
Dependency Based Automatic Service Composition using Directed Graph

Abrehet M.Omer
Chair for Computer Networks

TU Dresden
Dresden, Germany

Abrehet Mohammed.omer@mailbox.tu-dresden.de

Alexander Schill
Chair for Computer Networks

TU Dresden
Dresden, Germany

alexander.schill@tu-dresden.de

Abstract—In this paper a method of automatic compo-
sition plan creation that relies on automatic extraction of
dependencies among services is investigated. For automatic
dependency extraction our approach makes use of semantic
similarities between I/O parameters of services. Extracted
I/O dependencies are represented using a directed graph.
The approach recognizes when cyclic dependencies exist and
proposes a way of dealing with it. Modified topological sorting
algorithm is used for the execution plan generation showing
execution order of candidate services. A case study is used to
explain the proposed approach.

Keywords-Service dependency; Directed graph; cyclic depen-
dency; Composition Plan.

I. INTRODUCTION

Web services(WSs) are self-contained, modular units of
application logic, which provide business functionality to
other applications/users via an Internet connection. WSs
are not dependent on the context or state of other web
services. The development process of web services has
become sufficiently mature. At present more and more small
and simple applications are being developed and made avail-
able in the form of WS. As a result developers/researchers
start working towards other potential usage of web services
like developing applications making use of existing web
services. Such ways of application development lead to
the emerging application development architecture service-
oriented architecture (SOA). The building blocks of SOA-
based applications are web services that can be reused
across various applications. Consequently, composition of
web services has received increased interest with SOA.

WS composition is a mechanism of combining two
or more basic services into a possibly composite ser-
vice/application. Composite service/applications are ex-
pected to satisfy requirements that cannot be satisfied by in-
dividual services. Thus service composition enhances reuse
of web services and decreases the effort to develop new
applications from scratch.

Service composition could be done either statically, or
(semi/fully) dynamically. Dynamic composition techniques
are getting more preference due to their potential for han-
dling unpredictable changes of runtime environment that
cannot be handled using static composition techniques. How-

ever, dynamic composition techniques are not extensively
practiced because there are still weak links in its implemen-
tation approaches. Realizing dynamic service composition
requires not only runtime service binding but it also demands
ability for automatic creation of execution plan for the com-
posite service [1]. Techniques for doing the latter are still
not rudimentary. In this regard automation of execution plan
model creation process is one of the core problems hindering
the transition towards dynamic service composition and that
needs to be solved. Our approach focuses on this problem.

In dynamic Web services composition software agents are
responsible for automatic creation of execution plans. The
candidate services for the composition possibly made avail-
able by different providers that use different naming systems.
This necessitates for semantic descriptions of services to
assist IOPE matching of the software agent. Among the chal-
lenges for success of semantic WSs are making automatic
service discovery and composition techniques efficient. In
this regard [2] present how services can be discovered
by their capability using semantic knowledge of services.
Moreover, to make the discovery process more flexible, they
propose four different degrees of match functions to ensure
the match between input/output of service advertisement and
input/output of the user request. Our approach assumes the
existence of such match making techniques.

Individual services forming a composite service have to
coordinate and communicate to accomplish an intended task.
Such kind of communication brings with it dependencies
between services. Thus one key challenge of web service
composition is managing such kind of collaboration among
WSs.

Our approach tries to forecast and extract potential de-
pendency between candidate services and then use the
dependency information to generate an execution plan au-
tomatically. We assume the existence of a local repository
with abstract semantic description of web services. The user
is expected to describe his or her request in terms of goals
and candidate service descriptions will be discovered from
local repository using goal based discovery mechanism. We
will not discuss the candidate service discovery process
because it is beyond the scope of this paper. To extract I/O
dependency our approach uses the concept of finding the

Web services Inputs Outputs
WS1 PurchaseOrderCreator Item Quantity

Part number
Description
Req. date
Item location
Price

PurchaseOrder
{Item
Quantity
Part
number
Description
Req. date
Item location
Price}

WS2 ItemAvailabilitychecker Item Quantity In stock or
out of stock

WS3 Payment Bank detail
Purchaseorder

Receipt

WS4 GetItem Item detail
Availabil-
ity in stock

Item location
num-
ber of item
part number
price

WS5 ShippingArrangement Item location
Customer detail
payment

Delivery
date
Tracking
number

Table I
CASE STUDY INPUT/OUTPUT DESCRIPTION

semantic similarity between service inputs and outputs. This
approach utilizes existing graph traversal based algorithms to
extract cyclic dependency and generate the execution plan.

A case study which will be used through out the paper
is presented in section II. Section III presents the proposed
methodology from identifying dependency to execution plan
generation. Section IV gives concise review of related works
and is followed by discussion in section V. Finally, conclu-
sions and further works are given in section VI.

II. CASE STUDY

A case study an online shopping is considered as an exam-
ple. In online shopping venture consumers browse through
online catalogs select their preference item, purchase and
get it delivered.

For this scenario the following web services are consid-
ered: WS1 (PurchaseOrderCreator) returns purchase order
of all items selected by user for purchase given all details
about the items; WS2 (ItemAvailabilitychecker) returns
the availability of item in stock given item detail and;
WS3 (Payment) returns payment confirmation given credit
card detail and purchase order; WS4(GetItem) returns Item
location, part number and price given item name; WS5
(ShippingArrangement) returns Delivery date and Tracking
number given Item location, customer detail and payment
confirmation(Receipt).Figure I shows the input and output
description of each service.

III. PROPOSED APPROACH

A. Overview of dependency

Primarily services that are created by same or different
providers are meant to be accessed and work independent

to each other. But, establishment of composite services
based applications necessitates interaction, communication,
cooperation and coordination of services. This leads to
emergence of different types of dependency among services
involved in composite services, such as:

1) Input/Output dependency: occurs when a service re-
quires/or provides data from/to another service.

2) Constraint dependency: occurs due to user constraints.
3) Cause and Effect dependency: occurs when a service

has preconditions to be satisfied based on the effect of
other services.

Such dependencies could occur between two services
directly which we call it direct dependency or indirectly be-
tween two services through an intermediate service(s) which
we call it indirect dependency. Service dependency can also
occur in explicit or implicit manner. Explicit dependency can
be readily visible and extractable from service descriptions.
Implicit dependency are not directly expressed in service
descriptions.

We claim that by utilizing the direct dependency between
abstract service descriptions, one can generate an execution
plan for the composite service. To prove this claim we
extract explicit direct I/O dependencies automatically and
represent it using directed graph and then utilize it for
composite execution plan creation.

B. Composite Service Request and abstract service specifi-
cation

Extracting dependencies from candidate services for com-
position requires suitable ways of describing web services
and user requests. The proposed approach bases on formal
descriptions from both the user and service side. Currently
we are working on conceptual implementation of the pro-
posed approach and our interest is conceptual description of
services and user requests. For our intention, the description
of web services and request includes tuple (I, O, P, E, G)
[3]:

• I: list of inputs.
• O: list of output parameters
• P: the precondition. It describes a logical expression

that must be satisfied in order to invoke the composite
service.

• E: the effect. It describes the changes to the current state
resulting from the invocation of composite service.

• G: Goal. It describes the goals that will be achieved by
the composite service.

We assume the availability of a local repository that
stores abstract service description in the above format. Such
abstract description includes only a single description for all
web services with equivalent functionality regardless of their
quality. Thus candidate abstract services will be discovered
from the local repository based on user requirement goal
definition. Then dependency between those abstract services

will be extracted for execution plan generation. We defined
same structure of description for both user request and
services because it is one requirement for candidate abstract
service discovery.

Concrete service binding for the actual service compo-
sition will be done after execution plan creation. It will
be done based on abstract description and additional non-
functional property.

C. Execution plan generation procedure

There are three components in our proposed architecture:
dependency graph generator, dependency analyzer and ex-
ecution plan generator. We summarize the tasks of these
components as follows:

1) Identify explicit direct dependencies from input and
output parameters of WSs and construct dependency
graph.

2) Find out all cyclic dependencies if there are any using
algorithm developed by [4] to find cycle in directed
graph.

3) Regenerate the graph by making each cyclic sub graph
as one compound node.

4) Calculate the number of services dependent on a
particular service by counting incoming edges from
the graph found in step 3.

5) Calculate the number of other services dependent on
a particular service by counting the outgoing edges
from the graph found in step 3.

6) Use graph traversal algorithm(modified topological
sorting) to generate an execution plan based on calcu-
lated values in step 2 and step 3.

In the rest of this section each of the above steps will be
described in detail along with illustrative case study.

1) Construction of dependency graph: An explicit direct
I/O dependency between two services exists if at least one
output of a service is taken as input by the other service.
During service composition all inputs of web services are
either from user request or are output of another web service.
For the purpose of explaining the proposed approach we
use an example that has almost perfect match between I/O
parameters. However, in real case scenario we do not get
services where their interface shows a perfect match. Thus,
here the extraction of explicit direct I/O dependency is done
using semantically enabled I/O matching a technique, which
is adopted from [2]. It uses the following three semantic
I/O matching functions proposed by [2] and intersection
proposed by [5].

1) Exact : If the output parameter of WS1 and the input
parameter WS2 are equivalent concepts;

2) Plug in : If output of WS1 is sub-concept of input
WS2;

3) Fail : if all the above conditions are not satisfied
4) Intersection

⋂
: If the intersection of output of WS1

and input WS2 is satisfiable.

WS2

WS5

WS3 WS1 WS4

Cyclic dependency

Figure 1. Direct Dependency Graph(DDG)

The dependency graph generator checks the intersection
between the whole set of input parameters of one service
with the whole set of output parameters of the other service.
To do the intersection operation each input parameter should
be checked with the output parameter using exact or plug in
function. i.e. In (WS1) ∩ Out (WS2) 6= ∅ if and only if at
least one pair of parameter set (each from Input(WS1) and
Output(WS2)) has either exact or plug in relationship. This
is done because our main aim is to find out from which
services a particular service gets its inputs, i.e. on which
services it is dependent. We do not consider the degree of
match between I/O parameters of services.

Dependency can be represented as graph or matrix based
model. In this approach, directed graph which can be equiv-
alently represented by adjacency matrix is used to represent
I/O dependencies between services. It is also used in [6]–
[8] to represent dependencies between service. The graph
that models the dependency will have n nodes where n
equals available services to form the composite service and
edges represent the dependency link. The edge direction
indicates the service dependency flow. i.e. if ith service
is dependent on jth service then there will be directed
edge from WSi to WSj . Figure 1 shows explicit direct
input/output dependencies for the on line shopping scenario.

2) Finding Cyclic Dependency: The dependency graph
shows either unidirectional or bidirectional communication
between services. In unidirectional communication one ser-
vice gives its outputs and the other receives. As a result
there will be one way dependency between a service input
provider and receiver. When all dependencies are unidi-
rectional the dependency graph also will be direct acyclic
graph. In cases of bidirectional communication a service
starts execution and gives partial output to another service
and waits for reply to finish execution. Or service(s) may be
required to be invoked and exchange data a number of times.
In such cases the dependency graph will include cyclic
dependency. In such case most of the existing approaches
that use graph traversal algorithm to find execution plan

WS5

WS3 C1

Figure 2. Direct Dependency Acyclic Graph(DDAG)

fails because their bottom line assumption is non existence
of cyclic dependency. As a result finding and extracting
dependency has become compulsory during execution plan
generation. We propose a way to extract cyclic dependency
and regeneration of acyclic dependency graph as a first step
of execution plan generation.

To extract the cyclic dependency we used an algorithm [4]
to find cycles in directed graphs. This algorithm enumerates
all cycles in the by taking the DDG in the form of adja-
cency list. By considering each cyclic component subgraph
identified as one compound node a new acyclic graph is
generated. Figure 2 shows the acyclic dependency graph for
the considered scenario.

3) Dependency analysis: From the dependency graph
which is free of cyclic dependency we get two straight-
forward but important indicators that will be used during
execution plan generation. First, the number of other services
that is dependent on a given service (C A) which can be
found by counting incoming edges. Second, the number of
services a given service is dependent on (C B), which can
be found by counting the number of outgoing edges from
the dependency graph.

In this approach C A is used to get which services can
be executed first. And C B value is used in a service(s)
selection criteria that can be included in execution plan.
Thus the two values have a key role in the execution plan
generation algorithm.

4) Composition Algorithm: The execution plan is gen-
erated using a topological sorting algorithm. Topological
sorting is often used in scheduling jobs or task given
precedence constraints. In our case the precedence constraint
is the dependency graph. It takes acyclic graph and outputs
a linear ordering tasks (node/services). We adopt modified
topological sorting that is used to sort threads that can be
executed concurrently [9](see the above algorithm). The
execution plan generated by this algorithm for the on line
shopping scenario is given in figure 3. This execution plan
includes a compound node since its input is the regenerated
acyclic graph that also has a compound node.

To get the final execution plan the compound node has
to be replaced by their execution plan that involves loop

WS5WS3C1

Figure 3. Execution plan with compound node (DDG)

WS5WS3WS1

WS2

WS4

Figure 4. Final execution plan

control flow. To do this it is only required to get the starting
node of the cycle. Then by traversing the dependency graph
in backward direction the order of execution of the WSs
that are involved in the loop can be determined. This
simplified approach that create execution sub-plan for cyclic
component assumes service execution inside the loop is only
sequential which occurs in most cases. However, in case
of other control flows nested within the loop recursive and
repetitive use of Topological sorting algorithm is required.
The final execution plan generated for the on line shopping
scenario is shown in figure 4.
{MODIFIED TOPOLOGICAL SORTING
ALGORITHM}
INPUT : Dependency graph G(V,E)
OUTPUT : Path(C0, C1...CN)
{ path contains a sequence of group of services }
L← 0
C0 = C1 = ... = CN = Empty
{Ci contains a service or services that can be

executed concurrently }
while V is Non-Empty do

CL ← all v in V without outgoing edge
E ← E − {all E that start from v in CL}
Path← Path + CL

L← L + 1
end while

IV. RELATED WORK

In this section we present a brief overview of web service
composition techniques. We consider techniques that use
service dependency information, graph structure, and seman-

tics. The concept of dependency is explored initially for the
purpose of managing component based systems [10]. The
work by [11] looks at service dependencies from composite
service management point of view. In their approach it is
shown that dependencies could be tracked from log files that
normally are available in SOA audit files. [12] discusses the
possibility of using service dependency for deploying and
reusing composite services.

In [8], the authors propose dependency graph based web
service composition. They use backward chaining in com-
bination with depth first search to get required services for
a composite task.Their solution is rather abstract and does
not clearly discuss execution plan generation algorithm.

[7] used dependency graph to store information about
existing web services in repository. In the graph nodes rep-
resent I/O parameters and edges represent web services. Web
services are modeled using I/O description and dependency
information to other WSs through its I/O. They utilized
graph search algorithm to find set candidate services for the
composite service as sub graph. They also used interface
automata tool to create execution path by taking discovered
services. They did not discuss a way to stop search of
candidate services. This possibly makes search complicate
in case of more than one set of candidate service exists.
They also did not put a way to choose best solution from
alternatives if it exists.

[6] proposes to pre-compute and store network of services
that are linked by their I/O parameter. The link is built
by using semantic similarity functions that basis ontology.
They represent the service network using graph structure.
Their approach utilizes back ward chaining and depth-first
search algorithms to find sub-graph that contains services
to accomplish the requested task. Unlike [7] they propose a
way to select optimal plan in case of more than one plan
found.

However, [6]–[8], generates (pre-computed) dependency
graph between all services in repository that complicated and
makes the graph size very big when there is high number
of services. They do selection of candidate services based
on pre-computed dependency graph. They all assume the
dependency graph to be acyclic which is not always true in
reality.

In [13], a service composition technique that utilizes
Casual Link Matrix(CLM) is presented. CLM is used to
store semantic I/O link between candidate services. The
casual link matrix is built based on semantic similarity
functions that provide the degree of similarity between
input and output parameters of web services.To generate the
composition plan they used a regression-based search, AI
planning technique. Such an approach brings with it scalabil-
ity problems due to the inherent computational complexity.

Comparing with the method in [13] which uses CLM
matrix our approach uses a simple algorithm to generate
the process model, which we deem, makes it more efficient

especially when the numbers of candidate services are high.
Moreover, unlike CLM based technique our approach offer
a means to identify concurrent and iterative control flow.

Contrary to other proposed approaches this method ex-
plicitly shows which service is dependent on which service
in its dependency graph. For example: CLM only shows the
degree of similarity between Input and output parameters,
graph based composition techniques proposed by [7] shows
the dependency between services implicitly however the
dependency graph is generated at design time.

V. DISCUSSION AND CONTRIBUTIONS

We tested the applicability of our approach using case
studies taken from [7], [14] and other related papers. In all
cases our approach gave process models that are similar to
the ones in the papers reviewed. This has been of support
to empirically prove the correctness of the process model
generated using the proposed method. In the future we
will develop an evaluation mechanism to guarantee the
correctness and completeness of the output solution.

Unlike all other methods that construct dependency be-
tween all services in repository we generated dependency
between candidate services automatically. We believe, pre-
computing all possible semantic links (dependency) between
services(even services with same functionality) might lead
to extended graph that increases the complexity of plan
creation. To tackle the potential complexity problem due
to complex dependency graph in existing approaches, our
approach assumes goal based candidate service discovery
upon receiving of user request. Then takes those discovered
candidate services, extracts dependency, represents it using
directed graph and generates composition execution plan.

The proposed approach finds execution plan in three
steps using three different algorithms. The whole process
complexity is dependent on the three algorithm complexity.
The first step is dependency graph generation algorithm
that has complexity is O (#(Input parameters) * #(Output
parameters)) in worst case scenario. The second step is
cyclic dependency extraction which has the same com-
plexity as the algorithm, that is of linear in the number
of edges (E), vertices (V)and number of cycles(C) of the
dependency graph (O(#(V)+#(E)+#(C))). The third step is
composition plan generation algorithm complexity is equiv-
alent to the complexity of topological sorting algorithm
which (O(#(V)+#(E))). Therefore, the overall running time is
equivalent to the dominating complexity which is complexity
of dependency graph generation.

To summarize, among many, the proposed approach’s
main contributions are:

1. To the best of our knowledge this approach is the first
to deal about cyclic dependency in detail.

2. We propose the use of topological sorting algorithm
for generating a composition plan. We trust this solves the

scalability problems that occur in many composition plan
generation algorithms.

VI. CONCLUSIONS AND FURTHER WORKS

In this paper we propose an Input/Output dependency
based automated composition plan creation method. The I/O
dependency is represented as directed graph and the com-
position plan is created based on graph traversal algorithm,
i.e topological sorting. The approach recognizes when cyclic
dependencies exists and propose a way of dealing with it.
The simplified nature of the proposed methodology increases
its applicability in real world scenarios. We have tested
the method at a conceptual level making use of scenarios
having from 3 to 11 web services. For these scenarios
the output process model was valid. Thus, we intend to
extend this approach to be able to find complex parameter
dependencies, and for exploring other dependencies, for
instance Pre-condition/Effect dependencies, and dependen-
cies caused by user constraints. Moreover, further analysis
is needed to include alternative control flow in process
models. In addition, running extensive experiments to further
validate dependencies based process model creation method
is suggested.

REFERENCES

[1] M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M. Madeira,
“Challenges and techniques on the road to dynamically
compose web services,” in ICWE ’06: Proceedings of the
6th international conference on Web engineering. New
York, NY, USA: ACM, 2006, pp. 40–47. [Online]. Available:
http://dx.doi.org/http://doi.acm.org/10.1145/1145581.1145589

[2] M. Paolucci, T. Kawamura, T. R. Payne, and K. P.
Sycara, “Semantic matching of web services capabilities,”
in International Semantic Web Conference, ser. Lecture
Notes in Computer Science, I. Horrocks, J. A. Hendler,
I. Horrocks, and J. A. Hendler, Eds., vol. 2342. Springer,
2002, pp. 333–347. [Online]. Available: http://dblp.uni-
trier.de/rec/bibtex/conf/semweb/PaolucciKPS02

[3] M. K. Smith, C. Welty, and D. McGuinness, “Owl web
ontology language guide, http://www.w3.org/tr/owl-guide/,
accessed,” 2004.

[4] R. Tarjan, “Enumeration of the elementary circuits of a
directed graph,” J.SIAM, vol. 2, pp. 211–216, 1973.

[5] L. Li and I. Horrocks, “A software framework for
matchmaking based on semantic web technology,” in
WWW ’03: Proceedings of the 12th international
conference on World Wide Web. New York, NY, USA:
ACM Press, 2003, pp. 331–339. [Online]. Available:
http://dx.doi.org/10.1145/775152.775199

[6] H. N. Talantikite, D. Aissani, and N. Boudjlida, “Semantic
annotations for web services discovery and composition,”
vol. In Press, Corrected Proof, 2008, pp. –. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6TYV-
4V0MX0B-1/2/ebb454737a30085656ed79bf1d48804a

[7] S. V. Hashemian and F. Mavaddat, “A graph-based approach
to web services composition,” vol. 0. Los Alamitos, CA,
USA: IEEE Computer Society, 2005, pp. 183–189.

[8] R. Aydogan and H. Zirtiloglu, “A graph-based web service
composition technique using ontological information,” vol. 0.
Los Alamitos, CA, USA: IEEE Computer Society, 2007, pp.
1154–1155.

[9] Z. Ma, P. Marchal, D. P. Scarpazza, P. Yang, C. Wong, J. I.
Gomez, S. Himpe, C. Ykman-Couvreur, and F. Catthoor, Sys-
tematic Methodology for Real-Time Cost-Effective Mapping
of Dynamic Concurrent Task-Based Systems on Heteroge-
neous Platforms. Springer, 2007.

[10] B. Li, “Managing dependencies in component-based systems
based on matrix model,” in Proc. Of Net.Object.Days 2003,
2003, pp. 22–25.

[11] S. Basu, F. Casati, and F. Daniel, “Web service dependency
discovery tool for soa management,” vol. 0. Los Alamitos,
CA, USA: IEEE Computer Society, 2007, pp. 684–685.

[12] J. Zhou, D. Pakkala, J. Perl, and E. Niemel, “Dependency-
aware service oriented architecture and service composition,”
in IEEE International Conference on Web Services., July
2007, pp. 1146–1149.

[13] F. Lecue, E. M. G. da Silva, and L. F. Pires, “A framework for
dynamic web services composition,” in 2nd ECOWS Work-
shop on Emerging Web Services Technology (WEWST07),
Halle. Germany: CEUR Workshop Proceedings, November
2007.

[14] F. Lecue and A. Leger, “Semantic web service composition
based on a closed world assumption,” Web Services, European
Conference on, vol. 0, pp. 233–242, 2006.

