
MapBiquitous - An Approach for Integrated
Indoor/Outdoor Location-based Services

Thomas Springer

Technische Universitt Dresden, Computer Networks Group
01062 Dresden, Germany

thomas.springer@tu-dresden.de

Abstract. Nowadays, location-based services based on GPS and map
data are commonly available. Since GPS does not work in buildings and
map data provide geographic information only, such services are limited
to outdoor scenarios. Large research effort has been carried out to ex-
plore indoor positioning and navigation systems but up to now mostly
proprietary and isolated solutions have been proposed. In this paper,
we introduce the MapBiquitous system as an approach towards an in-
tegrated system for indoor and outdoor location-based services. It is
based on a decentralized infrastructure of building servers providing in-
formation about the building geometry, positioning infrastructure and
navigation. Building servers are dynamically discovered and provided
information is seamlessly integrated into outdoor systems by the Map-
Biquitous client. We discuss the general approach and architecture of
MapBiquitous and present experiences of implementing the MapBiqui-
tous concepts and location-based services on top of it.

Key words: location-based services; indoor positioning, building model,
OpenGIS, Android, MapBiquitous

1 Introduction

Finding an indian restaurant nearby, navigating to a selected target address,
tagging information to a particular location or presenting information about
the building the user is in front of are location-based services (LBS) commonly
available for outdoor settings. OpenStreetMap, GoogleMaps and other services
provide the map data necessary to implement such services while GPS or WiFi
positioning is used to determine the user’s current location.

Similar use cases exist for indoor scenarios. Museum guides providing infor-
mation about the objects in close proximity to the user, navigation within a
building from room to room or finding a printer nearby are such use cases. They
have been already implemented as research prototypes and some even as produc-
tive systems. The major difference between outdoor and indoor LBS is the lack
of a well established and broadly used technical foundation for indoor services.
While GPS and map services operate in a global scale, indoor positioning sys-
tems are based on proprietary infrastructures usually limited to single buildings

2 Thomas Springer

and information about building geometry is hardly available to the public. Thus,
services like navigating from home directly to the right terminal in the airport,
tagging information to a shop in a shopping mall, and more general setting up
indoor location-based services in an interoperable and integrated manner are
hard to implement.

In this paper we present the MapBiquitous system following an integrated
approach for indoor and outdoor location-based services. The research explores
concepts and standard technologies to allow the provision of LBS for indoor
and indoor/outdoor scenarios in an interoperable way. Based on the main idea
to provide the necessary data about building geometry and annotating it with
information about positioning infrastructure, navigation and semantic location
information outdoor and indoor positioning, navigation and information tagging
should be seamlessly coupled.

The main contributions of the presented work are the decentralized system
architecture, the approach for modeling and providing building data, including
information for indoor positioning and routing based on open standards (namely
WfS, GML and OpenLS Directory Service) and a concept for the creation of
client applications with efficient access to decentralized building information
and seamless integration into outdoor systems.

The paper is organized as follows: in section 2 related work is discussed. After
discussing the requirements in section 3 we present the MapBiquitous approach
and main architecture in section 4. In section 5 we report on the implementation
of the MapBiquitous system and the experiences obtained by implementing LBS
using MapBiquitous. We close the paper with a conclusion and outlook to future
work.

2 Related Work

Location-based services are a topic of research with different aspects. Funda-
mental technologies are required to determine the position of objects, devices
and persons and to set them into relation with reference systems, geographical
data or building data. On top of such an infrastructure, concepts for data access
and service architectures are investigated to create LBS.

Positioning technologies: GPS is well established for determining loca-
tions in outdoor settings but does not work properly indoor [5]. Different ap-
proaches try to provide Indoor GPS based on additional infrastructure in build-
ings like repeaters or to improve GPS receivers to deal with the decreased signal
strength in buildings. Approaches based on cellular networks work also in build-
ings but are not accurate enough for indoor services.

This is the reason of the many efforts to create indoor positioning systems.
Many research projects try to exploit the WiFi infrastructure widely available
in buildings and mobile devices. Different approaches mainly based on latera-
tion or fingerprinting [7] exist. The major issue is that strength of WiFi signals
in buildings is influenced by manifold factors, like material and constellation of
walls, used device, and device direction. Therefore, calculating the distance for

MapBiquitous 3

lateration based on signal strength does not yield accurate results. With finger-
printing, actual signal strength values of all visible access points are recorded for
reference points in the intended coverage area. After that setup phase client loca-
tions can be determined based on matching a current measured fingerprint with
the stored fingerprints. This concept can produce more accurate results with
the cost of a large effort for setup and maintenance of the fingerprint database.
Anyway, issues like influence of device direction and different scales for signal
strength in different devices still remain unsolved [3].

Alternative approaches based on an infrastructure use ultrasonic [17] or in-
frared signals [16, 9] or use RFID technology to determine the position of a
device. Dependent on the density and arrangement of beacons these systems
can achieve high accuracy. Their major drawback is the high effort for installing
an additional infrastructure. Hence, such systems are not widely deployed.

Inertial systems work without a pre-installed infrastructure. Based on a
known starting location relative movements are tracked with a sensor fixed on
the body or placed freely in the pocket and used to calculate the new loca-
tion [18, 14]. In [19] an approach is described to even avoid the knowledge of
the initial location. A common issue of inertial systems is the integration drift,
measurement errors add over time and constantly increase inaccuracy of the
determined position.

In summary, non of the mentioned approaches is in a state to complement
the globally available GPS for indoor positioning. Our approach does not in-
troduce any new positioning method but integrates multiple positioning tech-
nologies. In addition, we provide the necessary information for positioning like
access point locations, fingerprint records, or beacon information as part of the
building model. Thus, as long as the user’s device is able to interoperate with
the positioning technology in a building it can dynamically obtain the necessary
information and use that technology in the building.

Geographic data provisioning: A second major building block for LBS is
spatial data to visualize locations and to attach semantic information to them.
Geographic Information Systems (GIS) serve as data providers for geographic
information for outdoor services. Under the term web mapping applications like
OpenStreetMap or Google Maps provide access to geographic data like street
maps and satellite imagery. Via APIs functionality like searching and routing is
made available and can be integrated into custom applications.

In this context the Open Geospatial Consortium (OGC) specifies interfaces
and protocols to support interoperable solutions for accessing spatial information
and providing LBS. The Web Map Service (WMS) [4] is a OGC standard for
offering geo-referenced map data as raster images. The Web Feature Service
(WFS) [15] is a service to provide geographic features encoded in XML. Such
features might be meta data provided in addition to map data for spatial analysis
but also vector data represented in XML. Both services can be accessed via
HTTP.

While WMS usually responses data encoded in GIF, PNG or JPEG, the de-
fault payload of WFS is Geographic Markup Language (GML) [10]. GML is also

4 Thomas Springer

specified by OGC as an XML-based language for geographic features including
representations of vector objects based on elements like point, line and polygon.
Thus, GML is one option to model building geometry. CityGML, a particular
schema definition for GML enables the modeling of 3D city models including
buildings and their environment. In contrast to generic 3D vector formats like
SVG or VRML, CityGML provides elements with the necessary semantics to
represent and analyze city models including navigation functions. KML is used
in Google Earth to model geographic features like geo-tags and routes, but it is
a proprietary format.

In our approach we adopt WFS as a service for the provisioning of building
information in GML format. Since both are OGC standards we ensure high inter-
operability. In addition, WFS can be based on various data sources as backend.
Available implementations usually support various data formats and databases.
In this way, building data providers are not restricted to a particular format but
can choose any format as long as it can be transformed into GML.

Service engineering: Systems like MagicMap1 or PlaceLab2 integrate var-
ious positioning technologies for indoor and outdoor. Both systems use WiFi
lateration as main positioning method which require the availability of informa-
tion about access point locations. Visualization of current location is based on
floor plans which are provided as images. Thus, building geometry is not ex-
plicitly modeled in a standard format and the current semantic location is not
known to the system. Locations are available based on a local reference system
only.

In [13] a simple approach for indoor positioning and navigation based on
dead reckoning and 2D barcodes is introduced. Users can download floor plans
by reading a 2D barcode attached to publicly available maps in the building.
With the download also the current position is provided. Due to the simplicity
of the approach it could be adopted in any building. Anyway, building data is
not explicitly modeled and positioning is limited to dead reckoning.

The REAL system [1] is a pedestrian navigation system which combines to
sub-systems. The IRREAL (Infrared REAL) sub-system supports indoor posi-
tioning and navigation while ARREAL (Augmented Reality REAL) offers the
same functionality outdoors. The system combines infrared-based positioning
and GPS. The system uses map data for outdoor and 3D data in a proprietary
format for indoor locations. The system is based on dedicated hardware which is
restricted to infrared and GPS. Thus, the approach is limited to buildings which
are equipped with the infrared infrastructure. In addition, building models have
to be provided in the special format.

In [3] a concept for campus wide positioning based on WiFi fingerprinting is
explored. The user’s position is visualized on a map or a floor plan. Both are
based on proprietary data sources, the fingerprinting data is separately provided
in a database. At all, the system is limited to the campus with all necessary

1 http://www2.informatik.hu-berlin.de/rok/MagicMap/
2 http://sourceforge.net/projects/placelab/

MapBiquitous 5

geographic, floor and fingerprinting data available. Positioning is restricted to
WiFi fingerprinting.

As a conclusion, to the best knowledge of the authors there is currently no
single system providing a technological foundation for integrated indoor and out-
door LBS. Even if some of the technological building blocks are available and
partial solutions like standard services and modeling language or integrated sup-
port for multiple positioning technologies have been investigated large research
work has to be carried out. The introduced MapBiquitous system represents a
first step towards that envisioned goal of seamlessly integrated indoor/outdoor
location based-services.

3 Requirements

The goal of the MapBiquitous system is to provided indoor and outdoor location-
based services in an interoperable and seamlessly integrated manner. In the
following we analyze the requirements for such a system.

As discussed in the previous section, there is no single positioning tech-
nology which can be globally used. GPS is available outdoors and should be
complemented with indoor technologies. Since there is no standard for indoor
positioning available, multiple positioning technologies should be supported by
the system (A1). To achieve a seamless integration, all positioning technologies
should be accessible via a uniform interface (A2). In addition, during move-
ment the user might enter different buildings and later on leave them to move
on. Therefore, the system should support a seamless handover between different
positioning technologies if the user enters a new area (A3).

By explicitly providing data about the building geometry, positioning infras-
tructure and navigation, geographic data available for outdoors should be com-
plemented with appropriate indoor information. To achieve a wide adoption,
the data modeling and provisioning has to be based on open standards (A4).
For high interoperability, all data should share a common reference system to
represent geometric coordinates (A5). To allow the representation of meaningful
location information the provided building data should contain geometric and
semantic information (A6). The creation of building models should be possible
with minimal effort (A7). The model should be generic to allow the modeling of
any necessary aspect not limiting its applicability to specific domains (A8).

Access to building models should be based on a standard format and protocol
(A9). Even if creation and maintenance of building models requires effort, data
should be provided with high accuracy and timeliness (A10).

The overall system should operate in the same manner like todays outdoor
systems. To support a large number of users the system has to be highly scalable
(A11). It has to be highly available with minimum down time (A12). Build-
ing data, supported positioning technologies and system architecture should be
highly extensible to support the integration of new data and technologies (A13).
Last but not least, the system should be easily to be adopted and integrated into
applications (A14).

6 Thomas Springer

4 MapBiquitous Approach

The major objective for creating MapBiquitous was to provide a system for the
seamless integration of building data and positioning information with existing
outdoor technologies in a way that location-based services could be created on
top of it. In the following we introduce the architecture and main components
of MapBiquitous and discuss our design decisions.

The architecture of MapBiquitous is shown in figure 1. The system consists
of a client and a server part. On server side we foresee a decentralized infras-
tructure of building servers which can be discovered based on a directory service.
MapBiquitous clients basically consist of the three components Loader, Renderer
and Locator. In addition, an internal representation of building data is stored in
the building data storage on the client. The Loader is responsible for accessing
the building servers. It loads and processes building data to fill the building data
storage.

Building Server

(WfS)

Building Server

(WfS)

MapBiquitous Client

Building data

Renderer

Locator

Loader

R

HTTP

Directory Service

Building Server

(WfS)

R

HTTP

RHTTP

Overlays

Locator Modules

GPS WiFi ...

Fig. 1. Architecture of MapBiquitous.

The Locator contains several modules to support different indoor positioning
technologies. It accesses the information provided for positioning in the building.
This can be for instance locations of the WiFi access points but also for infrared
beacons or RFID tags in the building. The information is used to configure the
associated positioning module which is than started to provide periodic location
updates.

The location updates are received by the Renderer which is responsible for
the visualization of location information. It adopts the concept of overlays to
present map and building data in an integrated manner. The Renderer accesses
the building data storage for rendering the building geometry and triggers the
Loader in case of location updates for dynamic access to building data. It is
notified by the Loader if new building data is available in the storage.

MapBiquitous 7

The building servers are responsible for providing building data for public
access based on a standard format and protocol. They maintain information
about the building geometry, positioning infrastructure and navigation for one
or a set of buildings.

We decided to use a decentralized architecture to support high scalability
(A11) and availability (A12) of the system and data. In contrast to a central
server, with a decentralized architecture load is naturally balanced between the
building servers and a single point of failure as well as a performance bottleneck
are avoided. In case of failure of one building server only a single building or a
small set of buildings is not available. All other data remains accessible.

Another reason for the partitioning of building data to decentralized servers
is caused by the building data itself. Compared to map data, we assume a much
higher change rate of building data. Even if the building geometry is stable, se-
mantic information like usage of rooms and navigation information might change
frequently. Furthermore, information about the positioning infrastructure will
change over time, for instance if the WiFi infrastructure is updated. Moreover,
building data is maintained by the owner or user of the building. Depending
on the usage and type of the building we expect that the owner might want to
decide if and what information about the building is provided to the public. We
assume that owners want to keep control about the published data. A decentral-
ized approach naturally supports these requirements since any building owner
can decide by its own to provide a building server with the extend and level of
detail he is willing to publish.

Issues of the decentralized approach might be the heterogeneity of technol-
ogy, formats and quality of building data. Building data providers have to agree
on common standards to offer their data in an interoperable way. It is up to the
provider to keep the building data up to date and to provide accurate data. Even
if these issues are challenging, we believe that they could be solved by estab-
lishing standard technologies. Because of the technological and administrative
advantages we decided to follow a decentralized approach.

In the following sections we describe the introduced MapBiquitous compo-
nents in detail.

4.1 Building model

MapBiquitous should provide information about building geometry to comple-
ment the outdoor location information based on maps. Associated with that
information data for indoor positioning and navigation should be provided. As
previously discussed we propose a logic partitioning of building data at the gran-
ularity of buildings. Thus, each building is represented with its own self contained
model. This model is layered as shown in figure 2. The concept foresees a layer
for the building outline and one layer per floor. In the example we present the
model of the computer science faculty building of TU Dresden which consists of
the building outline, a basement and 4 floors. These layers cover the model of
the building geometry per floor.

8 Thomas Springer

Rooms, floors and areas of stairs and elevators are represented as polygons.
For representing the coordinates we use the World Geodetic System (WGS84).
The WGS84 reference system has a global scale, thus allowing to use coordinates
with a uniform reference system all around the globe (A5). WGS84 is also used
by GPS and map services for representing locations. Thus, no mapping of coor-
dinates is required on client side. Especially, building geometry can be directly
drawn on maps without complex pre-processing. In addition, semantic informa-
tion like room number, type and usage of rooms is attached to the polygons
(A6).

In addition to the floor plans additional layers are provided containing infor-
mation for positioning and navigation. The idea is to add one layer per floor and
positioning technology available in the building. Another layer is added per floor
for navigation information. In this way, the building model can cover different
positioning technologies in parallel and can be easily extended (A1).

For access building data is represented based on GML. It is a standard lan-
guage specified by OGC for representing geographic features including vector
objects based on elements like point, line and polygon (A8). For the client side,
especially for mobile clients, GML is challenging because of the required XML
processing. We decided to use GML for flexible and highly interoperable access
to building models. In combination with WFS as service for access it is possi-
ble to support various internal representations of building data, which can be
transformed into GML (A9).

building outline

basement

ground floor

first floor

second floor

third floor

Fig. 2. Layered model of the computer science faculty building of TU Dresden.

MapBiquitous 9

4.2 Building data access

As described in the previous section building data is provided as vector data on
distributed building servers. To access building data from a client, the building
server providing the appropriate data has to be discovered. After that, building
data has to be downloaded to be locally available at the client.

There are three methods for including building information into services and
applications: embedded, initial URL and dynamic discovery. With the embedded
method, building data is delivered and installed together with the service or
application package. This is useful if LBS should be provided for a fixed set of
buildings. In this way transfer and processing time is avoided.

A more dynamic way of accessing building data is to start with a known
building server URL. As described, each building can contain links to neighboring
buildings. Thus, starting with an initial URL close-by building data can be
discovered avoiding the necessity of providing a directory service. This method
can be applied to provide LBS for a larger set of buildings without the effort to
provide a directory service.

The most flexible method is the dynamic discovery of building services using
a directory service. As shown in figure 1 a directory service or a federation of
directory services has to be provided. Clients can lookup building servers by
providing their current location. The directory service responds with a list of
URLs for building servers in proximity to the given location. Of course, building
servers have to be registered before with their URL and location.

OGC specified the OpenGIS Location Service Specification (OpenLS) [8] to
define interfaces and protocols for an interoperable service framework. One of the
core services is the Directory Service which allows to register and lookup object
or resources with location and further attributes. The OpenLS Directory Ser-
vice uses WGS84 coordinates as well. Thus, coordinate transformations between
different reference systems can be avoided (A5). We decided to use OpenLS
Directory Service to support the dynamic discovery method in MapBiquitous
because of these features and its availability as a standard (A4).

The WFS is the service of choice for accessing building data in MapBiq-
uitous. WFS provides a simple protocol and interface for accessing geograph-
ical features based on HTTP. Its main operations are getCapabilities(),
describeFeatureType(), and getFeature().

Based on a given or gathered URL access to a WFS server starts with a
getCapabilities() request to get information about the WFS server and a
list of layeres offered for the associated building. For each layer name, title,
projection and its extend are provided with the response. From the response
the available layers can be extracted. Information about the detailed layer type
and content can be accessed using the describeFeatureType() operation. One
request has to be send per layer. In this way, building geometry layers can be
distinguished from positioning information and navigation layers without loading
the whole content of the layers.

To access the complete layer data, a layer can be requested using the
getFeature() operation. Thus, download of layer data can be accomplished

10 Thomas Springer

stepwise, starting with the layer containing the building outline and the layer
representing the current user location. In addition the layers providing infor-
mation about positioning technologies supported by the client device can be
loaded.

Hence, WFS allows the exploration and download of the provided features,
i.e. building model layers, in a dynamic and selective way ensuring extensibility
of and flexible access to the provided data based on a standard format and
protocol (A9).

4.3 Client architecture

As mentioned during the introduction of the architecture, the access, processing
and visualization of building data is performed on the client side following the
concept of a fat client. An alternative would be to process building information
on the server side and to provide image data of maps with building data already
projected on the map to thin clients. This would ease the implementation of
clients, especially web clients. Ideally, an integration into existing map services
could be achieved enabling the use of existing clients for map data.

Anyway, beside the visualization of building geometry information about po-
sitioning technologies is typically required at the client side to perform position-
ing. Therefore, existing clients would have to be extended or the functionality for
positioning has to be separated from the visualization of the map and building
data. Processing of building data at the server would also limit the flexibility of
how building data could be used.

We decided to follow the approach of a fat client to support high flexibility
for service creation with MapBiquitous. The main decision is to support layered
vector data instead of pre-processed image data. If the provided building servers
based on WFS are combined with map servers based on WMS the creation of
web clients could be supported as well using the building data of MapBiquitous.

In the following sections we describe the client-side components in detail.

Building data storage The core of the MapBiquitous client is the storage
for building data on client-side. It is based on the location model depicted in
figure 3. The location model is a hybrid model [2] which supports the representa-
tion of geometric as well as semantic location information. Especially, relations
between entities containing geometric and semantic information can be explicitly
represented (A6).

The root element is Item. Every other entity directly or indirectly inherits
from that element. Thus, each element has an id and name. The direct subtypes
of Item are Location and LocateableItem. LocateableItem can be used to rep-
resent any object which can have a location like Person, Device, BuildingPart,
or Route. A BuildingPart can for instance be a Floor or Room.

All named elements contain semantic information. The geometric information
is represented by the elements derived from Location. The element Coordinate
assigned to Location represents the geometric position of an Item with a lati-

MapBiquitous 11

Entity Subtype (inheritance of attributes) Assignment Attribute

Entities to describe semantics Entities to describe geometry

Coordinate

Location

ShapeExtend

GeoObject

Point Line

Chain

Ring

Hole Polygon

Locatable

Icon

PersonDevice

Mobile

Device

WLAN

Access Point

Beacon

Route

Building

Part

Building

Floor

Room

Latitude

Longitude

Altitude

Accuracy

Time

Name

Description

ID

Name

Icon

Name

Address

MAC-Address

Fig. 3. Location model used as internal data representation in the client-side building
data storage.

tude, longitude and altitude based on WGS84. Moreover, each Coordinate has
a accuracy value and a time stamp.

The element Shape it the main element to represent the geometry of a
Location. Based on the different subtypes arbitrary geometric structures can
be represented using Points, Lines, Chains, etc. In this way building structure
can be internally represented. The element Extend, assigned to each GeoObject

represents the minimal and maximal values of coordinates of a GeoObject.
The presented location model integrates geometric and semantic infomation

by assigning a Location to a LocateableItem. The location model is extensible
and allows the representation of arbitrary geometric and semantic information.

Loader The Loader component is responsible for discovering building servers
and accessing building data. It is triggered by the Renderer to load data from
building servers. Two cases are handled by different notifications. In case of a
location change, the Renderer triggers the Loader to retrieve building data for a
defined geo-window. This geo-window defines a geographic area by the minimum
and maximum values for latitude and longitude. The loader starts with an lookup
at the directory service to discover all building servers in the given area. Based
on the lookup results the Loader than checks the building data storage for cached
data. Data not available locally is requested from the building servers. For newly
discovered buildings the loader requests the building outline and the description
of available positioning information.

Further floor data and the layers for positioning technologies supported by
the device are downloaded on follow-up requests by the Renderer. They are trig-
gered when the device is in close proximity to a building or by user interactions.

12 Thomas Springer

After the download of building data XML processing is performed and new
building data is stored in the building data storage. After that the Renderer is
notified by the Loader about the availability of new building data.

Renderer The Renderer is responsible for the integrated visualization of map
and building data. The basic graphical layer presents map data. For the integra-
tion of building data the Renderer maintains a set of overlays. Based on WGS84
which are the common base for map and building data building geometry can
be directly drawn on the map. The conversion of WGS84 coordinates to screen
coordinates is usually provided by map-based views directly.

The Renderer accesses the building data storage to obtain the data about
the building geometry. Based on the current view building data is represented in
different levels of detail. For each level of detail a separate overlay is maintained.
Based on the distance between the user position or focus point of the view
buildings are represented in three different levels. For the lowest level of detail
an icon is presented for each discovered building server (LOD1). For the next
higher level of detail the building outline is drawn (LOD2). At the highest level
of detail the complete floor plan is presented (LOD3).

In case of location changes and user interactions like changing the zoom
level of the view or scrolling on the map the Renderer triggers the Loader to
load building data. It gets notified by the Loader if new data is available in the
building data storage.

Locator The Locator is responsible for the positioning of the user device. It
manages a set of locator modules which access to device hardware for positioning.
They share a common interface for accessing location information (A1, A2).
The Locator configures, starts and stops the Locator modules dependent on
the proximity to buildings supporting the positioning technologies (A3). For
instance, to save energy its useful to switch on WiFi and GPS only if needed.
Indoors GPS can be usually deactivated while WiFi should be activated to get
location updates.

The Locator accesses the building server storage to obtain the information
required to configure the locator modules. For instance the WiFi access points
and their locations are stored in the location model. In case of location changes
the Locator sends notifications to the Renderer.

5 Evaluation

For evaluating our concepts we implemented MapBiquitous for desktop and
mobile devices. To test the MapBiquitous system two applications were imple-
mented, namely a WiFi analysis tool for the university campus and a location-
based game. We report on the experiences made during the implementation of
the MapBiquitous system and the applications.

MapBiquitous 13

5.1 MapBiquitous implementation

MapBiquitous server MapBiquitous has been implemented using standard
technologies on the server side. The directory service is based on the OpenLS
Directory Service standard and provides an interface for registering and looking
up resources with WGS84 coordinates and further attributes. The functionality
has been implemented based on Apache Tomcat, MySQL and JSP. HTTP re-
quests are processed by a JSP servlet, which parses the XML requests, extracts
the geo-window, queries the database to get all available building servers in that
area and generates the response messages.

For the provision of building servers the WFS implementation MapServer3,
particularly the package MapServer for Windows4 is used. MapServer is an
open source project running on different platforms including Microsoft Windows,
Linux and Mac OS X. It supports a rich set of raster and vector data formats,
geographic data sources and OGC standards (among them WMS, WFS, and
GML). MapServer for Windows runs with Apache HTTP Server and PHP.

We currently provide building data for the campus of TU Dresden. Building
geometry and semantic information about room numbers and usage of rooms is
available from an internal database for building management maintained by TU
Dresden. This data has to be modified to enable provision with WFS. For modi-
fication we use the open source tool Quantum GIS5. Information for positioning
and navigation is currently added manually using Quantum GIS. We currently
model the location of access points for WiFi positioning. According to the con-
cept separate layers are introduced for access point locations for each floor. In
addition we modeled fingerprint data and path information for navigation in
separate layers. With Quantum GIS the internal representation of building data
is transformed to ESRI shapefiles [6].

ESRI shapefiles consist of a main file (.shp) containing a sequence of records
of geometric elements, a dBASE table (.dbf) containing the attributes of all
geometric elements in the main file and an index file (.shx) which contains the
information to assign the attributes to the geometric elements. Coordinates of
geometric elements are represented based on WGS84.

The shapefiles can be directly used as data sources for MapServer. The con-
figuration of MapService is performed based on a map file (.map). The map file
contains all information about the data to be provided by WFS. It contains a
link to the local shapefiles, a definition of the URL for accessing the building
server, and information about the provides layers.

Currently all logic building servers are physically implemented on the same
server. We provide building data for four buildings at the university cam-
pus, namely the computer science faculty, the mensa, the lecture hall and the
”‘Barkhausenbau”’, a complex building used by different faculties.

3 http://mapserver.org/
4 http://www.maptools.org/ms4w/
5 http://www.qgis.org/

14 Thomas Springer

Fig. 4. Desktop client for MapBiquitous.

MapBiquitous client Two clients have been implemented for MapBiquitous:
a desktop client and a client for mobile devices.

Desktop client The implementation of the desktop client (see figure 4) is
based on Java Standard Edition. Visualization in the Renderer adopts the
JXMapViewer component of the SwingX-WS-Framework by SwingLabs6. The
component supports the visualization of maps from different providers, namely
OpenStreetMaps, Google Maps and Yahoo Maps. On top of the map layer over-
lays can be created. The user interface allows interaction with the map and
building data like zooming and dragging, searching for building servers, selec-
tion of layers for presentation (floor plans and WiFi access point locations).

The Locator supports GPS and WiFi positioning based on lateration. GPS
Positioning has been tested with the Holux GPSlim236 device, an external GPS
device which can be connected via USB or Bluetooth. The Bluetooth connec-
tion is mapped to a serial port. After defining a port for the connection to the
GPS device, GPS location information can be accessed via a CommPort. WiFi
positioning is based on PlaceLab. PlaceLab consists of the three components
Spotter for accessing the WiFi adapter, Mapper for the provision of access point
locations and Tracker for calculating the current position. The Mapper is con-
nected with the building data storage of the client to allow access of the access
point locations. With that information, the Tracker can be started to periodically
calculate the current position of the device.

The Loader uses HTTP connections based on the java.net library for access-
ing WFS. DOM4J and XPathQueries is used for XML processing. All available

6 http://www.swinglabs.org

MapBiquitous 15

Fig. 5. Android client for MapBiquitous with MapView and overlays (left) and
OpenGL view with floor details (right).

data is loaded from building servers immediately after discovery. In this way
after a short waiting time all building data is available.

Android client The mobile client was implemented using Android 2.2. The Ren-
derer uses the MapView and MapViewActivity provided by Android to integrate
Google Maps into applications. The MapView provides the possibility to create
overlays which is used by the Renderer to integrate building data and map data.
The user interface provides zooming and dragging for the MapView (see left part
of figure 5).

During the implementation we noticed a limitation of the MapView regarding
zooming. MapView only supports zooming up to level 19 (21 in satellite mode).
Higher zoom levels can be set but zooming is not performed. This zoom level
was not appropriate for presenting floor plan details. Thus, as a workaround
we implemented for the interaction with detailed floor plans a separate view
based on OpenGL. The view allows the selection of building levels and rooms
for visualization. Selected rooms are highlighted. If a room is selected, semantic
information for the room is presented (see right part of figure 5).

The Loader of the mobile client has been optimized for the access of building
data using wireless connections. Instead of loading the complete building geom-
etry data at once, it is loaded stepwise and only if necessary for visualization.

16 Thomas Springer

After discovering a new building server, the layer containing the building outline
is loaded and processed. Only if the zoom level is high and the building is still
visible floor plans are loaded. This is done dynamically based on the calculated
current position. If the user is outdoors, the ground floor is presented. If the
user is indoors, the current floor is determined as part of the user’s location and
only that floor is loaded. Anyway, to allow continuous positioning, all layers for
positioning with the building are loaded at once. The implementation of XML
processing is improved as well by using a SAX parser.

The Locator also supports WiFi positioning and GPS. For both technologies
Android Services are implemented which can be shared between different apps.
The services periodically calculate the current position of the device and prop-
agate location updates via intents. These intents can be received by registering
BroadcastReceivers for these intent types. GPS positioning is implemented
using the LocationManager API provided by Android. WiFi positioning is im-
plemented using PlaceLab in a version ported to Android. For porting PlaceLab
to Android a new Spotter was implemented which accesses the WiFiManager

API provided by Android.
The intents created by both services are received by the Renderer. The Ren-

derer itself creates intents to trigger the Loader. Similarly, the Loader creates
intents received by the Renderer if new layers are loaded, processed and inte-
grated into the building data storage as described in section 4.3.

5.2 Applications based on MapBiquitous

For testing the MapBiquitous system, we implemented two location-based ap-
plications, namely a WiFi analyzer and a location-based game called LocPairs.

WiFi analyzer The purpose of the WiFi analyzer is to allow the testing of
the WiFi infrastructure at the campus of TU Dresden. A network administrator
should be able to perform measurements at reference points, access former mea-
surements and analyze the infrastructure on the move to detect areas with low
communication quality or unavailable access points. As shown in the left part of
figure 6, the visualization of the app is based on MapBiquitous.

Because the WiFi infrastructure should be tested WiFi positioning has been
switched off. We assume that the administrator can visually detect its location.
Outdoor and indoor reference points can be defined directly by pointing on
the floor plan or map. Similarly, former measurements are represented by icons
directly on the map and floor plan. Details about measurements can be obtained
by pointing to the assigned icon.

The WiFi-Analyzer is implemented by adopting the Android client of Map-
Biquitous. The Renderer has been extended with new functionality for visualiz-
ing the reference points and former measurements as well as for the interaction
with the MapView to perform measurements at newly defined reference points.
The Loader, Locator and the MapBiquitous server-side was adopted without any
changes. For persistent storage of measurement data on a server, a separate web
service was implemented.

MapBiquitous 17

Fig. 6. MapBiquitous applications: WiFi-Analyzer (left) and LocPairs (right).

LocPairs LocPairs is a location-based game adopting the principle of the well-
known pairs game. The playing field for LocPairs is an area inside a building.
Pictures are represented by attaching 2D barcodes to doors of a floor. Scanning
a barcode means uncovering a picture.

The game is played by two teams with two players each. Alternately, each
team is in turn to find a pair of pictures. Players have to move to the right door
within a limited time. If both players have reached the doors, they can scan
the barcode and uncover the pictures. If they found a pair the can continue,
otherwise it is the other teams turn.

The purpose of the game is to simplify the maintenance of a fingerprint
database. Each time a barcode is scanned the fingerprint of that location is
measured. Since the location of barcodes is known, the fingerprints can be as-
signed with that location and sent to the fingerprint database.

LocPairs was implemented based on the Mobilis plattform [12], a service-
based platform for implementing mobile social applications. The Android client
of MapBiquitous was integrated with the client-side services of Mobilis. To create
the application, the Renderer was extended to create the map-based view for the
game. The other views were added using separate activities. The MapBiquitous
server-side was adopted as is and provided in parallel to the Mobilis server.

18 Thomas Springer

5.3 Discussion

The experiences and practical tests carried out with the implementation of the
MapBiquitous system have demonstrated the feasibility of major design deci-
sions. The decentralized architecture of building servers enables a natural bal-
ancing of the load, high availability of building data and robustness of the sys-
tem (A11, A12). Furthermore, it allows building owners to decide if and which
building data is published and which technologies are used to represent and
process building data. The only technological requirement is the usage of WFS
and GML. Anyway, by extending the Loader to support different modules for
different formats and protocols even this requirement could be relaxed.

The decision to follow a fat client approach requires higher effort for creat-
ing clients. In addition processing of building data is performed mainly on the
client side. Using WFS and GML as standard technologies requires XML pro-
cessing which is challenging for mobile clients. In our first implementation of
the Android client on a Nexus One Android device it took about 3 seconds to
load and process the building outline and 40 seconds for the current floor plan.
Loading and processing has been done in a sequential way. After the creation of
parallel threads for loading and optimization of XML-processing using a SAX
parser, times could be reduced to 1,5 seconds to load and process the building
outline and about 8 seconds for the current floor plan. To further reduce waiting
times for the user we implemented caching and prefetching of building data. In
combination with the three introduced levels of details for presenting building
data loading and processing is now transparent to the user. Advantages of the
fat client approach are the higher flexibility for processing building data offered
as vector data instead of raster images. In addition, positioning has to be per-
formed on the client side anyway. With a fat client positioning and visualization
can be implemented in a flexible way.

The consequent adoption of WGS84 simplifies the integration of building
and map data because transformation of coordinates between different reference
systems is avoided (A5).

The effort for creating and maintaining building models and information for
positioning is high. For modern buildings digital building data might already
exist. For public buildings data often exists for building management which is
often already constantly updated as it is the case for our university campus.
Anyway, updates usually have to be performed manually. Even worse, for WiFi
infrastructures access point locations or fingerprinting data might not be avail-
able. Crowd-sourcing approaches as presented with OpenRoomMap [11] and the
LocPairs application could help but need deeper exploration (A7, A10).

As a result of our experiments with WiFi positioning, accuracy of lateration
based on known locations of access points is often to low for indoor applications.
Caused be influences of device type, device orientation, access point constellation
and moving persons in practice, WiFi based positioning is far away from accuracy
in the range of meters. Approaches based on WiFi need further improvements
and should be combined with alternative approaches like 2D barcodes, inertial
positioning, Bluetooth or NFC.

MapBiquitous 19

The publication of building data causes security risks. For instance the knowl-
edge about the usage type of rooms could motivate burglars. Furthermore, the
availability of precise positioning technologies and indoor information influences
privacy. Such information should not be published without the knowledge and
agreement of the involved people. To avoid the publication of security sensitive
building data, access control could be established for a subset of that data. By
offering only a subset of data to the public such risks can be avoided.

6 Conclusion

In this paper a novel approach is presented to integrate technologies for indoor
and outdoor location-based services in a seamless manner. We introduced a
decentralized infrastructure of building servers providing explicitly modeled data
about the building geometry, positioning and navigation. Building data is offered
by open standards, namely WFS and GML to achieve high interoperability of the
system. At client side building data is combined with map data for visualizing
indoor and outdoor locations in an integrated manner. In addition, information
for positioning is exploited at client side for indoor positioning with different
technologies. The evaluation has shown that major design decisions are feasible
and location-based services can be created adopting the MapBiquitous system.
In summary, the presented work is a first step towards the envisioned goal.

Future work will address the named challenges to improve the MapBiquitous
approach. Working towards an application for navigating within the campus of
TU Dresden, data of all buildings has to be integrated into MapBiquitous WFS
servers. Moreover, the issue of providing accurate indoor positioning has to be
solved by following a WiFi fingerprinting approach. The work for navigation
across buildings and outdoor is currently in an experimental state and has to be
completed. With the availability of the campus navigation application we plan
to carry out a field trial with a larger user group. Further research goals are
the exploration of crowd-sourcing approaches as presented with the LocPairs
application to decrease the effort for maintaining building, positioning and nav-
igation data and the combination of indoor positioning approaches for device
independent usage.

Acknowledgment The authors would like to thank the many contributors of
MapBiquitous. Jan Scholze developed the concepts and prototype of the initial
system and desktop client during his student and master thesis. The students
of the practical course on development of mobile and distributed systems imple-
mented and evaluated the current Android prototype and the two introduced
location-based services.

References

1. J. Baus, A. Krüger, and W. Wahlster, “A resource-adaptive mobile navigation
system,” in Proceedings of the 7th international conference on Intelligent user in-

20 Thomas Springer

terfaces, ser. IUI ’02. New York, NY, USA: ACM, 2002, pp. 15–22.
2. C. Becker and F. Dürr, “On location models for ubiquitous computing,” Personal

Ubiquitous Comput., vol. 9, pp. 20–31, January 2005.
3. W. Ching, R. J. Teh, B. Li, and C. Rizos, “Uniwide wifi based positioning system,”

in Technology and Society (ISTAS), 2010 IEEE International Symposium on, june
2010, pp. 180 –189.

4. J. de la Beaujardiere, “OpenGIS web map server implementation specification,”
Open Geospatial Consortium Inc., Tech. Rep. OGC 06-042, Version 1.3.0, 2006.

5. G. Dedes and A. Dempster, “Indoor gps positioning - challenges and opportuni-
ties,” in Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd,
vol. 1, sept., 2005, pp. 412 – 415.

6. I. E. Environmental Systems Research Institute, “Esri shapefile technical descrip-
tion, an esri white paperjuly 1998,” Environmental Systems Research Institute,
Inc. (ESRI), Tech. Rep., 1998.

7. H. Leppräkoski, S. Tikkinen, A. Perttula, and J. Takala, “Comparison of indoor
positioning algorithms using wlan fingerprints,” in Proceedings of European Navi-
gation Conference Global Navigation Satellite Systems (ENC-GNSS 2009), 2009.

8. M. Mabrouk, “OpenGIS location services (openls): Core services,” Open Geospa-
tial Consortium Inc., Tech. Rep. OGC 07-074, version 1.2, 2008.

9. M. R. McCarthy and H. L. Muller, “RF free ultrasonic positioning,” Wearable
Computers, IEEE International Symposium, p. 79, 2003.

10. C. Portele, “OpenGIS geography markup language (gml) encoding standard,”
Open Geospatial Consortium Inc., Tech. Rep. OGC 07-036, Version 3.2.1, 2007.

11. A. Rice and O. Woodman, “Crowd-sourcing world models with openroommap,”
in Pervasive Computing and Communications Workshops (PERCOM Workshops),
2010 8th IEEE International Conference on, 29 2010-april 2 2010, pp. 764 –767.

12. D. Schuster, T. Springer, and A. Schill, “Service-based development of mobile real-
time collaboration applications for social networks,” Mannheim, Germany, 2010.

13. A. Serra, D. Carboni, and V. Marotto, “Indoor pedestrian navigation system using
a modern smartphone,” in Proceedings of the 12th international conference on
Human computer interaction with mobile devices and services, ser. MobileHCI ’10.
New York, NY, USA: ACM, 2010, pp. 397–398.

14. U. Steinhoff and B. Schiele, “Dead reckoning from the pocket - an experimen-
tal study,” in Pervasive Computing and Communications (PerCom), 2010 IEEE
International Conference on, 29 2010-april 2 2010, pp. 162 –170.

15. P. P. A. Vretanos, “OpenGIS web feature service 2.0 interface standard,” Open
Geospatial Consortium Inc., Tech. Rep. OGC 09-025r1 and ISO/DIS 19142, Ver-
sion 2.0.0, 2010.

16. R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The active badge location sys-
tem,” ACM Trans. Inf. Syst., vol. 10, pp. 91–102, January 1992.

17. A. Ward, A. Jones, and A. Hopper, “A new location technique for the active office,”
Personal Communications, IEEE, vol. 4, no. 5, pp. 42 –47, oct 1997.

18. O. Woodman and R. Harle, “Pedestrian localisation for indoor environments,”
in Proceedings of the 10th international conference on Ubiquitous computing, ser.
UbiComp ’08. New York, NY, USA: ACM, 2008, pp. 114–123.

19. O. Woodman and R. Harle, “RF-Based initialisation for inertial pedestrian track-
ing,” in Proceedings of the 7th International Conference on Pervasive Computing,
ser. Pervasive ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 238–255.

	MapBiquitous - An Approach for Integrated Indoor/Outdoor Location-based Services
	Thomas Springer
	Introduction
	Related Work
	Requirements
	MapBiquitous Approach
	Building model
	Building data access
	Client architecture
	Building data storage
	Loader
	Renderer
	Locator

	Evaluation
	MapBiquitous implementation
	MapBiquitous server
	MapBiquitous client

	Applications based on MapBiquitous
	WiFi analyzer
	LocPairs

	Discussion

	Conclusion
	References

