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Abstract—The worldwide workload of the public cloud infras-
tructure has been increasing steadily for the past many years
and the latest statistics indicate that it will remain so for the
coming years. At the same time, the energy consumption of
the cloud infrastructure is considerably high. In this respect,
the efficient utilisation of computing resources is of profound
importance. In contemporary data centres tens of thousands of
virtual machines execute simultaneously. Considering the number
and heterogeneity of the virtual machines, balancing the demand
for and the supply of resources is one of the challenges facing
Cloud and Edge Computing. Often, infrastructure providers
over-provision resources to ensure that service level agreements
are respected. This, however, is not sustainable and its long-
term impact on the environment cannot be overlooked. In this
paper, we propose the use of tensor decomposition to analyse the
resource utilisation metrics of a large number of hosted virtual
machines and to identify complementary and contentious features
which can be vital for efficient resource utilisation.

Index Terms—Cloud computing, consolidation, energy-efficient
computing, resource utilization, tensor decomposition

I. INTRODUCTION

Cloud computing and Edge Computing provide comple-
mentary advantages to distributed data processing, the former
providing high reliability whilst the latter great flexibility. At
present, Cloud Computing is playing an indispensable role
in computing, even though its reliability often comes at the
expense of a disproportionate amount of energy consumption
and an over-provisioning of computing resources [1]. The
scope and usefulness of Edge Computing is still being studied,
there are, nevertheless, strong indications that it will play a
critical role in the years to come. One of the areas where it
will serve as a backbone is in self-driving cars and vehicular
communication.

Both paradigms are built upon the virtualization concept
which enables a large number of virtual machines (containers)
to execute on the same platform without compromising on
their autonomy and security. Hence, in contemporary data
centres tens of thousands of virtual machines execute simul-
taneously. Considering the number and heterogeneity of the
virtual machines, balancing the demand for and the supply of
resources is one of the challenges facing modern data centres
[2]. Often, infrastructure providers over-provision resources
to ensure that service level agreements are respected [3]. As
long as they are making profits, the disproportionate amount
of energy the physical servers consume may be of secondary
concern to infrastructure providers, however, in light of the

unprecedented scale at which the workload of the Cloud
infrastructure grows worldwide, this practice is not sustainable
and its drastic and long-term impact on the environment cannot
be overlooked.

Offline and online solutions have been proposed to effi-
ciently utilise virtualized resources. A substantial body of
these focuses on the seamless consolidation (aggregation) of
virtual machines on a few number of physical machines.
The underlying strategies are workload characterisation and
prediction, identifying virtual machines having complementary
characteristics, and the live migration of virtual machines [4].
Most of the approaches rely on multi-objective optimisations
which take into account, among other things, the number
of resources to be utilised (CPU, memory capacity, net-
work bandwidth, storage capacity, storage bandwidth, multi-
level cache, memory bandwidth) and various execution costs
(cooling, performance, energy, and migration costs). For data
centres hosting a large number of virtual machines, multi-
objective optimisations are NP-hard [5].

In this paper, we aim to characterise virtual machines ac-
cording to their resource utilisation characteristics using multi-
way tensor decomposition [6], [7]. This approach enables to
achieve two opposing objectives at the same time. Firstly,
it enables to efficiently process a large amount of statistical
data pertaining to the resource utilisation of a large number
of virtual machines. Secondly, it enables to uncover hidden
features which can be vital to identify virtual machines having
complementary as well as contentious resource utilisation
characteristics. Our analysis is based on measurement traces
of 44 active virtual machines which are currently running on a
medium-scale data centre consisting of 59 physical computing
servers and 29 storage servers organised into 9 clusters.

Originally arising in the fields of psychometrics and chemo-
metrics, tensor decomposition and analysis has induced a great
deal of interest to model and reason about complex relation-
ships in a wide range of research areas, including neurology
[8], digital signal processing [9], knowledge retrieval and data
mining [10], and many others. Their popularity lies in their
capacity to:

« structure a large amount of data in a comprehensible ways;

« exploit multi-dimensional correlations in order to signif-

icantly reduce the dimensions of the original data; and,

« extract latent features which can be examined from dif-

ferent vantage points.



The remaining part of the paper is organized as follows:
In Section II, we explain how we obtained the measurement
sets we used for our analysis. In Section III, we introduce di-
mensionality reduction techniques, highlighting tensor decom-
position and its relevance to characterise resource utilisation.
In Section IV, we demonstrate how we apply tensor decom-
position to analyse the resource utilisation characteristics of
44 active virtual machines and identify “spatial” and temporal
characteristics. Finally, in Section V, we provide concluding
remarks and outline future work.

II. BACKGROUND

For the analysis we present in this paper, we rely on
statistics obtained from the Enterprise Cloud Infrastructure
at the Centre for Information Services and High-Performance
Computing (ZIH)! at the TU Dresden. The data centre consists
of 59 physical computing servers organised into 9 clusters and
29 physical storage servers. Altogether, it has 120 multi-core
processors with an equivalent total capacity of 1029 GHz CPU
cycles, 1606 MB RAM and 65.7 TB disk space. In 2018, its
approximate average annual resource utilisation is: 40 % CPU,
55 % MEM and 91 % disk. Currently, it hosts 1190 commercial
virtual machines.

Fig. 2 displays the utilisation of three resources (CPU,
memory, and network bandwidth) by the 44 most active virtual
machines. If we consider the volume formed by the three axes
as the overall capacity of the data centre (its actual capacity
much exceeds this and we are considering only three types of
resources in order to visualise the problem), it is easy to notice
that the data centre is underutilised. By contrast, the idle power
consumption of each server accounts for more than 60 % of its
full-load (peak) power consumption. Secondly, if we examine
the utilisation distributions along the three axes, we can easily

Fig. 1: A three-dimensional view of the resource utilisation of
the 44 virtual machines. The dimensions refer to the utilisation
of memory (in MB), the utilisation of network bandwidth (in
Kbps), and the utilisation of CPU (in percent).

Thttps://tu-dresden.de/zih (Last accessed on 14 May 2019, 15:15 CET).

observe that the resources are not utilised with comparable
efficiency.

In light of this observation, it is important to raise and
address the following research questions:

1) Given a large set of hosted virtual machines (containers)
having stochastic workloads and a corresponding set of
computing resource demands (CPU, memory bandwidth,
memory capacity, network bandwidth, storage size, disk
read/write bandwidth, etc.), is it possible to identify
virtual machines having complementary as well as con-
tentious resource utilisation characteristics?

2) Considering the large amount of hosted virtual machines
and the large amount of statistical samples required
pertaining to resource utilisation, is it possible to develop
analytic strategies which (1) are efficient to compute, (2)
yield tractable solutions, and (3) are intuitive to identify
virtual machines exhibiting higher-level features?

3) Using the same sets of analytic tools and sets of data,
is it possible to simultaneously uncover hidden, non-
overlapping features and predict the temporal evolution
of the resource demand of hosted virtual machines? This
aspect will be useful to perform dynamic virtual machine
consolidation based on anticipated resource demands,
two complex tasks which are often carried out in two
separate stages.

III. DIMENSIONALITY REDUCTION

Fig. 2 summarises what we aim to achieve. Given n hosted
virtual machines and statistics pertaining to their resource
demand, our strategy is intended to uncover hidden character-
istics which can be useful for categorising the virtual machines
into m clusters. Thereafter, a consolidation algorithm will
select virtual machines from each cluster to consolidate them
in one and the same physical server, so that:

(a) the virtual machines utilise different resources at any
given time and,

(b) all the available resources of the physical server are
utilised with comparable efficiency.

Grouping virtual machines according to their
resource utilisation characteristics

Co-locating virtual machines according to their
complementarity of resource utilisation characteristics

Fig. 2: Identification of hidden features in the resource utili-
sation statistics for consolidating virtual machines.



In case (b) cannot be achieved completely, the algorithm
should attempt to first consolidate those virtual machines
utilising resources which are not amenable to dynamic power
management, because the others (for example, CPU sockets
and individual CPU cores) can be switched off completely
or set to low power modes. The step from clustering to
consolidation will be made based on anticipated resource
utilisation.

A. Singular Value Decomposition

The metrics describing the resource utilisation history of
hosted virtual machines can be analysed to determine the
existence of latent (hidden) features which can be vital for
identifying virtual machines showing contentious and comple-
mentary features. The hidden features may relate to temporal
as well as “spatial” aspects. Temporal aspects reveal how
resources are utilised in time whereas “spatial” aspects reveal
which resources are utilised at any given time. Knowledge of
these two aspects enables to decide which virtual machines
should be placed together.

Suppose we have an n by m matrix X containing statistics
pertaining to the CPU utilisation of all hosted virtual machines
in a data centre (n refers to the hosted virtual machines
and m to the number of samples). Since we have only a
single dimension (time) to consider, the hidden features we
are seeking to uncover can be resolved along this dimension
only. Decomposing this matrix using the Singular Value De-
composition (SVD) yields:

X = USVT )

U and V are orthogonal (uncorrelated) and orthonormal
matrices and X is a diagonal matrix having entries which
are naturally arranged according to their magnitude (i.e.,
011 > 099 > ..o33 and so on). The matrix o reveals
how many unique features are hidden or embedded in the
utilisation matrix. The matrix U encodes the relationship of
the virtual machines with the hidden features whereas the
matrix V encodes the relationship of the hidden features with
the samples (temporal features, for our case). Some of the
advantages of using SVD for analysing the utilisation matrix
are the following:

1) Firstly, one does not need to make any assumption as
regards the hidden features. Their number and signif-
icance is dynamically revealed by the diagonal matrix
(refer to Fig. 3).

2) Secondly, one can express the original utilisation matrix
X as the summation of many matrices as follows (refer
also to Fig. 4):

R

X = Z OprUy O Vy (2)

r=1
where o indicates the vector (outer) product and u, and

v, refer to the r-th column of the matrices U and V,
respectively. We refer each matrix on the right side as a

component. Note that the relevance of each component
is associated with the relevance of o;;.

3) Thirdly, if the samples of the utilisation matrix exhibit
strong correlations, then, X can be approximated by
taking the first K components only:

K
X = Z OppUy O Vi 3)
r=1
for K < R. If the difference in magnitude between the
successive o, entries is significantly large, then a strong
correlation is identified in the original utilisation matrix
and, hence, the error resulting from our approximation
will be significantly small.

B. Utilisation Tensor

One of the limitations of working with SVD is that it is
two dimensional. In other words, we can attempt to uncover
hidden features along one dimension only. This forces us to
analyse the utilisation of a single resource at a time. If we
wish to analyse the utilisation of multiple resources using
SVD, we have to analyse the average utilisation. But the av-
erage utilisation disregards the temporal variation of resource
utilisation and leads to a considerable resource overload or
underutilisation should the virtual machines be consolidated
without the knowledge of this aspect.

The most plausible alternative is to model resource utilisa-
tion using a three-way tensor, as shown in Fig. 5. As can
be seen, the tensor is a three-dimensional array consisting
of elements intersecting three orthogonal axes. Hence, in the
same way every element of a matrix can be referred to by
two indices (the row index ¢ and the column index j), every
element of the tensor can be referred to by three indices. So,
for example, x;;;, refers to the utilisation of the j-th element
by the i-th VM in the k-th time slot. Now we have two
dimensions along which we can search for hidden features
(and, hence, two degrees-of-freedom to cluster the virtual
machines), namely, the resource and the time dimensions.

Similarly, in the same way a matrix can be decomposed
(factorised) into basic constituting elements, a tensor can
be decomposed into basic constituting elements. However,
unlike decomposing a matrix, decomposing a tensor is not
straightforward. To start with, an assumption has to be made
about the number of the hidden factors, whereas this is done

A u

Fig. 3: Decomposing a resource utilisation matrix (VMs vs.
sample statistics) using the Singular Value Decomposition
(SVD).
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Fig. 4: Expressing the utilisation matrix as the summation of
SVD components.

A

automatically with SVD. Secondly, a tensor has to be unfolded
(or flattened) into a matrix before it can be decomposed, which
influences the outcome of the decomposition.

A closer look into the utilisation tensor reveals that it
provides three orthogonal views which can serve different pur-
poses. For example, the front view (borrowing an expression
from architecture) provides a matrix describing the utilisation
of all resources by all hosted virtual machines at the k-th
sampling interval — i.e, (VM versus time);. This view is
called the front slice. Likewise, the top view provides a matrix
describing the utilisation of all resources by the i-th virtual
machine over a period of time — i.e., (resources vs. time),. This
is called the horizontal slice. Finally, the side view provides
a matrix describing the utilisation of the j-th resource by all
virtual machines over a period of time — i.e., (VM vs. time);.
This is called the lateral slice. It is this flexibility, among
others, which makes a tensor desirable.

C. Tensor Decomposition

The chief task of a tensor decomposition is to identify mul-
tidimensional features in terms of which the virtual machines
can be categorized. Compared to the size of the tensor, the
basic features should be significantly small in size, so that
the clustering process is computationally tractable. A tensor
analysis begins by unfolding (flattening) the tensor into a
matrix. The unfolding can take place in different ways, but
whichever way is chosen, the entries along each dimension
form a column vector. Afterwards, the unfolded matrix can be
decomposed as if it were a normal matrix.

There are different tensor decomposition strategies, but
we use the canonical decomposition/parameter factorisation

| |cpu7w ‘ mem ‘ net_r | net_t ‘ disk_r ‘ disk_w ‘vsirl ‘v57w|

| |cpu7w mem | net_r |net_t ‘diskﬁr disk_w ‘vsirl ‘vsiwl

‘ | cpu_w | mem | net_r ‘ net_t ‘ disk_r | disk_w ‘vle ‘ vs_wl

‘ ‘ cpu_w | mem | net_r ‘ net_t ‘ disk_r ‘ disk_w ‘ vs_rl ‘ vs_wl
cpu_w | mem | net_r |net_t |disk_r | disk_w [vs_rl |[vs_wl
vml |12 10 0 0 0 0 0 0
vm2 |8 2 120 98 45 12 16 9
vm3 |33 120 |15 12 44 5 3 3
vm4 |35 26 0 0 0 0 0 [¢]
vm5 |6 34 0 0 0 0 0 0
vmé |12 98 46 54 25 6 12 3 *

Fig. 5: A three-way tensor representing the resource utilisation
statistics of hosted virtual machines.

(referred in the literature as CANDECOM/PARAFAC, or, in
short, CP) [7] which decomposes a tensor into three matrices:

X = ABC “4)
or
R
){:Zarobrocr &)
r=1

where a,., b,, and c,., are the r-th columns of the matrices A
B, and C, respectively. In the existence of a strong correlation
in the utilised resources, the utilisation tensor can be approxi-
mated only by the outer product of the first & column vectors
of the matrices A, B, and C, respectively (refer to Fig. ??).

The three basic matrices have the following significance:
The matrix A characterises the hosted virtual machines in
terms of the unique features. The matrix B associates the
unique features with the resources utilised and the matrix C re-
veals the temporal characteristics of the virtual machines with-
out explicitly referring to the particular resources they utilise.
For the consolidation task, the most relevant matrices are A
and C, because the former reveals the “spatial” characteristics
whereas the latter reveals the “temporal” characteristics of the
virtual machines.

IV. EVALUATION

The VMware managing the data centre provides a large
number of key performance indicators (KPI) to monitor re-
source utilisation. We selected 13 metrics (listed in Table I)
to build our utilisation tensor. The value of these metrics is
updated every 5 minutes and stored in a database. Thus, for the
44 most active VMs, the 24-hour resource utilisation results
in a tensor having a dimension of 44 x 13 x 1440.

Amongst the 13 distinct resources listed in Table I, a given
VM can use either all or a subset of these in a specific time
period. So, we can attempt to characterise the VM according
to which of these resources it predominantly utilises. However,
some of the resources cannot be utilised in isolation. For
example, the utilisation of a memory bandwidth inevitably
involves the CPU and the memory. Similarly, the utilisation of
a network bandwidth involves the utilisation of the memory
and, potentially, a virtual storage. It is this dependency the
tensor decomposition exploits in order to uncover distinct
utilisation features.

As we mentioned in the previous section, a tensor de-
composition requires the estimation of the unique underlying

TABLE I: A summary of the utilisation metrics used to
construct the utilisation tensor.

[ Metric [ Metric |
Average CPU usage (in MHz)
MEM usage NET received average

NET broadcast TX summation
Datastore write average

Disk write average

Storage total write latency
Virtual disk write average

NET transmit average
Datastore read average
Disk read average
Storage total read latency
Virtual disk read average
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Fig. 6: The relationship between the six factors describing the resource utilisation statistics. Top: VMs vs Factors. Bottom:
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KB), network (received, in kbps), network (transferred, in kbps), storage total read latency (in ms), storage total write latency

(in ms) of the 44 hosted VMs (along the x-axis).

features (factors) before a decomposition takes place. In order
to ensure that we uncover all the hidden features relevant
to characterise the VMs, we examined the coefficient of
determination (R?) for different number of factors?. The
CANDECOMP/PARAFAC decomposition yields a reconstruc-

tion accuracy of greater than 98 % (R? = 0.986) when the

2The reconstruction of the original tensor from the decomposed matri-
ces entails some error. One way of measuring the difference between the
reconstructed tensor and the original tensor is by using the coefficient of
determination.

number of factors are set to 6. The accuracy remained by
and large unchanged when we gradually increased the number
of factors. Similarly, the accuracy deteriorates quickly when
the factors were less than 5. Thus, we decided to decompose
the utilisation tensor by assuming that six distinct factors
adequately describe the resource utilisation characteristics of
the hosted VMS. This yields a 44 x6 A matrix (VMs vs hidden
features), a 14 x 6 B matrix (resources vs hidden features) and
1440 x 6 C matrix (samples vs hidden features).

Fig. 6 displays the “spatial” (top) and the “temporal”



(bottom) aspects of the tensor decomposition. The former
are generated from the columns of the A matrix encoding
the relationships of the factors with the virtual machines
while the latter are generated from the columns of the C
matrix encoding the relationships of the factors with all
the samples. In order to make our analysis comprehensible,
we have plotted in Fig. 7 the average values and variances
of the most important key performance indicators, namely:
CPU utilisation, memory utilisation, average received packets,
average transferred packets, storage total read latency, storage
total write latency. High utilisation variance can be taken as
an indication of fluctuation of resource demand over time.
Low variance simply means resource demand does not change
appreciably over time. It does not, however, speak much about
how much resources individual VMs utilise. For this, one has
to look at the average utilisation. Having this in mind, it is
possible to observe that almost all the VMs have relatively
high demand for and variation in CPU and disk read/write
operations.

If we closely study the temporal aspects of the tensor
decomposition (Fig. 6, bottom), we can divide the plots into
three groups: The first two plots show a resource utilisation
pattern which is relatively intense during the day time whereas
the next three plots exhibit activities which vary throughout
the day and the night. Likewise, the last plot exhibits activities
persisting throughout the day and the night, but here their
intensity is modest compared to the ones revealed in the
previous two plots (i.e, a low variance). The key performance
indicators having a high variance are related to CPU and disk
read/write operations. Therefore, the three plots ( three to five)
in Fig. 6 (bottom) refer to these resources. The last plot in
Fig. 6 (bottom) refers to a memory operation, because, as can
be seen in Fig. 7, it has a very small variance but almost
all the VMs have appreciable memory demands. So, to what
type of operations the first two plots in Fig. 6 (bottom) refer?
They must refer to network receive and transfer operations.
The fourth plot in Fig. 7 (top) indicates that almost all the VMs
have considerable packet transfer operations, but one of them
has a high variance, suggesting that it must have something to
do with day time activity. Possibly, it is an email application,
serving the university community. Since packet transfer must
be complemented with packet reception, the fist two plots in
Fig. 6 (bottom) refer to network operations.

Having used the temporal aspects of the tensor decom-
position to understand the basic factors, it is now possible
to categorise the virtual machines in terms of their resource
consumption, because the same factors which are used to
describe the temporal aspects of resource utilisation in the
C matrix are used to describe the virtual machines in the A
matrix. For example, it can be seen that VM 15 has high
memory demand and high network receive/transfer operations
but low CPU operations. This clearly qualifies it to be labelled
as an IO-intensive VM. We can likewise classify each virtual
machine according to its resource consumption pattern which
is the first step towards identifying complementary as well as
contentious characteristics.

V. CONCLUSION

In this paper we propose the use of tensors and tensor
decomposition to analyse the resource utilisation character-
istics of hosted virtual machines in large-scale data centres
and to identify virtual machines exhibiting complementary and
contentious features. The outcome of a tensor decomposition
provides three different but complementary views into the
temporal and spatial characteristics of resource utilisation. This
can be useful for utilising available resources with comparable
intensity. We demonstrated that the CANDECOMP/PARAFAC
tensor decomposition identifies both “spatial” and temporal
resource utilisation characteristics in a single step of decom-
position.

For the analysis of our work we relied on measurement
sets obtained from the Enterprise Data Centre of the Centre for
Information Services and High-Performance Computing at the
TU Dresden, Germany. The data centre consists of 59 physical
computing servers organised into 9 clusters and 29 physical
storage servers. Altogether, it has 120 multi-core processors
with a total capacity of 1029 GHz CPU cycles, 1606 MB RAM
and 65.7TB disk space. Currently, it hosts 1190 commercial
virtual machines. We chose the utilisation of 44 of the most
active virtual machines for our analysis.

This work focused on analysis. The next step will be
clustering virtual machines according to their “spatial” and
temporal properties and scheduling them according to their
complementary aspect. So, for example,
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