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ABSTRACT
Adaptive content networking is a promising new approach
aimed at scalable delivery of content to a pervasive client
population. By adaptive content delivery networks (A-CDN)
content is adapted, replicated and delivered to the clients in
a cost-quality-optimized fashion. The integration of content
adaptation into CDNs minimizes the interference of adapta-
tion with replication effectiveness.

The paper presents ongoing research on replica placement
in A-CDNs. Based on a static model for cost-quality-opti-
mized adaptive content networking, algorithms to optimize
the placement of replicas in the surrogates of an A-CDN are
discussed. The dynamics of a real Web scenario are not ex-
plicitly taken into account by the algorithms. Whereas long-
term dynamics are dealt with by periodic adjustments of the
underlying model and recalculation of an optimal placement,
short term dynamics are considered to result in inaccuracies
in the system and load model. Therefore, algorithms being
tolerant to an imperfect underlying model are chosen.

As adaptation path composition turns out to be a sub-
problem of replica placement in A-CDNs, we also introduce
an algorithm for optimal adaptation path composition.

Keywords
CDN, content adaptation, replica placement, adaptation
path composition

1. INTRODUCTION
In the upcoming world of Pervasive Computing, users ac-

cess information in the Internet by a huge variety of hetero-
geneous devices. The devices are attached to the Internet
by various communication systems featuring heterogeneous
characteristics. The key to cope with the heterogeneity is
the adaptation of the representation of content in order to
meet the media handling capabilities of the devices and the
transmission restrictions imposed by the networks. In pre-
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vious research, a lot of effort has been spent in the field of
content adaptation. Nonetheless, previous approaches have
been designed without taking the capabilities of Content
Distribution Networks into account. Content Distribution
Networks are applied in todays World Wide Web to improve
performance and scalability of content delivery by replicat-
ing content on distributed nodes, so-called surrogates. How-
ever, content adaptation interferes with the effectiveness of
replication. This issue has been examined in detail in [3].

Leveraging the advantages of Content Distribution Net-
works in Pervasive Computing environments where content
adaptation is necessary to meet the heterogeneity of the
clients is subject of our research. We envision an Adaptive
Content Distribution Network (A-CDN) that may flexibly
replicate different representations of objects in its surrogates
and apply content adaptation within the CDN to finally
adapt and deliver content to the clients. We allow clients
to accept different representations of each object having dif-
ferent qualities w.r.t. the media handling capabilities of the
particular client. The selection of an appropriate represen-
tation to satisfy a client’s request is done in a cost-quality-
optimized manner.

This paper deals with the problem of replica placement
(RP) in A-CDNs. RP in A-CDNs deals with the question
which representation of which object to store in which sur-
rogate of the A-CDN in order to satisfy all requests globally
optimal w.r.t. cost and quality. Therefore, the RP algo-
rithm is required to be aware of the adaptation capabilities
of the A-CDN. We present ongoing research on adaptation-
aware RP algorithms. They are based on a static model for
cost-quality-optimized adaptive content networking. Hence,
the algorithms perform static optimization. In order to cap-
ture dynamic changes in the underlying system and in the
load of requests, the placement of replicas must be recalcu-
lated regularly. The recalculations are always based on an
readjusted system and load model whereby system state and
load are predicted based on averaged usage statistics.

The remainder of the paper is organized as follows. In
the next section, we present our model for cost-quality-
optimized adaptive content networking and formalize the ob-
jective in cost-quality-optimized adaptive content network-
ing. Section 3 presents the algorithms for adaptation-aware
RP in A-CDNs. As the composition of cost-quality-opti-
mized adaptation paths turns out to be a sub-problem of
the RP problem, Section 3 also comprises a solution to this
problem. Related work is discussed in Section 4. Finally,
concluding remarks are given in Section 5.



2. MODEL FOR COST-QUALITY-
OPTIMIZED CONTENT NETWORKING

This section describes the model for cost-quality-optimized
adaptive content networking. At first, the system model is
introduced. It captures the physical components involved in
the delivery of contents, their properties, and capabilities.

The set of nodes engaged in content delivery is N . It com-
prises the origin servers b ∈ B, hosting the primary copies
of the objects, the surrogates of the CDN h ∈ H, and client
nodes c ∈ C. In order to mask the mobility of individual
clients and to reduce complexity, a client node c ∈ C does
not represent an individual physical client. In contrast, we
join all physical clients sharing the same hardware and soft-
ware configuration as well as the same network connectivity
to one client node c that produces the aggregated load of the
joint physical clients. Thereby the mobility of clients maps
to load changes (for load modeling see below).

K denotes the set of objects that is distributed by the
CDN. Each object k ∈ K can be delivered in different rep-
resentations r from the set R of representations. A represen-
tation is characterized by a collection of media features ac-
cording to [14]. The capabilities of a client to handle objects
in a certain representation, the media handling capabilities,
are specified by a predicate over the media features as de-
fined by IETF Media Feature Sets [14]. Formally, the media
handling capabilities of a client represented by c define a set
mhc(c) ⊆ R of representations that can be handled by the
client. The quality of a representation r ∈ R of an object
k ∈ K experienced by a client represented by c ∈ C is cap-
tured by the quality function qf : C×K×R → IR[0, 1]. A
quality of 1 refers to the maximum achievable quality. Zero
quality means r of k is useless to c. Quality function we
assume to be designed according to the concept of multidi-
mensional quality functions as described in [2].

A tuple (k, n, r) ∈ K×N×R specifies an instance of ob-
ject k in representation r within node n. However, the term
instance does not necessarily imply that k is materialized
as a replica in n. The placement of primary replicas on
origin servers is determined by the relation P0⊆K×B×R,
viz. an instance (k, b, r) ∈ P0 means origin server b stores
object k in representation r. Analogously, PR⊆K×H×R
is the placement of replicas in the surrogates of the CDN.
It is constrained by the restricted storage capacity sc(h) of
each surrogate h:

∀h∈H
X

(k,h,r)∈PR
sf(k, r) ≤ sc(h), (1)

where sf(k, r) denotes the size of object k in representation
r. Formally, the function sc : N → IN of storage capacities
assigns 0 to all non-surrogate nodes and the capacity in bytes
as a positive integer to the surrogates h ∈ H.

A set O comprises operations o : K×N×R → N×R describ-
ing both (1) adaptation operations oadapt : (k, h, r) 7→ (h, r′),
performed at surrogate h to alter the representation of object
k from r to r′, and (2) transfer operations otrans : (k, n, r) 7→
(n′, r)1, each representing a unidirectional network link from
n to n′. Bidirectional links are represented by one operation

1In the paper, we assume transfer operations not to affect
the media features of objects (hence r maps to r). Nonethe-
less, the comprehensive definition of operations allows for
transfer operations (k, n, r) 7→ (n′, r′) affecting the media
features, too (e.g. unreliable streaming transfer resulting in
loss in signal-to-noise ratio).

for either direction. Operations are assumed to be uncapac-
itated but to incur costs. The cost of applying an operation
o to an instance (k, n, r) of object k is captured by the cost
function cfo : K×N×R → IR. The vector (cfo) comprises
the cost functions of all operations o∈O.

To deliver objects operations are chained to form adapta-
tion paths. We model an adaptation path as a directed

unary tree π = 〈(k, n0, r0)
o1−→ (k, n1, r1)

o2−→ · · · op−→
(k, np, rp)〉. An edge ei ∈ E(π) represents the application
of an operation oi in π. Apart from the root, which is a
replica (k, n0, r0) ∈ (P0 ∪ PR), the vertices (k, ni, ri) are the
instances yielded by applying oi on the respective predeces-
sor (k, ni−1, ri−1). The cost costπ of an adaptation path π
is the sum of the costs associated with the operations in the
path. Its quality qualπ,c is the quality qf(k, np, rp) of the
leaf vertex.

According to the above definitions, we formally de-
fine a system for adaptive content delivery as a 10-tuple
Σ =

�
K, R, sf, N, sc, P0, mhc, qf, O, (cfo)

�
(Note: The sub-

sets B, H, and C of N are implicitly defined by P0, sc, and
mhc, respectively, and need not be included in the tuple Σ.).

The requests of the CDN’s clients are captured by the
load model. A pair (c, k) ∈ C×K specifies a request of a
client represented by client node c for object k. A request
(c, k) can be satisfied by constructing an adaptation path
π delivering the object k to the client c in a representation
r that can be handled by the client (r ∈ mhc(c)) and has
non-zero quality (qf(c, k, r) > 0). The matrix Λ = (λc,k) of
request rates of all requests (c, k) ∈ C×K describes the load
of the system Σ. It is estimated based on usage statistics.

There are two conflicting goals in cost-quality-optimized
adaptive content networking: maximizing quality and min-
imizing cost. We tackle this problem by projecting quality
into the cost domain. This is accomplished by assigning
revenue to quality. We assume the customers’ willingness
to pay to be proportional to the experienced quality. Con-
sequently, the revenue yielded by satisfying a request (c, k)
by the adaptation path π is revπ,c = pricek · qualπ,c. The
proportionality factor pricek is the nominal price of k, i.e.
the amount the customer is willing to pay for object k if it
is delivered with optimal quality. Thus, the profit yielded
by satisfying a single request (c, k) by the adaptation path
π is profitc(π) = pricek · qualπ,c − costπ. The objective in
cost-quality-optimized adaptive content networking is max-
imizing the overall profit

ProfitΛ(PR) =
X

(c,k)∈C×K
λc,k · profit

c,π
opt
c,k

(2)

yielded by responding to every request (c, k) by the optimal
adaptation path πopt

c,k satisfying (c, k) w.r.t. a placement
PR. The optimization problem is subject to the constrained
storage capacity (Eq. 1).

3. ADAPTATION-AWARE REPLICA
PLACEMENT IN A-CDNS

Replica placement in A-CDNs is targeted at finding a
placement PR yielding maximum overall profit ProfitΛ(PR)
(Eq. 2) subject to the storage capacity constraint (Eq. 1).
Determining overall profit ProfitΛ(PR) requires the profit
of the optimal adaptation path πopt

c,k for each request (c, k)
with λc,k > 0 to be known. Hence, composing optimal adap-
tation paths subject to a given PR is a sub-problem of the
RP problem. It is discussed in Section 3.1. The actual
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Figure 1: Example of a connected component Γk of a virtual system graph Γ

RP algorithm using the approach of Section 3.1 to calculate
ProfitΛ(PR) is dealt with in Section 3.2.

3.1 Adaptation Path Composition
Our solution to this sub-problem is based on the general

approach of mapping adaptation path composition onto con-
ventional shortest path search in weighted graphs as intro-
duced by [5]. However, we extend the ideas of [5] to allow
for cost-quality-optimized adaptation paths and for multi-
ple different replicas of an object as potential root vertices
of the adaptation path.

The approach requires the system model Σ to be mapped
onto a weighted directed graph Γ. We call Γ the virtual sys-
tem graph. The set V (Γ) of vertices in Γ comprises all in-
stances (k, n, r) ∈ K×N×R that can potentially be vertices
in an adaptation path in Σ. The instances are connected
by edges e ∈ E(Γ) representing the application of adapta-
tion or transfer operations. Every ((k, n, r), (k′, n′, r′)) ∈
(K ×N × R) × (K ×N × R) where k = k′ and there is an
operation o ∈ O so that (n′, r′) = o(k, n, r) is an edge in Γ.

Provided that the underlying network is not partitioned
and all replicas can be obtained from one master copy by a
sequence of adaptation and transfer operations, the result-
ing virtual system graph Γ is a disconnected graph with a
connected component Γk for every object k∈K. Otherwise
their might be multiple components per object. As their are
no operations to convert an object into another one, there
are no edges connecting the components of different objects.

Each component can be viewed as having multiple hori-
zontal layers where all vertices within the same layer stand
for the same representation ri of object k within different
nodes. Vertices in different layers that lie one upon the
other stand for different representations of k within the same
physical node ni. One component of a sample virtual system
graph is shown in Figure 1 (please note: Figure 1 contains
an additional rs- and rd-layer, that will be explained below).

Every path in Γ that originates in an instance that is ma-
terialized as a replica (k, n0, r0) ∈ (P0 ∪ PR) and ends in
an instance (k, c, rp) that can satisfy a request (c, k) (i.e.
rp ∈ mhc(c) and qf(c, k, rp) > 0) corresponds to an adap-

tation path π in Σ. In order to map the search for an opti-
mal adaptation path onto a single-source single-destination
shortest path search in Γ we introduce two additional sets
of vertices of Γ: virtual source and virtual drain vertices.

There is a virtual source vertex (k, nε, rs) for each k ∈ K.
It is added as the source vertex to all paths in Γ that cor-
respond to an adaptation path for k. Each virtual source
vertex (k, nε, rs) is connected by an outgoing edge to ev-
ery replica of k. Moreover, there is a virtual drain vertex
(k, c, rd) for every request (c, k) ∈ C×K having an ingoing
edge from every instance that can satisfy the request (c, k).
A virtual drain vertex (k, c, rd) is added as the destination
to all paths in Γ that correspond to an adaptation path that
can satisfy a request (c, k). The virtual source vertex of
the sample component Γk in Figure 1 is depicted in the top
layer. Virtual drain vertices are shown in the bottom layer.

By an adequate definition of the weight function
w : E(Γ) → IR, the search for the optimal adaptation path
πopt

c,k that can satisfy a request (c, k) maps to the search
for the shortest path between the virtual source vertex
(k, nε, rs) and the virtual drain vertex (k, c, rd). An appro-
priate weight function is given in the following. The weight
of an edge e = ((k, n, r), (k, n′, r′)) that stands for the appli-
cation of an adaptation operation is the cost of the operation
plus the loss in revenue due to quality degradation: w(e) =
cfo(k, n, r)+pricek ·(qf(c, k, r)−qf(c, k, r′)). Edges pointing
from a virtual source vertex (k, nε, rs) to a replica (k, n, r) ∈
(P0 ∪PR) are weighted by the negated revenue of the initial
representation of the replica: w(e) = −pricek · qf(c, k, r).
Thereby the different qualities of different replicas are in-
corporated into the lengths of the paths in Γ. The edges
destined to virtual drain vertices are neutral w.r.t. the path
length. Accordingly they have zero weights: w(e) = 0.

Thus, the length of a path between a virtual source and
a virtual drain in Γ, which corresponds to an adaptation
path π, is −profitc(π); i.e. minimizing the path length
results in maximized profitc(π) of the adaptation path
π. Hence, an optimal adaptation path πopt

c,k can be de-
termined using conventional shortest path algorithms such



as Bellman-Ford or Dijkstra2[6]. The search can be re-
stricted to the component Γk. Furthermore, client nodes
other than the requesting client node are never intermediary
nodes within the adaptation path. Accordingly, all vertices
(k′, c′, r′) ∈ (K×C×R) where c′ 6=c can be neglected in the
search for πopt

c,k . Thus, the computational complexity of the
adaptation path composition has a worst case upper bound
of O

�|H∪B|2|R|2� = O
�|H|2|B|2|R|2� with Dijkstra’s short-

est path algorithm and O
�|H ∪B|3|R|3� = O

�|H|3|B|3|R|3�
with the Bellman-Ford algorithm.

3.2 Replica Placement Algorithms
Finding an optimal placement PR subject to the storage

capacity constraint is NP-hard. There is a reduction to the
knapsack optimization problem. The proof is based on the
finding that the general RP problem, i.e. without content
adaptation within the CDN, is a special case of our prob-
lem. A reduction of the general RP problem to the knapsack
problem is given by [12].

Due to NP-hardness, finding an optimal solution is in-
feasible. Instead we favor heuristics to tackle the problem.
Plain and greedy ranking heuristics have proven feasibility
for general RP [12, 13, 15] as well as for the view selection
problem [1, 9], dealing with the selection of aggregated views
to materialize in data warehouses. Those problems are sim-
ilar to the adaptation-aware RP problem in A-CDNs. Ac-
cordingly, we consider ranking algorithms promising for our
problem.

Ranking heuristics [13] construct a solution by (1) iden-
tifying a set of partial solutions that can be combined to
construct the overall solution, (2) ranking the alternative
partial solutions according to a benefit function, and (3) se-
lecting a subset of the partial solution in order of their rank
and combine them to the overall solution while skipping par-
tial solutions that violate a constraint.

In the context of adaptation-aware RP, an overall solution
is a set PR of replicas. It can be decomposed into partial so-
lution being the materialization of a single replica (ki, hi, ri).
The overall solution is the union of the selected replicas:
PR =

S
i{(ki, hi, ri)}. The selection of replicas is checked

against the size constraints of the surrogates (Eq. 1).
In order to maximize the overall profit, the ranking and

the selection of replicas is based on the profit yielded by
materializing the particular replicas. However, we do not
have defined the profit of single replicas but only the profit
ProfitΛ(PR) of an entire placement PR of replicas. Hence,
we need to calculate the profit of a single replica (k, h, r) as
the gain ProfitΛ({(k, h, r)} ∪ PR) − ProfitΛ(PR) in profit
yielded by materializing (k, h, r) in addition to an already
materialized reference placement PR. To allow for the dif-
ferent consumption of the constrained storage capacity by
the different replicas, the gain in profit must be put in pro-
portion to the replica’s size sf(k, r). Hence, we obtain the

2The Dijkstra algorithm works with non-negative weights
only. In case of the weight function w, the edges originating
in the rs-layer have negative weights. Nonetheless, if the
weights of all other edges are non-negative, an extension
of the Dijkstra algorithm (viz. marking the destinations
(k, n, r) of the edges e = ((k, nε, rs), (k, n, r)) as initially
permanent with a distance of w(e) = −pricek · qf(c, k, r))
works and is preferable to Bellman-Ford thanks to lower
complexity.

B computation of the benefit functions

and ranking of the partial solutions

Ranking := {}; initializing ranking list

foreach k ∈ K
p0 := 0; profit yielded with empty placement ∅

by responding to all requests for k

foreach c ∈ C
compute πopt

c,k w.r.t. empty placement ∅;
p0 := p0 + λc,k · profit

c,π
opt
c,k

;

foreach (h, r) ∈ H ×R
p := 0; profit yielded with placement {(k, h, r)}

by responding to all requests for k

foreach c ∈ C
compute πopt

c,k w.r.t. placement {(k, h, r)};
p := p + λc,k · profit

c,π
opt
c,k

;

b := (p− p0)/sf(k, r); benefit of (k, h, r)

add ({(k, h, r)}, b) to list Ranking sorted by b
in descending order;

B construing the overall solution by

selecting partial solutions

PR := ∅; initializing placement

OSC := 0;
foreach h ∈ H initializing

SC[h] := sc(h); array of remaining capacities

OSC := OSC + sc(h); remaining overall capacity

while (not empty(Ranking)) and (not OSC = 0)
({(k, h, r)}, b) := head(Ranking);
Ranking := tail(Ranking);
if SC[h] > sf(k, r) then checking size constraint

PR := PR ∪ {(k, h, r)}; adding partial solution

SC[h] := SC[h]− sf(k, r);
OSC := OSC − sf(k, r);

return PR;

Figure 2: Plain ranking algorithm

benefit function:

benefitΛ((k, h, r), PR) =

ProfitΛ({(k, h, r)} ∪ PR)− ProfitΛ(PR)

sf(k, r)
(3)

With the plain ranking heuristic, the potential repli-
cas (ki, hi, ri) are ranked once according to their bene-
fit benefitΛ((ki, hi, ri), ∅) w.r.t. an empty reference place-
ment ∅ (i.e. only primary replicas in origin servers). The
overall solution is constructed based on this initial rank-
ing (Fig. 2). As opposed to that, greedy ranking means
the benefits are recomputed after each step of selecting a
replica. The reference placements PR in subsequent steps
are the placements determined in the respective previous
steps, while the first step assumes PR = ∅ (Fig. 3).

By means of greedy ranking, we expect potentially better
results than with plain ranking whereas the goodness of a
placement PR corresponds to ProfitΛ(PR). The gain in
goodness of the placement produced by the greedy ranking
algorithm comes from the fact that the benefit of a replica
significantly depends on the placement of other replicas of
the same object. Nevertheless, it is paired with the penalty
of higher computational complexity. The worst case upper



bound of plain ranking is

O
�|C||K||H|3|B|2|R|3 log |K|� (4)

while greedy ranking has an upper bound of

O
�|C||K||H|4|B|2|R|4 log |K|�. (5)

B initial computation of the benefit functions

and ranking of the partial solutions

Ranking := {}; initializing ranking list

foreach k ∈ K
p0 := 0; profit yielded with empty placement ∅

by responding to all requests for k

foreach c ∈ C
compute πopt

c,k w.r.t. empty placement ∅;
p0 := p0 + λc,k · profit

c,π
opt
c,k

;

foreach (h, r) ∈ H ×R
p := 0; profit yielded with placement {(k, h, r)}

by responding to all requests for k

foreach c ∈ C
compute πopt

c,k w.r.t. placement {(k, h, r)};
p := p + λc,k · profit

c,π
opt
c,k

;

b := (p− p0)/sf(k, r); benefit of (k, h, r)

add ({(k, h, r)}, b, p) to list Ranking sorted by b
in descending order;

B construing the overall solution by selecting partial

solutions and recomputing the benefits after each step

PR := ∅; initializing placement

OSC := 0;
foreach h ∈ H initializing

SC[h] := sc(h); array of remaining capacities

OSC := OSC + sc(h); remaining overall capacity

while (not empty(Ranking)) and (not OSC = 0)
({(k, h, r)}, b, p0) := head(Ranking);

note: p0 is set to the profit yielded with placement

{(k, h, r)} ∪ PR by responding to all requests for k

Ranking := tail(Ranking);
if SC[h] > sf(k, r) then checking size constraint

PR := PR ∪ {(k, h, r)}; adding partial solution

SC[h] := SC[h]− sf(k, r);
OSC := OSC − sf(k, r);
B removing replicas of k from ranking

foreach ({(k′, h′, r′)}, b′, p′) ∈ Ranking
if k′ = k then

remove ({(k′, h′, r′)}, b′, p′) from Ranking;
B recomputing the benefits of replicas of k

and reinserting them into the ranking

foreach (h, r) ∈ H ×R
p := 0; profit yielded with placement

{(k, h, r)} ∪ PR by responding

to all requests for k

foreach c ∈ C
compute πopt

c,k w.r.t. {(k, h, r)} ∪ PR;
p := p + λc,k · profit

c,π
opt
c,k

;

b := (p− p0)/sf(k, r); benefit of (k, h, r)

add ({(k, h, r)}, b, p) to list Ranking sorted
by b in descending order;

return PR;

Figure 3: Greedy ranking algorithm

The complexity calculations include the complexity of
computing the benefit function. They assume the optimal
adaptation paths πopt

c,k are computed using the Dijkstra al-

gorithm in Γ (cf. Sec. 3.1) accounting for O(|H|2|B|2|R|2).
The above algorithms are based on a static model and do

not explicitly take the dynamics in the system into account.
They assume perfect knowledge about the load and state
of the system. In practice, however, load and system state
are neither static nor do we have perfect knowledge about
them. Even though, we adjust to dynamic changes by reg-
ularly recalculating the placement based on fresh estimates,
those estimates are rather inaccurate and become outdated
quickly. Nevertheless, we still assume the algorithms to pro-
duce reasonable placements because they have been shown
to be rather tolerant to imperfect input data when applied
to the general RP problem [15]. Qiu et al. [15] prove the
cost of a placement produced by a greedy ranking heuristic
(for cost-optimized general RP) to be within the factor of 2
of the cost of an optimal placement even if the input data is
distorted with a random error of up to 400%. For compari-
son, with exact input data it is within the factor of 1.1 – 1.5.
The experimental proof of the assumption that the heuris-
tics are similarly robust when applied to adaptation-aware
RP as well as the evaluation of the goodness of placements
produced by the heuristics is subject to ongoing research.

4. RELATED RESEARCH
The finding that the effectiveness of replication techniques

may benefit from taking adaptability of media objects into
consideration motivated research projects, such as the Soft
Caching project [11]. In this project, the researchers ex-
perimented with scaling down cached images to free cache
memory without eviction. The approach was later extended
to quality adaptive caching of layered encoded video [10,
16]. In the context of quality adaptive caching of stream-
ing media, the issue of cost-quality-optimization has also
been addressed [17]. Those projects, however, restrict their
consideration to a single, autonomous cache. They do not
exploit the advantages of replication in a global network of
cooperating surrogates in a CDN.

The importance of content adaptation within CDNs has
been identified by previous work. Wee et al. [18], for in-
stance, describe the architecture of a Mobile Streaming Me-
dia CDN (MSM-CDN) providing for adaptation of media
streams within the CDN. Also, the development of the Inter-
net Content Adaptation Protocol (ICAP) [7], which is now
under revision and further development by the IETF Open
Pluggable Edge Services (OPES) working group, is targeted
at allowing for content adaptation in CDNs. Nevertheless,
we are not aware of any publications addressing the issue of
adaptation-aware RP as dealt with by our research.

Even though adaptation-aware RP in A-CDNs is a new
research topic, it is closely related to the field of general RP
research. General RP deals with the distribution of repli-
cas where content adaptation is not considered and hence
there is only one representation of each content object. Be-
cause RP is proven to be NP-hard [12], several heuristic
approaches have been evaluated (see [13] for a survey). For
capacity constrained RP problems, plain and greedy ranking
heuristics have been shown to produce good placements [13,
12]. Greedy algorithms have also been successfully applied
in the view selection problem in data warehouses [1, 9], a



problem that is structurally similar to RP in A-CDNs. For
a single knapsack problem (one centralized constraint re-
source) a 63% lower bound on the benfit by a greedy solution
compared to the optimal solution has been proven [9]. How-
ever, that bound does not hold for the multiple knapsack
problem in the distributed case, where every site accounts
for a capacity constraint [1].

Besides the RP problem, our paper also relates to previous
work on the composition of distributed adaptation paths.
The notion of distributed adaptation paths has been intro-
duced by the Ninja project [8] achieving adaptation through
automated service chaining. Choi et al. [5] addressed the op-
timization of adaptation path composition by mapping the
problem onto a conventional shortest path search in multi-
layered graphs. We adopted this idea in our path composi-
tion algorithm. Though Candan et al. [4] do not explicitly
refer to shortest path algorithms, their algorithm for object
synthesis in collaborative multimedia systems is similar to
the ideas of [5]. [4] presents the only path composition al-
gorithm that allows for cost-quality-optimization.

5. CONCLUSION
This paper has dealt with replica placement in Adaptive

Content Distribution Networks. In A-CDNs, different repre-
sentations of an object may be stored in the surrogates and
adapted to the clients by the CDN during delivery. Hence,
RP in A-CDNs is targeted at deciding which representation
of which object to store in which surrogate.

In the first part of the paper, we have introduced a formal
model for cost-quality-optimized adaptive content network-
ing and defined the RP optimization problem. The defini-
tion of the objective function assumes the optimal adapta-
tion path to satisfy a request to be known. Hence, optimal
adaptation path composition is an inherent sub-problem of
RP. We have proposed an algorithm to tackle this problem
by mapping it onto conventional shortest path search.

The actual RP optimization problem is NP-hard. That is
why we favor heuristic approaches. We have presented plain
and a greedy ranking algorithm. Ranking approaches have
proven successful in similar problems such as general RP or
view selection in data warehouses.

The experimental evaluation of the heuristics is subject to
ongoing research. We are currently preparing simulations of
an A-CDN that distributes Web images and video. Whereas
the general distribution of Web requests is well known from
previous work, the distribution of specific media features,
e.g. spatial and color resolution, had to be determined by
an analysis of images available on the Web through a proxy
trace. Current work deals with the construction of a rea-
sonable model of different adaptation operations that de-
scribes the effect of the operations on the media features
and thereby on the quality of adapted content.
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