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Abstract. Dynamic server consolidation in data centres enables the
efficient usage of resources, because it aims to minimise the underutil-
isation or overloading of physical servers, both of which produce a dis-
proportional amount of energy consumption. Server consolidation takes
place by migrating virtual machines from one server to another while
the virtual machines are still executing. However, live migration comes
with corresponding costs in terms of execution latency and additional
resource and power consumption. Whether or not these costs are signif-
icant depends on how long a migration lasts. In this paper we propose
models to estimate the time it takes to live migrate virtual machines at
runtime. Our models are built using simple and multiple linear regres-
sions. The paper reveals useful insights into the most important param-
eters which are strongly correlated with the migration time. These are:
Instructions retired, last level cache line misses, and dirtying memory
pages.

Keywords: Virtual machines · Live migration · Service consolidation ·
Migration time · Linear regression model

1 Introduction

The advent of server virtualisation and cloud computing has enabled great flex-
ibility in managing computing resources. It is now possible to create an abstract
partitioning of a single physical server into multiple, non-overlapping, and non-
interfering computing environments (virtual machines), so that they can be used
by multiple independent users. The portion of these partitions can be dynam-
ically adapted (or resized) to the need of the individual users. The physical
servers themselves can also be managed by dynamically (live) migrating virtual
machines from one server to another without actually stopping or suspending
the virtual machines.

One of the advantages of virtual machine migration is dynamic consolidation
of servers in a cloud infrastructure or data centre. Due to the fluctuation of
incoming workloads, resources may not be utilised uniformly across all servers.
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Some of them may be overloaded while others are underutilised or even idle.
This imbalance not only creates dissimilar quality of service for different users
but it is also inefficient because the power consumption of idle and underutilised
servers exceeds 50% of their peak power consumption [1], [2]. By aggregating
the virtual machines of data centres on a few number of machines, the rest can
be switched off. Similarly, when servers are overloaded, additional servers can
be switched on and virtual machines from overloaded servers can be migrated
to them, thus seamlessly balancing the load of the data centres.

Aggregating virtual machines, however, introduces some costs. To begin with,
a background process should continuously or at a regular interval estimate the
size of the incoming workloads and the amount of resources required to han-
dle them. Secondly, the live migration of virtual machines requires additional
resources to iteratively transfer the content of the virtual machines and to
coordinate the migration. Thirdly, the quality of service execution within the
migrated virtual machines may degrade, since the virtual machines should now
share resources (such as CPU and network bandwidth) with the migration pro-
cess. Of all these costs, the third is the most significant one because it directly
affects the service level agreement between the computing platform provider and
the platform users. The cost is more pronounced if the migration takes a long
time and the deterioration of service quality is perceived by the platform users
(for example, in terms of increased response time and jitter).

Migration time depends on many factors including the activity and RAM
utilisation of the virtual machines, the available CPU cycles and network band-
width during migration, and the activity of co-located virtual machines. Several
studies have been made in the past to estimate migration time and to determine
the conditions that initiate VM migration. The model of Strunk [7] estimates the
migration time of an idle virtual machine using a simple linear regression with an
independent variable expressing the ratio of the active memory occupied by the
VM to the available network bandwidth during migration. Clark et al. [6] and
Liu et al. [4] investigate the impact of VM memory size, memory page dirtying
rate, and network bandwidth on migration time. Akoush et al. [3] investigate
the upper and lower bounds of migration time and the runtime parameters that
influence migration time. Similar to Clark et al. they too investigate the impact
of network bandwidth, memory page dirtying rate, VM memory size, and pre-
and post-migration overheads on migration time. Moreover, they experimentally
show that (1) network bandwidth is inversely proportional to migration time; (2)
a non-linear dependency exists between memory page dirtying rate and migra-
tion time due to a stop conditions defined by pre-copy migration strategies; and
(3) migration time linearly increases with the VM RAM size. Wu et al. [5] inves-
tigate the relationship between migration time and the amount of CPU resources
available for migration. The authors propose separate models for different types
of workloads (CPU intensive, memory read and write intensive, disk I/O inten-
sive, and network I/O (send-receive) intensive workloads). Likewise, Verma et al.
[8] propose an application-aware model to estimate migration time. The model
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accounts for CPU resource contention on the source server by co-located virtual
machines and by the migration process itself.

In this paper we experimentally investigate the scope and usefulness of sev-
eral resource utilisation metrics to estimate migration time. Unlike previous
approaches, (1) we provide adequate and quantitative justification for the selec-
tion of the relevant metrics; (2) the metrics we identify estimate the migration
time of different virtual machines with comparable accuracy regardless of the
workload they process, and (3) the models we propose are all lightweight, linear
models that are easy to comprehend.

The remaining part of this paper is organised as follows: In Section 2 we pro-
vide a brief background regarding virtual machine migration and linear regres-
sion. In Section 3 we introduce our experiment setting, the selection strategy
of resource utilisation metrics and benchmarks, and the training and testing
datasets. In Section 4 we introduce our approach and provide quantitative justi-
fication to the models we propose. We also provide experiment results and discus
the results. Finally, in Section 5, we point out concluding remarks and outline
future work.

2 Background

2.1 Virtual Machine Migration

In order to estimate the migration time of a virtual machine, it is essential to
understand how migration takes place. During the live migration of a virtual
machine, its RAM content is copied from the source to the destination server
without stopping the execution of the virtual machine. Since the virtual machine
is active, its memory content on the source server can change any time (i.e., the
memory pages can be dirtied) and this change has to be synchronised with the
content of the destination server. This is done by iteratively copying the dirty
pages to the destination server. The iteration, however, does not go on indefi-
nitely. Upon reaching a pre-defined threshold (stop-condition) by the migration
algorithm, the VM is briefly stopped, all the updated pages are copied to the
destination server for one final time; and the VM is started on the destination
machine. The total VM migration time referred to as migration time is the time
interval between the initialisation of the VM migration at the source server and
the starting of the VM at the destination server. Obviously, this time is a func-
tion of the memory size of the virtual machine, the available network bandwidth,
the memory update rate of the applications or services the virtual machine hosts,
the CPU load, and the additional resources the virtual machine monitors on the
two servers require to coordinate migration. Consequently, a model that esti-
mates the migration time of a virtual machine should take these parameters into
consideration.

2.2 Estimation Error

We begin our investigation on migration time by assuming that a linear depen-
dency can be established between migration time and resource utilisation during
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migration. In other words, migration time can be expressed as a linear combina-
tion of independent parameters that describe resource utilisation. The strength
of this expression can be tested by examining such useful metrics as residual
standard error, prediction error, mean absolute percentage error, and coefficient
of determination (R2).

Given two random variables X and Y, we wish to express one of them (Y) in
terms of the other (X). A linear regression assumes that a conditional expectation
E{Y | X = x} is a linear function of x [14]:

Y = G(x) = E{Y | X = x} = β0 + β1x . (1)

where β0 and β1 are intercept and slope, respectively. Because Y is related to a
single independent variable (predictor), the relation is said to be Simple Linear
Regression (SLR). A Multiple Linear Regression (MLR) relates the dependent
variable with more than one independent variables and assumes that the condi-
tional expectation of the dependent variable is a linear function of the indepen-
dent variables (predictors) x1i, ..., xki [13], [14]:

Yi = G(x) = β0 + β1x1i + ... + βkxki i = 1...n . (2)

where n is the number of observations (samples), k is the number of independent
variables, β0 is an intercept, βj is the regression coefficient for the j -th indepen-
dent variable, showing the expected change of the dependent (response) variable
when the corresponding predictor changes by a unite value while all the other
predictors remain constant; and xji is the j -th independent variable’s value for
the i -th observation. The linear regression model minimises the sum of squared
residuals. In other words, the model parameters are so selected that the sum of
squared differences between the actual values of the dependent variable and the
fitted values by the model (which lie on the fitted regression line or plane) are
minimised.

The model’s error is a measure of how well the model fits the measured data.
The residual standard error of the linear regression model (as calculated in R
statistical tool [15]) is defined as:

Resst.err =

√∑n
i=1(yi − ŷi)2

n − k − 1
=

√ ∑n
i=1 r2i

n − k − 1
. (3)

where yi is the actual (measured) value of the dependent variable and ŷi is the
fitted by the model value; n is the sample size, k is the number of indepen-
dent variables, minus 1 accounts for the estimated intercept, and r2i denotes
the squared residual for the i -th observation. The residual standard error of the
model is calculated on the training data. The model’s standard error of estimate
from a sample (prediction error) is calculated on the testing data. It quantifies
the departure of the predicted (estimated) by the trained model value ÿi of the
dependent variable from the actual (or measured) value:1

1 Available at http://onlinestatbook.com/2/regression/accuracy.html

http://onlinestatbook.com/2/regression/accuracy.html
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Predst.err =

√∑n
i=1(yi − ÿi)2

n − k − 1
. (4)

The percentage error2 is another metric that analyses how close the predicted
value ÿi is to the true (measured) value yi and it gives the difference between the
predicted and the true value as a percentage of the true value. It is calculated
as follows:

Perc =
ÿi − yi

yi
∗ 100% . (5)

In case of n observations the mean absolute percentage error of the model
(its prediction accuracy) will be calculated as a mean of the absolute values of
the percentage errors of these n observations as shown in equation below:

Percm =

∑n
i=1

∣∣∣ ÿi−yi

yi

∣∣∣
n

∗ 100% . (6)

3 Experiment

3.1 Experiment Settings

The hardware setup of our experiments consists of two (source and destination)
homogeneous servers which are interconnected via a 1 Gbps Ethernet switch, a
client server used to trigger the experiments, a network attached storage (NAS),
and two power analysers. Both servers consist of two Intel 15-680 Dual Core
3.6 GHz processors, 4 GB DDR3-1333 SDRAM and a 1 Gbit/s Ethernet NIC.
The NAS employs an Intel Xeon E5620 Quad-Core 2.4 GHz processor, 10 GB
DDR3-1333 SDRAM memory, and 1 Gbps Ethernet NIC. Fedora (Linux kernel
v. 2.6.38, x86 64) was installed as the host operating system on both physical
servers. KVM3 was used as a hypervisor and libvirt4, as a toolkit to manage
virtual machines. As a NAS we employed FreeNAS5, which is a FreeBSD-based
operating system (v. 8.0.1, AMD 64). In our experiments each time one VM
was running in isolation on the source server and migrated between the source
and the destination physical servers. For different experiments we varied the
network bandwidth from 70 MBps to 100 MBps in steps of 10 MBps. The VM
was allocated 4 GB RAM, 4 virtual CPUs and 20 GB disc space on the NAS.
Ubuntu 14.04.2 LTS (Linux kernel 3.16.0-30-generic) was the operating system
installed on the VM.

Inside the migrated virtual machine we executed benchmarks from the SPEC
CPU2006 benchmark suite [9] (more information is given in Subsection 3.4).
While a benchmark is still executed we migrated the virtual machine back

2 Available at http://mathworld.wolfram.com/PercentageError.html
3 http://www.linux-kvm.org/page/Main Page
4 Libvirt: The virtualization API. http://libvirt.org/
5 FreeNAS: FreeBSD-based operating system. http://www.freenas.org/

http://mathworld.wolfram.com/PercentageError.html
http://www.linux-kvm.org/page/Main_Page
http://libvirt.org/
http://www.freenas.org/
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and forth 20 times each time with the same network bandwidth. We carefully
recorded the beginning and end of a migration time and the values of the resource
utilisation parameters of the servers as well as the VM. The data analysis were
realised with R statistical tool [15].

3.2 Selection of Parameters

The complete list of parameters (independent variables) we examined to model
and estimate the migration time (the dependent variable) is shown in Table 1.
We employed dstat to record the CPU and RAM utilisation of the servers as well
as the VM (CPUutil server, CPUutil vm, MEMserver, and MEMvm). Likewise,
we employed the Intel PCM tool (Intel Performance Monitoring Counters) [10]
to monitor last level cache line misses (L3miss) and the total number of instruc-
tions retired INST [12]. We also recorded the total amount of “dirty memory”
(in kilobytes) waiting to be written back to the disk [11]. From these statistics we
derived two additional parameters, namely, the total number of “dirty” pages of
the source server during migration (DirtyPagesserver) and the number of “dirty”
pages in the source server per second per migration (DirtyPagesserver per sec).
The former was derived as follows: Using timestamps we extracted the Dirty
statistics of the source server in KB which corresponded to the migration dura-
tion; then we calculated the positive increase in the number of Dirty memory in
KB, summed it and divided the sum by the page-size. The page-size in our sys-
tem was 4 KB. The latter was derived by dividing the number of “dirty” pages
during migration by the migration duration (in seconds). Finally, we adopted an
additional parameter from Poellabauer et al. [16] (memory access rate (MAR)),
which is derived as the ratio of data cache misses to the instructions executed:

MAR =
L3miss

INST
. (7)

where L3miss refers to the total number of last level cache line misses during
migration and INST refers to the total number of instructions retired during
migration. Memory access rate is proportional to the last level cache line misses.
Consequently, if a benchmark modifies a memory page during migration, this
page will have to be resent, resulting in an increase in the migration time. Thus,
it is of interest to examine the strength of correlation between the migration time,
on the one hand, and the L3miss and MAR parameters, on the other. The total
number of instructions retired INST is another parameter which potentially
correlates well with the migration time.

3.3 Dataset

Our complete dataset consists of 880 observations containing 13 variables (12 of
which are the independent variables and one, tmig, the dependent variable).
These correspond to 11 benchmarks × 4 different network bandwidths × 20
migrations per a configuration. One of our tasks was selecting from the long
list of independent variables a handful of those which are strongly correlated
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Table 1. Resource utilisation parameters (independent variables) used for modelling
the VM migration time (tmig).

Name of variable Description

tmig Total VM migration time in seconds

BW Network bandwidth available for migration in MBps

L3miss[12] Total number of L3 cache line misses during VM migra-
tion

INST [12] Total number of instructions retired during migration

MAR [16] Ratio of total number of L3 cache line misses to the total
number of instructions retired during migration

CPUutil server Mean total CPU utilisation of the source server during
the VM migration

CPUutil vm Mean total CPU utilisation of the VM during the migra-
tion process

MEMserver Mean active memory utilisation of the source server dur-
ing the VM migration in MB

MEMvm Mean active memory utilisation of the VM during the
migration process in MB

MEMtoBWserver Ratio of active memory utilised by the source server to
the network bandwidth available for migration

MEMtoBWvm Ratio of active memory utilised by the VM to the network
bandwidth available for migration

DirtyPagesserver Number of “dirty” pages observed in the source server
during the migration process

DirtyPagesserver per sec Number of “dirty” pages observed in the source server
per second during the migration process

with the migration time. We divided the dataset into training dataset and
testing dataset. The training data are used to build relationship between the
dependent and independent variables whereas the test data are used for testing
the estimation accuracy of our models. As a rule three fourth of the dataset is
used for setting up (training) the model and one fourth is used for testing. We
randomly divided the dataset thus: The measurements pertaining to the network
bandwidth of 70 MBps, 80 MBps, and 100 MBps belong to the training data
and the measurements pertaining to the network bandwidth of 90 MBps belong
to the testing data.

3.4 Benchmarks

Jaleel et al. [17] made an extensive analysis of the benchmarks from the SPEC
CPU2006 benchmark suite with regard to their resource utilisation characteris-
tics. Based on this study we selected eleven benchmarks, six of which are pre-
dominantly CPU intensive (even though they also utilise a sizeable memory);
and the other five are memory intensive. The CPU intensive benchmarks used
the maximum CPU time, keeping the CPU busy most of the time during the
benchmarks execution. A benchmark is considered to be memory intensive if it
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has a large number of reads/writes operations from/to the memory subsystem.
Hence: libquantum, gromacs, h264ref, namd, sphinx3, and soplex belong
to the CPU intensive benchmarks; and bzip2, astar, mcf, gcc, and perlbench
belong to the memory intensive benchmarks.

4 Modelling Migration Time

Fig. 1 displays the VM migration time for different CPU intensive benchmarks
for 20 migrations realised at a fixed network bandwidth of 70 MBps. As can be
seen, the migration time for different benchmarks and migrations was different.
The shortest migration time was 26.25 seconds (for sphinx3) and the longest
was 69.4 seconds (for libquantum). The migration time of sphinx3 exhib-
ited low variation (variance = 0.14) while the migration time of libquantum
exhibited the largest variation (variance = 36.26). Similarly, Fig. 2 shows the
VM migration time for the memory intensive benchmarks, which were migrated
with a network bandwidth of 80 MBps. Unlike the previous case, the migration
times were significantly longer and the variances between the different migra-
tions for some of the benchmarks were considerably larger than the variances
we observed in the CPU intensive benchmarks. For example, the variances of
astar, mcf, and perlbench were 8400.3, 2799.7, and 100.8, respectively. From
this it can be concluded that the migration time is strongly influenced by the
operating point at which the migration starts and the specific operations the
benchmarks execute during migration.
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Fig. 1. The migration time of CPU intensive benchmarks from the SPEC CPU2006
benchmark suite. The migration bandwidth was 70 MBps.
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Fig. 2. The migration time of memory intensive benchmarks from SPEC CPU2006
benchmark suite. The migration bandwidth was 80 MBps.

4.1 Linear Dependency

To determine the existence of linear dependencies between the independent vari-
ables and the migration time, it suffices to calculate the Pearson’s correlation
coefficient [14] for each independent variable. Table 2 displays the results of our
calculation using the training dataset which includes all the measurements we
took for different network bandwidths: 70 MBps, 80 MBps and 100 MBps.

Table 2. Pearson correlation coefficients between the migration time and the resource
utilisation parameters described in Table 1.

Pearson’s correlation, ρ Value

cor(tmig, INST ) 0.8604983

cor(tmig, L3miss) 0.8106588

cor(tmig, DirtyPagesserver) 0.8442557

cor(tmig, MAR) 0.3986198

cor(tmig, MEMserver) 0.1925516

cor(tmig, MEMtoBWserver) 0.2797072

cor(tmig, DirtyPagesserver per sec) -0.2659009

cor(tmig, CPUutil server) -0.08078284

cor(tmig, BW ) -0.1088528

cor(tmig, CPUutil vm) 0.09879503

cor(tmig, MEMvm) 0.4579728

cor(tmig, MEMtoBWvm) 0.4950578

As can be seen from Table 2, some of the independent variables, namely,
INST , L3miss, and DirtyPagesserver, display strong linear dependencies while
some of the remaining parameters such as MEMtoBWserver, MEMtoBWvm,
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and MAR are moderately correlated with the migration time. The strong cor-
relations can be logically explained. The number of retired CPU instructions
corresponds with the CPU activity level during migration. A large number of
retired instructions signifies a high level of CPU activity, which in turn implies
a longer migration time. If the data required by a benchmark execution are not
available in the cache during VM migration, they have to be fetched from, in case
of write access modified, and rewritten back to the main memory. These data
have to be resent to the destination server, as they are no longer in sync with
the memory content of the destination server. This process prolongs the migra-
tion time. Similarly, as the number of dirty pages DirtyPagesserver increases
during migration, the size of data that have to be updated at the destination
server increases, which in turn increases the migration time. From our depen-
dency analysis, we concluded that most of the resource utilisation parameters
are linearly correlated with the migration time and indeed a few of them show
strong linear dependencies. Hence, it is possible to employ linear regression to
express migration time in terms of these variables. The question: “How many
of these independent variables are sufficient to estimate migration time?” can
be answered by considering different combinations of the independent variables
and by analysing:

1. the R2 values and the residual standard error Resst.err (Equation 3) to test
how well the models fit the training data; and,

2. the prediction error (Equation 4) and the mean absolute percentage error
(Equation 6) of the models using the testing dataset. The latter is the predic-
tion accuracy of the models, as it expresses their accuracy as a percentage.

4.2 Simple Linear Regression Models

The simplest approach is to setup a linear regression model consisting of a single
independent variable. The strength of the model and the appropriateness of the
independent variable can be judged by analysing R2 which, for a single indepen-
dent variable, is simply the square of the sample correlation coefficient (ρ2) given
in Table 2 [14]. R2 expresses the portion of the total variance of the dependent
variable (migration time) that can be captured and explained by the independent
variable. A value of 1 implies the regression line perfectly fits the measured data.
The adjusted R-square R2

Adj is a more useful measure of goodness-of-fit when a
model consists of more than one independent variable, as it includes the notion
of number of degrees of freedom and penalises when irrelevant or insignificant
independent variables are added into the model. Table 3 summarises the simple
linear regression models (SLR) we constructed and tested using our indepen-
dent variables. The independent variables BW , CPUutil server, and CPUutil vm

have p-values equal to 0.005, 0.038 and 0.011, respectively, which are lower than
the significance level of 0.05. All the other parameters are significant with the
p-value lower than the smallest significance level (0.001) which indicates that
these independent variables are appropriate for estimating the migration time.

The model that relates migration time with the total number of instruc-
tions retired (INST ) during migration resulted in the highest R2 value (0.74).
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Table 3. Summary of the Simple linear regression models (SLR).

SLR: lm (tmig ∼ Predictor) R2 R2
Adj Resst.err

on 658 df
Predst.err Percm

INST 0.7405 0.7401 17.05 15.35 30.79

L3miss 0.6572 0.6566 19.6 12.07 20.6

DirtyPagesserver 0.7128 0.7123 17.94 16.89 20.51

MAR 0.1589 0.1576 30.7 30.96 29.21

CPUutil server 0.0065 0.005 33.36 34.15 37.06

MEMserver 0.03708 0.03561 32.85 33.68 39.35

MEMtoBWserver 0.07824 0.07684 32.14 33.41 29.21

DirtyPagesserver per sec 0.0707 0.06929 32.27 31.74 31.22

BW 0.01185 0.01035 33.27 33.94 31.14

CPUutil vm 0.0098 0.0083 33.31 34.03 37.8

MEMvm 0.2097 0.2085 29.76 29.23 26.23

MEMtoBWvm 0.2451 0.2439 29.08 29.33 25.46

Fig. 3 displays the linear dependence of migration time on INST . The black
line is the best fit regression line (trained model) that regresses tmig on INST .
The expression for the SLR model is:

tmig = −11.1 + 2.9 × 10−4 × INST . (8)

where the intercept of -11.1 is just an adjustment constant; the regression coeffi-
cient 2.9×10−4 implies the expected increase of 2.9×10−4 seconds in migration
time for a unit increase in the instructions retired. Thus, when the number of
CPU instructions retired increases during migration by 100000, the total migra-
tion time is expected to increase by 29 seconds. The residual standard error
Resst.err of the model on 658 degrees of freedom equals to 17.05 seconds. The
prediction error of the trained model on the testing data (standard error of the
estimate from a sample of 220 observations) equals to 15.35 seconds. But its
prediction accuracy (the mean absolute percentage error) on the testing data is
still quite low and equals to 30.79%.

The linear regression model which produced the second highest R2 value
(0.71) is the one that relates migration time with the number of “dirty” pages
observed in the source server during migration (DirtyPagesserver). The residual
standard error and the prediction error of the model are 17.94 and 16.89 seconds,
respectively. Though, its prediction accuracy on the testing dataset is better
(Percm = 20.51%). Fig. 4 shows the linear dependency of the total migration
time on the total number of “dirty” pages observed at the source server during
migration. The relationship is expressed as follows:

tmig = −0.78 + 0.94 × DirtyPagesserver . (9)

Consequently, migration time increases by 0.94 seconds when the number of
dirty pages increases by a unit value (which corresponds to an update of 4 KB
of memory at the source host). The model that relates migration time with the
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Fig. 3. Dependence of the total migration time on the total number of instructions
retired during migration process. Regression line: tmig = −11.1 + 2.9 × 10−4 × INST

total number of last level (L3) cache line misses resulted in the third highest R2

value (0.65). The residual standard error and the prediction error of the model
are 19.6 seconds and 12.07 seconds, respectively. Its mean absolute percentage
error equals to 20.6%. Fig. 5 shows the dependency between the total migration
time and the last level (L3) cache line misses. Accordingly, the dependence of
tmig on L3miss can be described by:
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Fig. 4. Dependence of the total migration time on the “dirty” pages observed in the
source server during migration. Regression line: tmig = −0.78+0.94×DirtyPagesserver.

tmig = 25.2 + 8 × 10−8L3miss . (10)

The R2 of models with all the other independent variables is so small that they
cannot be considered alone to estimate migration time. In fact, the residual and
prediction errors of the SLR models with even the best predictors are consider-
ably high and their prediction accuracy is low (Percm exceeds 20%) that none
of the SLR models is adequate to estimate migration time.
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Fig. 5. Dependence of the total migration time on the last level (L3) cache line misses
observed during the VM migration. Regression line: tmig = 25.2 + 8 × 10−8L3miss.

When CPU instructions retired and the last level cache line misses are con-
sidered in combination, they captured 92% of the variance of tmig. Fig. 6 shows
the dependency of the total migration time on the two independent variables.
The dashed plane is the regression plane which fits the measured data best and
thus, minimises the sum of squared residuals. The expression that describes the
multiple regression model with two independent variables is given as:

tmig = −5.1 + 2.03 × 10−4INST + 4.98 × 10−8L3miss . (11)

The residual standard and prediction errors of the model are 9.17 seconds and
8.02 seconds, respectively. Its prediction accuracy is significantly improved as
well (Percm equals to 15.18%). However, combining other independent variables
in the same way does not always produce the same remarkable improvement. For
example, a combination of MEMtoBWvm + DirtyPagesserver did not signif-
icantly improve R2 that was achieved by DirtyPagesserver alone, though its
prediction accuracy was still improved by 1.58%. Table 4 provides a summary
of the estimation improvements we observed with multiple regression for these
two cases. Each of the parameters in all presented MLR models are significant
with p-value lower than the smallest significance level (0.001).

Table 4. Simple vs. Multiple linear regression models with two predictors.

SLR versus MLR: lm (tmig ∼
Predictor(s))

R2 R2
Adj Resst.err Predst.err Percm

INST 0.741 0.7401 17.05 15.35 30.79

L3miss 0.657 0.6566 19.6 12.07 20.6

INST + L3miss 0.925 0.9248 9.171 8.02 15.18

MEMtoBWvm 0.245 0.2439 29.08 29.33 25.46

DirtyPagesserver 0.713 0.7123 17.94 16.89 20.51

MEMtoBWvm +
+DirtyPagesserver

0.744 0.7436 16.94 16.25 18.93
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Fig. 6. 3D scatter plot with regression plane showing the dependence of the total VM
migration time on CPU instructions retired and last level cache line misses. Multiple
linear regression model: tmig = −5.1 + 2.03 × 10−4INST + 4.98 × 10−8L3miss.

4.3 Multiple Linear Regression Models

As the number of independent variables in a linear regression model increases, the
strength of the model in accounting for the variance in migration time increases.
Understandably, the model’s complexity increases too. It is also possible that the
model gets over-fitted and, as a result, looses its prediction power. Therefore, care
must be taken to strike the right balance between expressiveness, complexity,
and potential over-fitting. For this purpose, we identified the five most significant
independent variables that can be combined together. These are: (1) Instructions
retired, (2) last level cache line misses, (3) total “dirty” pages at the source server,
(4) ratio of active memory used by the source server to network bandwidth, and
(5) average CPU utilisation of the source server during migration.

We employed all subsets regression [13] in order to identify the best multiple
linear regression model that balanced estimation accuracy with complexity. The
method examines all possible models and compares the gain in the adjusted
R-square. Since we have five independent variables, the all subsets regression
considers all possibles models with one, two, three, four, and five independent
variables which corresponds to 31 possible models. Fig. 7 depicts one best model
for each subset size (one, two, three, four, and five independent variables) with
respect to adjusted R-square measure.

As we already mentioned above, the best SLR model with respect to R2
Adj

is the one using INST (depicted here as TI); the best MLR model consisting
of two independent variables is the one using INST and L3miss (depicted here
as TL-TI); the best MLR model consisting of three independent variables is
the one using INST , L3miss, and DirtyPagesserver (depicted here as TL-TI-
TD). Its R2

Adj is 0.935 and Percm equals to 13.39%. The adjusted R-square
of the best model with four independent variables is 0.943 and it consists of
INST , L3miss, DirtyPagesserver and CPUutil server as independent variables.
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Fig. 7. Defining the best models with all subsets regression method.

Its prediction accuracy is also improved (Percm = 12.12%). The model with all
the five independent variables has R2

Adj which is equal to 0.946. Its mean absolute
percentage error is the lowest and equals to 10.14%. The residual standard error
of the model on the 654 degrees of freedom is 7.8 seconds and the standard error
of estimate on the testing data is comparatively low, namely, 5.4 seconds. The
linear equation for the model consisting of all the five independent variables is
given as:

tmig = 32.5 + 4.52 × 10−8L3miss + 1.8 × 10−4INST − 0.9 × CPUutil server+
+0.17 × DirtyPagesserver − 0.29 × MEMtoBWserver .

(12)

Table 5 summarises the adjusted R-square values, the residual standard errors,
the standard errors of estimate for a dataset of 220 observations, and the mean
absolute percentage errors of the best models with three, four, and five indepen-
dent variables.

Table 5. The best Multiple linear regression models with three, four, and five inde-
pendent variables.

The best Multiple linear regression
models lm (tmig ∼ Predictors)

R2 R2
Adj Resst.err Predst.err Percm

L3miss + INST + DirtyPagesserver 0.936 0.9356 8.487 7.028 13.39

L3miss + INST + CPUutil server +
DirtyPagesserver

0.943 0.943 7.984 5.811 12.12

L3miss+INST+DirtyPagesserver+
CPUutil server + MEMtoBWserver

0.946 0.9456 7.802 5.379 10.14
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To further assess the generalisability of the best model with five independent
variables we realised a 10-fold cross-validation of R2 [15]. It allows us to see how
well the model will perform on the unseen (testing) data. This method divides
the training data into 10 sub-samples each of which serves as a testing group
and the remaining 9 sub-samples (training group) are used to train the model.
The performance (R2) for each of the 10 prediction equations applied to the 10
testing groups is recorded and averaged, which gives us a new metric, namely
10-fold cross-validated R2 [13]. The results of the 10-fold cross-validation of the
best model with five independent variables are as follows: original R2 equals to
0.946, 10-fold cross-validated R2 is equal to 0.937. Thus, the difference is very
small (0.009) and the model is performing well on the unseen data.

Adding a sixth independent variable (for instance, the ratio of active memory
used by the VM to network bandwidth (MEMtoBWVM ) or the average CPU
utilisation of the VM did not improve the adjusted R-square appreciably. Fig. 8
compares the relative importance (relative weights) of the independent variables
in producing R2 = 0.94 in the best MLR model with five independent variables
– The CPU instructions retired (depicted in the plot as TotalINST Server)
contributed 37.8%, the last level cache misses contributed 31.4%, number of
“dirty” pages contributed 27.6%. The CPU utilisation of the source server and
the ratio of active memory to network bandwidth contributed 0.7% and 2.3%,
respectively. Thus, we can see that TotalINST Server is the most important
independent variable in estimating the migration time. The code for calculating
the relative weights was adapted from Kabacoff [13].

TotalL3Miss_Server TotalINST_Server CPU_Util_Server TotalDirtyPages_Server MemToBW_Server
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Fig. 8. Relative importance of independent (predictor) variables.

The distributions of the errors of the model built using training dataset
and the distribution of its prediction errors on the testing dataset are displayed
in Fig. 9 and Fig. 10, respectively. Both distributions tend to form a normal
distribution curve with 0 mean. The prediction errors depicted in Fig. 10 are
obtained by subtracting from the real values of the migration time of the test-
ing dataset the values predicted by the model. Hence, the error is measured
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in seconds. Finally, Fig. 11 illustrates the assumption pertaining to the exis-
tence of linearity between the dependent and independent variables for the best
MLR model with five independent variables. If a model satisfies the linearity
assumption, there will be no systematic relationship between the residuals and
the fitted values [13]. It can be shown from the figure that our model satisfies this
requirement. Though, due to high variances in migration time introduced mainly
by mcf and astar memory intensive benchmarks the model faces the problem
of non-constant variance which is often the case in practice. Nevertheless, the
non-constant variance is not substantial in this case because the model behaves
well on the testing data and its prediction accuracy equals to 10.12%. In order
to satisfy additionally constant variance assumption in our future work we are
planning to 1) build separate MLR models for CPU intensive benchmarks only
and 2) investigate additional techniques such as weighted least squares.

5 Conclusion and Future Work

This paper extensively discussed migration time as a consequence of dynamic
server consolidation in data centres and virtualised environments. We experimen-
tally demonstrated that migration time can be adequately expressed as a linear
combination of a few number of resource utilisation parameters, particularly, in
terms of the total number of retired CPU instructions, the total number of L3
cache line misses, and the number of “dirty” pages observed in the source server
during migration. By employing various simple and multiple linear regression
models we closely and quantitatively examined the significance of these param-
eters in reducing residual and prediction errors as well as in improving R2 and
R2

Adj . Furthermore, we experimentally showed that the expressive power and
the complexity of the models depended on the number of independent variables
they include. However, we also showed that increasing the number of indepen-
dent variable beyond five could not appreciably increase the strength of the
models.

This paper mainly focused on migration time. In future we will be considering
other costs introduced by virtual machine migration, such as the energy overhead
and how these costs can be estimated using a single unifying model.
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