependency (e.g.
environment, institution, ensemble, and compartment) from which,
as Kithn et al. [21] state, the term compartment encompasses all
other notions.

Since classic object-oriented programming languages are not suf-
ficient for creating adaptive role-based applications, a group of
role-based programming languages emerged [3, 5, 13, 18, 23, 24],
from which SCROLL! [23] supports most of the role features and
therefore represents the go-to programming language for roles. Nei-
ther SCROLL nor the other languages natively allow for creating
distributed role-based applications, which is a serious shortcoming
since today’s systems focus less on monolithic applications but
more on heavily distributed, loosely coupled services that operate
towards a common goal.

Taing et al. recently tackled this topic by creating a prototypical
implementation of the concept dynamic instance binding [29] called
LyRT (and its successor Role4j%) and combining it with a distributed
adaptation protocol [32] to allow for the adaptation of a distributed
role-based system during run time. Although the adaptation proto-
col implemented a mechanism how to handle adaptation failure on
the network level, consistent behavior of objects engaging in ongo-
ing method executions had to be guaranteed on instance level when
dynamic changes took place, allowing for a quiescent state [19] be-
fore and after distributed adaptations had taken place. Neither this
state could be guaranteed in a distributed environment, nor were
proper interfaces for the integration of the network protocol into
the MAPE control loop defined, which opens space for further re-
search. Nevertheless, as stated earlier, roles have several benefits in
modeling and implementation of adaptive systems and therefore
will be used as a basis for the author’s thesis.

Uhttps://github.com/max-leuthaeuser/SCROLL
Zhttps://github.com/nguonly/roled;

Shmelkin

3 THESIS SCOPE

As there is currently no state-of-the-art approach to implement
working distributed role-based SASs, this work is dedicated to
advance this field of research. Although a role-based approach is
chosen, the author’s contribution is expected to be applicable in a
more general way throughout the domain of SASs. The following
section will show multiple interesting topics with research potential
which will be addressed in the author’s dissertation, however, the
overall focus remains on monitoring. Later, a currently ongoing
structured literature review will be explained. Finally, an example
application based on role-playing actors will be introduced.

3.1 Monitoring in Distributed Self-Adaptive
Applications

The previous section has shown that recent research has provided
a local runtime system [28] as well as a network protocol to distrib-
ute adaptations [32]. Both approaches combined allow to create a
distributed role-based application, however, there is no guarantee
that the application will run robustly since neither the protocol nor
the local runtime can assure a quiescent state of the local instances.
Furthermore, the combined approach does not follow the full logi-
cal sequence of the MAPE-K control loop and therefore does not
allow for self-adaptivity yet as only the execution of an already
available adaptation plan [28, 32] was addressed. To solve this issue
it is required to extend the provided functionality by adding appro-
priate distributed monitoring and analyze mechanisms to collect
meaningful data and further analyze this data allowing to reason
about the possibility to adapt the distributed application, as figure 1
shows. To allow monitoring of SASs in a distributed scenario the
following questions have to be answered:

(1) Which additional data has to be collected specifically for
SASs (also regarding roles) compared to traditional systems?
See subsection 3.2.

(2) In which format do we represent monitored data (i.e. met-
rics)? See subsection 3.2.

(3) How do we transport monitored metrics between nodes in a
decentralized scenario? See subsection 3.3.

(4) Do we need to persistently store, and if yes, where and how
long do we store monitored data? See subsection 3.3.

(5) Does the linear and non-linear pair correlation of metrics
provide additional information?

(6) Do we need to consider the grade of distribution and decen-
tralization [36] (i.e. different patterns) of an SAS?

To reason about adequate analysis mechanisms research first needs
to overcome the uncertainty posed by those questions. Any claims
made regarding that would be highly hypothetical and therefore are
retained for future publications. Next, to make self-adaptivity more
accessible to software developers, research needs to define stan-
dardized interfaces for communication within the MAPE control
loop, which will be discussed in subsection 3.3 in more detail.

3.2 Towards a Standardized Metric
Representation

Monitoring individual components of the SASs infrastructure is al-
ready part of most approaches [30], however, when collecting data



Monitoring for Control in Role-oriented Self-Adaptive Systems

/ Change \

Request

Knowledge

(Adaptation history) Change

(Assumed to
be present)

Monillor Ex:cute
Manag((e;ijsjl;system /
-
( v v v .
| | | e | | B |

Figure 1: Image altered from [7]. Current state of research
in role-based distributed SASs. Author’s planned contribu-
tion marked in red. Partially available components marked
in orange. Available components marked in green.

no naming conventions or standardized data structures are used.
As control loops follow a defined logical sequence of actions it is
possible to represent gathered data as time series. For years, leading
companies in the domains of time series monitoring and datas-
tores (e.g. Prometheus, InfluxDB) have been struggling to define an
open standard for representing and transmitting metrics at scale.
Although multiple attempts exist (i.e. Metrics 2.0%, OpenMetrics?),
Metrics 2.0 is only used by a handful of systems and OpenMetrics
has yet to be released, however, each associated GitHub repository
did not receive an update in years. One of the author’s planned
contributions is to advance those attempts to answer questions 1)
and 2) posed in the previous subsection by proposing a standardized
representation of metrics for SASs.

3.3 Inter- and Intra-loop Communication in
Control Loops

As stated earlier, the communication between individual compo-
nents is a potential bottleneck for decentralized SASs. This gets
even worse when physical distribution across multiple nodes is
introduced. Therefore, it is not only required to reason about ade-
quate monitoring metrics and mechanisms, but also about standard-
ized interfaces and communication protocols between control loop
components. A common solution for all SASs is unlikely as their
structure can differ significantly (i.e. different patterns [36] may be
present). This challenge does not only apply to role-based SASs but
any SAS. This subject was not addressed by the SASs community

3http://metrics20.org/
“https://openmetrics.io/

SEAMS °20, October 7-8, 2020, Seoul, Republic of Korea

yet as Weyns and others state in multiple articles [33, 36]. There-
fore, one anticipated contribution of this work is to find principled
solutions to decentralized self-adaptation by answering questions 3)
to 6) posed in subsection 3.1 and proposing standardized interfaces
and communication protocols for SASs that rely on control loops.
Another crucial aspect to consider is pre-processing for knowledge
gain on the instance level to minimize the communication footprint.

3.4 Structured Literature Review

The term structured refers to the way how the vast amount of ex-
isting papers on different subjects in the domain of SASs is handled.
The author’s strategy on this matter was to start by examining well-
accepted survey papers and books in this domain [8, 16, 20, 26],
however, work older than 15 years was not considered in the first
place to avoid possible misdirection in the early stages of the au-
thor’s dissertation. Since a part of the overall topic examined by
the research training group "Role-based Software Infrastructures for
continuous-context-sensitive Systems" (RoSI RTG) is to investigate the
practical applicability of roles in software during run time, mean-
ingful dissertation theses [28, 32] in the domain of SASs coupled
with the aspect of roles were kept in mind while extracting use-
ful information and cross-references out of the surveys or books
respectively. The next task was to identify researchers in the com-
munity who regularly contribute new knowledge to the domain of
SASs which applies to the niches the author’s thesis contributes
to (i.e. patterns for SASs based on roles, communication within
control loop elements, communication, and architectures in SASs
in general, benchmarking of SASs). People like that are D. Weyns,
J. Andersson, S. Malek, H. Giese, S-W. Cheng, however, this list is
incomplete as the structured literature review is still in progress.
While reading new articles, the contributions of the people listed
get prioritized. While continuing to search for new literature is a
perpetual process, a more detailed overview of the review is planned
as a contribution by the end of the third quarter of 2020.

3.5 Benchmarking Application with
Role-Playing Actors

As stated before, the community lacks suitable benchmarking ap-
plications. This intensifies even more in the domain of role-based
scenarios for which no adequate option exists that incorporates
any of the best practices for benchmarking of SASs [6], opening
yet another task for research. During the first months of research
activity, it turned out that an example application to test the ap-
plicability of roles in adaptive software during run time would be
beneficial. Therefore, in collaboration with other research fellows
from the RoSI RTG, an example project was created. The feature-
requirements we put up for the application were the following,
however, we plan to extend them to allow for full self-adaptivity
in the future. In the beginning, the example application should
only be able to activate and deactivate roles dynamically during
run time, as well as run in a distributed environment (i.e. multiple
different virtual machines). Furthermore, this allowed us to inves-
tigate a currently not examined approach, namely the creation of
distributed systems with multiple role-playing actors (based on the
actor model [1]), which exchange messages network-transparently,
introducing the ability to create concurrent role-based SASs in the



SEAMS 20, October 7-8, 2020, Seoul, Republic of Korea

KAFKA Pull

Topic 2 ~ Topic 1
o)
©
53

Visualization Data
Data ‘_l
Data ‘

Shmelkin

Akka-Cluster

Consumer Push Colorizer
>
Role Data

A - A

' Akka communication !

R EERREEEE Rt Push

' 2 /
Producer Colorizer

Push

‘Push
Data | Data

Figure 2: GPS dataflow within an adaptive example application on the basis of role-playing actors. Actors operate concurrently
within the Akka-Cluster. Description: — shows GPS dataflow, --» shows adaptation transactions (within the Akka-Cluster).

future. For this, we used Akka®, an implementation of the actor
model in Scala/Java, among other technologies. A more detailed
description of the concept of using the actor model in distributed
self-adaptive applications is planned for another contribution and
therefore will not be addressed in more detail in this paper.

The overall application context is settled in the domain of stream
processing. More precisely, we tried to build an adaptive stream
processing pipeline in which the actual function of each individual
operator (i.e. actor) is determined by the roles bound during run
time rather than during the development of the pipeline. This al-
lows exchanging specific parts of the pipeline’s functionality while
the system is operating. That, however, introduces possible data
corruption, hence creates the requirement for a structured adapta-
tion process. We used roles to enable adaptation and used actors to
engage in dynamic adaptations, as depicted in figure 2.

We created a pipeline consisting of four operators (i.e. actors of an
Akka-Cluster), from which one reads GPS data out of a Kafka® topic
and one writes the processed GPS data back to another Kafka topic
respectively. The remaining operators process the provided GPS
data by adding an additive color code to it. The color code can be
either plain red, plain green or plain blue and is solely determined
by the role bound to the operator. Since the color codes are additive,
different combinations of roles bound to the operators during run
time result in a different colorization of the output data. The output
data finally gets visualized by a web service’, painting a colorized
line in real-time, which represents the GPS track processed by the
pipeline. Still, the application does not allow for self-adaptivity yet
since no monitoring occurs, hence opening an intersection between
both proposed research topics.

3.6 Evaluation Strategy

Since there are different types of contributions, also different eval-
uation strategies apply for each of them. The following subsec-
tion summarizes those strategies. The claims made involve a high
amount of engineering effort and are therefore highly hypothetical
at this moment.

Shttps://akka.io/
Shttps://kafka.apache.org/
"https://rosimon.shmelkin.net/karte/

3.6.1 Communication and Pre-processing. When creating SASs or
software systems in general, performance and reliability play im-
portant roles, hence they need to be monitored. By introducing
physical distribution across several nodes the performance of a sys-
tem can suffer from different conditions (e.g. insufficient bandwidth,
long response times) which can create performance bottlenecks.
Therefore, in order to evaluate if a system provides proper function
under heavy load, simulating unusual resource demand (e.g. "slash-
dot effect”) can be a suitable benchmark scenario and therefore will
be used on different applications like TAS [34], Znn.com [6] and the
application introduced in subsection 3.5 to compare new findings
in communication and pre-processing of metrics.

3.6.2 Benchmarking distributed SAS. To conduct the experiments
mentioned in the last paragraph it is necessary to create bench-
marks that allow the testing of SASs in a distributed environment.
Since it is beneficial to advance the usage of a common toolset in
the community of SASs, the mentioned benchmark applications
will be extended to allow for distributed operation. As TAS, as
well as Znn.com, were developed in Java, they would even allow
a re-implementation in Scala or SCROLL to efficiently test those
applications against one another. Furthermore, that would allow
comparing role-based SASs with more traditional approaches as
well as give an insight into the applicability of role-playing actors
in real-life scenarios.

4 CONCLUSION

The complexity of information systems keeps growing continuously.
One way to handle this complexity are SASs. In this paper, several
challenges for SASs were named which need to be addressed in
future research. Furthermore, an outlook was given about how
the author plans to investigate possible solutions and how those
solutions will be evaluated. The stage of this research has to be
ranked as very early as only four months passed since it commenced.
All claims and statements were made to the best of the author’s

knowledge and belief.

ACKNOWLEDGMENTS

This work is funded by the German Research Foundation (DFG)
within the Research Training Group Role-based Software Infra-
structures for continuous-context-sensitive Systems (GRK 1907).



Monitoring for Control in Role-oriented Self-Adaptive Systems

REFERENCES

(1]

[2

[

&

[10]

(1]
[12]

[13]

[14]

[15

[16]

[17

(18]

[19]

[20

[21]

[22

[23

[24]

[25]

[26

Gul A Agha. 1985. Actors: A model of concurrent computation in distributed systems.
Technical Report. MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB.

Charles W Bachman and Manilal Daya. 1977. The role concept in data models. In
Proceedings of the third international conference on Very large data bases-Volume 3.
VLDB Endowment, 464—476.

Matteo Baldoni, Guido Boella, and Leendert Van Der Torre. 2006. powerJava: onto-
logically founded roles in object oriented programming languages. In Proceedings
of the 2006 ACM symposium on Applied computing. ACM, 1414-1418.

Stephanie Balzer and Thomas R Gross. 2011. Verifying multi-object invari-
ants with relationships. In European Conference on Object-Oriented Programming.
Springer, 358-382.

Stephanie Balzer, Thomas R Gross, and Patrick Eugster. 2007. A relational model
of object collaborations and its use in reasoning about relationships. In European
Conference on Object-Oriented Programming. Springer, 323-346.

Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2009. Evaluating the
effectiveness of the rainbow self-adaptive system. In 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. IEEE, 132-141.
IBM Corporation. 2006. An architectural blueprint for autonomic computing.
IBM White Paper 31, 2006 (2006), 1-6.

Rogério de Lemos, Holger Giese, Hausi A Miiller, and Mary Shaw. 2013. Software
Engineering for Self-Adaptive Systems: International Seminar Dagstuhl Castle, Ger-
many, October 24-29, 2010 Revised Selected and Invited Papers. Vol. 7475. Springer.
David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
2004. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer 37, 10 (2004), 46-54.

Valerio Genovese. 2007. A meta-model for roles: Introducing sessions. In Pro-
ceedings of the 2nd Workshop on Roles and Relationships in Object Oriented Pro-
gramming, Multiagent Systems, and Ontologies. 27-38.

Karl M Géschka, Lorenz Froihofer, and Schahram Dustdar. 2008. What SOA can
do for software dependability. Supplementary Volume of DSN 8 (2008).

Terry Halpin. 2005. ORM 2. In OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems". Springer, 676—687.

Chengwan He, Zhijie Nie, Bifeng Li, Lianlian Cao, and Keging He. 2006. Rava:
Designing a java extension with dynamic object roles. In 13th Annual IEEE
International Symposium and Workshop on Engineering of Computer-Based Systems
(ECBS’06). IEEE, 7-pp.

Rolf Hennicker and Annabelle Klarl. 2014. Foundations for ensemble modeling—
the Helena approach. In Specification, Algebra, and Software. Springer, 359-381.
Stephan Herrmann. 2007. Programming with Roles in ObjectTeams/Java. Applied
Ontology 2 (01 2007), 181-207.

Markus C Huebscher and Julie A McCann. 2008. A survey of autonomic comput-
ing—degrees, models, and applications. ACM Computing Surveys (CSUR) 40, 3
(2008), 7.

Tobias Jikel, Thomas Kiihn, Stefan Hinkel, Hannes Voigt, and Wolfgang Lehner.
2015. Relationships for dynamic data types in RSQL. Datenbanksysteme fiir
Business, Technologie und Web (BTW 2015) (2015).

Tetsuo Kamina and Tetsuo Tamai. 2009. Towards safe and flexible object adapta-
tion. In International Workshop on Context-Oriented Programming. ACM, 4.

Jeff Kramer and Jeff Magee. 1990. The evolving philosophers problem: Dynamic
change management. IEEE Transactions on software engineering 16, 11 (1990),
1293-1306.

Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing 17 (2015), 184-206.

Thomas Kiihn, Stephan Béhme, Sebastian Gotz, and Uwe Afimann. 2015. A com-
bined formal model for relational context-dependent roles. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering.
ACM, 113-124.

Thomas Kithn, Max Leuthduser, Sebastian Gotz, Christoph Seidl, and Uwe Af3-
mann. 2014. A metamodel family for role-based modeling and programming
languages. In International Conference on Software Language Engineering. Springer,
141-160.

Max Leuthduser. 2015. SCROLL-A Scala-based library for Roles at Runtime.
In Proceedings of the 3rd Workshop on Domain-Specific Language Design and
Implementation (DSLDI 2015). 7-8.

Michael Pradel and Martin Odersky. 2008. Scala roles: Reusable object collabora-
tions in a library. In International Conference on Software and Data Technologies.
Springer, 23-36.

Trygve Reenskaug and James O Coplien. 2009. The DCI architecture: A new
vision of object-oriented programming. An article starting a new blog:(14pp)
http://www. artima. com/articles/dci_vision. html (2009).

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. ACM transactions on autonomous and adaptive systems
(TAAS) 4, 2 (2009), 14.

SEAMS °20, October 7-8, 2020, Seoul, Republic of Korea

[27] Friedrich Steimann. 2000. On the representation of roles in object-oriented and

conceptual modelling. Data & Knowledge Engineering 35, 1 (2000), 83-106.
Nguonly Taing. 2017. Run-time Variability with Roles. (2017).

Nguonly Taing, Thomas Springer, Nicolas Cardozo, and Alexander Schill. 2016.
A Dynamic Instance Binding Mechanism Supporting Run-Time Variability of
Role-Based Software Systems (MODULARITY Companion 2016). Association for
Computing Machinery, New York, NY, USA, 137-142. https://doi.org/10.1145/
2892664.2892687

Norha M Villegas, Hausi A Miiller, Gabriel Tamura, Laurence Duchien, and Rubby
Casallas. 2011. A framework for evaluating quality-driven self-adaptive software
systems. In Proceedings of the 6th international symposium on Software engineering
for adaptive and self-managing systems. 80-89.

Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. 2011. On
interacting control loops in self-adaptive systems. In Proceedings of the 6th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems. ACM, 202-207.

M Sc Martin Weifibach. 2018. Run-time Adaptation of Role-based Software
Systems. (2018).

Danny Weyns. 2017. Software engineering of self-adaptive systems: an organised
tour and future challenges. Chapter in Handbook of Software Engineering (2017).
Danny Weyns and Radu Calinescu. 2015. Tele assistance: a self-adaptive service-
based system examplar. In Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE Press, 88-92.
Danny Weyns, Sam Malek, and Jesper Andersson. 2012. FORMS: Unifying refer-
ence model for formal specification of distributed self-adaptive systems. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 7, 1 (2012), 8.

Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola,
Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M
Goschka. 2013. On patterns for decentralized control in self-adaptive systems. In
Software Engineering for Self-Adaptive Systems II. Springer, 76-107.

[37] Jochen Wuttke, Yuriy Brun, Alessandra Gorla, and Jonathan Ramaswamy. 2012.

Traffic routing for evaluating self-adaptation. In Proceedings of the 7th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems. IEEE Press, 27-32.


https://doi.org/10.1145/2892664.2892687
https://doi.org/10.1145/2892664.2892687

