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Abstract
Based on an application in the field of server consolidation, we consider the one-
dimensional cutting stock problem with nondeterministic item lengths. After a short
introduction to the general topic we investigate the case of normally distributed item
lengths in more detail. Within this framework, we present two lower bounds as well
as two heuristics to obtain upper bounds, where the latter are either based on a related
(ordinary) cutting stock problem or an adaptation of the first fit decreasing heuris-
tic to the given stochastical context. For these approximation techniques, dominance
relations are discussed, and theoretical performance results are stated. As a main con-
tribution, we develop a characterization of feasible patterns by means of one linear
and one quadratic inequality. Based on this, we derive two exact modeling approaches
for the nondeterministic cutting stock problem, and provide results of numerical sim-
ulations.
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1 Introduction

Cloud computing and virtualization have enabled a large number of businesses to share
physical computing resources in data centers without compromising on their privacy
and security requirements; in particular, since their services or applications can be
encapsulated inside secure virtualmachineswhich can then execute on physical servers
along with other virtual machines. In this way, computing resources can be utilized
efficiently and the setup and operating costs of IT infrastructure can be reduced signif-
icantly. This approach has also contributed to the reduction of the energy consumption
of the IT infrastructure worldwide (Armbrust et al. 2010; Calheiros et al. 2011). Nev-
ertheless, for fear of violating service level agreements (SLA) during peak times,
independent studies have revealed that cloud providers still supply more resources
(servers) than actually are required (Chaisiri et al. 2012). As a result, a large number
of servers in data centers run idle or are underutilized most of the time even though
their power consumption in these states amounts to more than 60% of their peak power
consumption (Dargie 2015; Möbius et al. 2014).

One of the solutions for this problem is dynamic service consolidation (Beloglazov
and Buyya 2012; Dabbagh et al. 2015). By estimating the aggregate resource demand
of incoming workloads in a data center, the cloud provider can allocate the optimal
number of servers and turns off all idle or underutilized servers. If a surge in workload
is perceived or anticipated more servers can be activated just in time.

Different optimization strategies have been proposed in the literature to enable
dynamic service consolidation. One of these is the use of cutting stock problems (de
Carvalho 2002; Delorme et al. 2016; Gilmore and Gomory 1961; Kantorovich 1939;
Martinovic et al. 2018) (also known as bin packing problem (BPP), especially for
highly heterogeneous input lengths and/or very small demand values) or variants of it.
The prevailing idea is that, given a certain number of distinct services (or jobs) each
requiring an amount ci of resources to process its workload, and a large number of
servers each having a maximum computing capacity of C , the cutting stock problem
strives to allocate the minimum number of servers which can handle the aggregate
workload, assuming that ci ≤ C holds for all i . In practice, many application-oriented
aspects can be added as additional objectives. For instance, one can either minimize
resource consumption but with the possibility of degrading performance (e.g., in terms
of job completion time or reduced resolution), or, alternatively, optimize the perfor-
mance of the services but with the possibility of underutilizing some of the servers.

In the literature the cutting stock problem is used to deal with static workloads,
where the resource demand of a service does not change or changes only slowly over
time. For instance, an early solution strategy based on the bin packing problem has
been dealt with in Coffman et al. (1978). Due to theNP-hardness of these scheduling
problems,many publications also address approximation schemes, e.g., by fixing some
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Fig. 1 A schematic of an assignment of two jobs (illustrated by their probability density functions p.d.f.)
to one server. The capacity is exceeded with probability of ≈ 8.2%

job characteristics (Scharbrodt et al. 1999). Nowadays, work is done to improve the
corresponding algorithms. Among others, the parallelization of the solution strategies
is addressed in Ghosh and Gebremedhin (2016), whereas the porting to data centers
is considered in Grigoriu and Friesen (2017) and Kim et al. (2013).

Assuming static workloads, however, does not reflect the characteristics of typical
internet applications and data centers where the size of incoming workloads consid-
erably fluctuates over time (Yu et al. 2016). In this paper, we therefore investigate the
applicability and usefulness of the cutting stock problem (or bin packing problem) to
deal with stochastic (non-deterministic) workloads. More precisely, we formally con-
sider a given list J1, . . . ,Jn of jobs (or services, tasks), hereinafter mostly referred
to by their indices i ∈ I := {1, . . . , n}, and an (unlimited) number of servers (or pro-
cessors, CPUs, machines) of capacity C ∈ N. Note that it is always possible to obtain
an equivalent problem instance where the capacity C is fixed to some specific value
(e.g., C = 1 or C = 100). Such a representation (for instance with C = 1) can be
chosen whenever the integrality of other input data is not important for the considered
solution strategy. Assuming that the resource demand (i.e., theworkload) ci of any ser-
vice i ∈ I follows a given probability distribution Pi (e.g., a normal distribution with
parameters μi and σ 2

i ), we aim at assigning the considered jobs to the lowest possible
number of servers, allowing the possibility of overloading these servers by a certain
amount1, as illustrated in Fig. 1. More rigorously, an assignment of jobs to a server is
called feasible, as long as a givenmaximum exceeding probability ε > 0 ismaintained.

Consequently, the given problem can be interpreted as a generalization of the well-
known cutting stock problem (CSP) with respect to nondeterministic item lengths,
hereinafter referred to as the nondeterministic cutting stock problem (or ND-CSP for
short). The CSP is one of the most important problems in combinatorial optimization
(see Delorme et al. 2015, Fig. 1 for the trend of related publications); the study of
its structure and applications already started in 1939, when Kantorovich (1939) for-
mulated the first model to cope with that problem. Therein, based on an upper bound
for the number of bins, an assignment model with binary and integer variables is pro-

1 Alternatively, this goal also corresponds to the latency of execution since a server utilization (significantly)
exceeding C is manifested in the form of latency.
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posed. In 1961, Gilmore and Gomory introduced a pattern-based approach (Gilmore
andGomory 1961),whose continuous relaxation is known to be very tight (Scheithauer
and Terno 1995). But, particularly for instances of large size, this model cannot be
tackled by standard ILP solvers due to its possibly huge number of variables. However,
observe that at least the continuous relaxation of thismodel can efficiently be dealt with
by means of column generation (Scheithauer 2018). In order to solve the ILP, branch-
and-price techniques (see Belov and Scheithauer 2006 or Vance 1998) can be applied.
Note that, in this case, the computational behavior strongly depends on the choice
of an appropriate branching rule. A further way to tackle the integer problem is the
consideration of other modeling approaches, most notably the arcflow model (de Car-
valho 2002) and the one-cut model (Dyckhoff 1981). Good overviews and surveys on
theoretical and numerical properties of these approaches are provided by de Carvalho
(2002), Delorme et al. (2015) andMartinovic et al. (2018). In recent years, a significant
body of work has also been done to investigate and improve the corresponding models
(Brandão and Pedroso 2016; Martinovic et al. 2018) and algorithms (Brandão 2016).

Contrary to that, stochastical aspects of the cutting stock problem have only been
considered with respect to the objective value coefficients (Perboli et al. 2012), lower
bounds and the asymptotic behaviour for uniformly distributed item lengths (Lueker
1983), expected value based analyses of certain heuristics (Coffman and Luecker
1991), or uncertainty in the order of appearance (Ross and Tsang 1989). To the best
of our knowledge, there is no related work concerning exact solution approaches to
cutting stock problems (or bin packing problems) with nondeterministic item sizes.

The paper is organized as follows: in the next section, we briefly repeat the most
important definitions and assumptions for the optimization problem under consid-
eration. Most importantly, the relationship to the ordinary bin packing problem is
discussed, and the assumption of normally distributed input data is justified from dif-
ferent perspectives. As a main contribution, we present a compact characterization of
the pattern set (see Sect. 3) that (later) leads to two exact modeling approaches with
binary variables, linear and quadratic constraints (see Sect. 5). In Sect. 4, we show
how lower and upper bounds for the optimal objective value of the ND-CSP can be
obtained, where the latter are based on both a deterministic cutting stock problem and
an adapted first fit decreasing algorithm. Moreover, simulation results and an outlook
on future research are provided.

2 Preliminaries and assumptions

As described in the introductory section, the considered server consolidation problem
can be interpreted as a nondeterministic cutting stock problem. Since the assignment
of jobs to servers rather corresponds to the perspective of a packing problem (than
a cutting scenario), from now on, the terminology of the bin packing problem will
be applied for the sake of an easier comprehension. To define the problem under
consideration, we formally use c := (c1, . . . , cn)� and P := (P1, . . . ,Pn):

Definition 1 A tuple E = (n, c,C,P, ε) consisting of n ∈ N items of random size
ci with probability distribution Pi (i ∈ I ), a (deterministic) bin capacity C and a
maximum exceeding probability (MEP) ε > 0 is called instance of the nondetermin-
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istic cutting stock problem (ND-CSP). Thereby, the item sizes ci are assumed to be
(mutually) stochastically independent.

In accordance with the ideas mentioned in the introduction, the objective of the ND-
CSP is to determine the minimal number of bins that is required to pack all given items
in a feasible way. Thereby, of course, not only the total number of bins but also the
specific assignments of items to these bins is of interest.

Definition 2 Any assignment of items to a single bin, that respects theMEP condition,
is called (feasible) pattern. More precisely, for B := {0, 1} and an instance E =
(n, c,C,P, ε) of the ND-CSP, a pattern can be represented by a binary vector a ∈ Bn

with P
[
c�a > C

] ≤ ε, where the i-th component of a indicates whether item i ∈ I
is packed or not.

Then, we have the following relationships between the terms used for the bin packing
and the server consolidation perspective:

– An item of the ND-CSP corresponds to a job of the consolidation problem.
– The bin (of capacity C) refers to a server (of capacity C).
– A (feasible) pattern corresponds to a (feasible) consolidation.

A first important property concerning the solvability of an instance is given by the
following theorem.

Theorem 1 Let E = (n, c,C,P, ε) be an instance of the ND-CSP. Then, the instance
is solvable if and only if P[ci > C] ≤ ε holds for all i ∈ I .

Proof If P[ci > C] ≤ ε holds for all i ∈ I , an arbitrary item i ∈ I can be assigned to
one single bin without violating the MEP condition. Hence, there exists at least one
feasible solution. Since there are at most finitely many (feasible) patterns, the ND-CSP
is solvable. If we assume that P[ci > C] > ε holds for some i ∈ I , then there is no
possibility to pack this item into a bin. Hence, the problem is not solvable. ��
Consequently, we formally have to demand that P[ci > C] ≤ ε holds for all i ∈ I
in order to ensure solvability, but this property is always given in practically relevant
scenarios (like the application to server consolidation).

In order to interpret theMEP condition for a pattern, we have to know the particular
distribution of the random variable c�a which is given by

P(a) := ×
i∈I : ai=1

Pi , (1)

where the product sign shall be interpreted as the convolution. Note that, in the general
case, this formula will lead to very hard integrals which may not possess a closed-
form solution. Amore detailed consideration of possible distributions that are “stable”
under the convolution operator (in some sense) is part of the following remark.

Remark 1 In general, there are not many probability distributions that can be chosen
for the workloads ci in order to allow an exact calculation of the convolution formula
(1), see2 Balakrishnan and Nevzorov (2003). Besides, most of these distributions

2 A good and concise overview can also be found at https://en.wikipedia.org/wiki/List_of_convolu
tions_of_probability_distributions.
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– either require some (or even all) of the distribution parameters to be equal for
all jobs i ∈ I (e.g., the gamma distribution, the exponential distribution or the
binomial distribution),meaning that everyworkload ci is (almost) based on exactly
the same specific distribution,

– or cannot be reasonably interpreted for our intended practical purposes (e.g., the
Bernoulli distribution).

However, the Poisson distribution, the Cauchy distribution and the normal distribution
are not affected by these two restrictions. Note that, in the first two cases, the problem
under consideration can be reformulated as a (possibly slightly modified) ordinary bin
packing problem:

– Consider workloads ci ∼ POI(λi ) following a Poisson distribution for all i ∈ I .
Then, we have c�a ∼ POI (∑i∈I aiλi

)
for any pattern vector a ∈ Bn . Addi-

tionally, for any given ε ∈ (0, 1) there is a uniquely defined λ(ε) ∈ R+, so that
P[X > C] ≤ ε is true whenever X ∼ POI(λ) with λ ≤ λ(ε) holds. Due to this
observation, the feasibility condition can be stated as

∑

i∈I
aiλi ≤ λ(ε),

which corresponds to an ordinary bin packing condition with modified capacity
λ(ε).

– Consider workloads ci ∼ CAU(si , ti ) following a Cauchy distribution for all
i ∈ I . Then, we have c�a ∼ CAU (∑

i∈I ai si ,
∑

i∈I ai ti
)
for any pattern vector

a ∈ Bn . Additionally, for any fixed ε ∈ (0, 1) the quantile function QX (ε) of a
Cauchy distribution X ∼ CAU(s, t) is given by

QX (ε) = t + s · tan
(

π

(
ε − 1

2

))
.

Due to this observation, we have

P[c�a > C] ≤ ε ⇐⇒ C ≥ Qc�a(1 − ε)

⇐⇒ C ≥
∑

i∈I
ai ti +

(
∑

i∈I
ai si

)

tan

(
π

(
1 − ε − 1

2

))

⇐⇒ C ≥
∑

i∈I
ai

[
ti + si tan

(
π

(
1

2
− ε

))]
,

meaning that we obtain an ordinary bin packing constraint.

The key property used in the previous examples is given by the fact that there is no
nonlinearity with respect to those parameters of the convolution that are used for the
quantile function. More precisely, the feasibility condition of any kind of distribution
whose parameters are inherited in a completely linearwaywill result in a (modified) bin
packing problem. Hence, besides exact solution approaches also well-known heuristic
methods can be used to obtain (nearly) optimal solutions.
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Remark 2 As regards the ordinary bin packing problem, the objective value FFD(E)

(of a given instance E) obtained by the FFD heuristic is known to satisfy

OPT(E) ≤ FFD(E) ≤
⌊
11

9
· OPT(E) + 6

9

⌋
,

where OPT(E) denotes the optimal value of E , see Dósa et al. (2013). Hence, very
good approximations can be obtained assuming that the presorting of items is done
with respect to the possibly modified item sizes wi , i ∈ I , like

wi = ti + si tan

(
π

(
1

2
− ε

))

for the case of a Cauchy distribution.

For the normal distribution, linearity only holds for the parameters μ and σ 2, but not
for σ itself. Since the latter is important to obtain the quantiles of the (standardized)
normal distribution, this case cannot be treated by state-of-the-art solution methods
and requires a separate investigation. Consequently, we henceforth assume the item
lengths to be normally distributed random variables, i.e., we have ci ∼ N (μi , σ

2
i )

for all i ∈ I . This assumption may not hold for specific practical problems, but many
realistic workloads or server utilization characteristics exhibit normal distributions,
see for instance Jin et al. (2012) or Yu et al. (2016). Hence, this assumption is not too
restrictive. Another reason (that may sometimes be applicable) to consider normally
distributed workloads is given by the following approximation argument:

Remark 3 In a few scenarios it may be known (e.g., based on practical experience,
heuristic solutions or appropriate estimations) that there is an optimal solution exhibit-
ing a sufficiently large number M ∈ N of jobs on each required server. Then, the
distribution of c�a (for the corresponding pattern vectors a) can be approximated by
the normal distribution as a consequence of the central limit theorem (CLT).Moreover,
Cramér’s theorem (Cramér 1936) then implies that also the given workloads ci can be
considered to be normally distributed without changing the optimal value.

3 On the characterization of patterns

In order to ease the notation, we define μ = (μ1, . . . , μn)
� and σ = (σ 2

1 , . . . , σ 2
n )�,

where μi and σ 2
i represent the mean and the variance of the workload ci of job i ∈ I ,

respectively. Our investigations are based on the following well-known result:

Lemma 1 Let X ∼ N (μX , σ 2
X ) be a normally distributed random variable with mean

μX and variance σ 2
X . Moreover, consider an arbitrary but fixed ε ∈ (0, 1). Then there

is a uniquely defined qε ∈ R such that

P [X > μX + qε · σX ] = ε (2)
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holds.3 This value qε does not depend on μX and σ 2
X .

Note that the assertions of Lemma 1 would hold for any random variable X with mean
μ and variance σ 2 except that qε might be nonunique if the distribution function of X
is not strictly monotonically increasing. Moreover, it can possibly be recommendable
to use a reasonably rounded up approximation q̃ε for qε. In this case, we would have
to use the relation

P [X > μX + q̃ε · σX ] ≤ ε

in (2) which still leads to feasible patterns.
For normally distributed workloads, the convolution formula (1) from the previous

section can easily be computed:

Lemma 2 For each vector a ∈ Bn, the random variable c�a is normally distributed
with

c�a ∼ N
(
μ(a), σ 2(a)

)
:= N

(
μ�a, σ�a

)
.

Most commonly, this observation is shown by means of the corresponding character-
istic functions. However, a survey of different proofs of this well-known result can be
found in Eisenberg and Sullivan (2008). Based on this lemma, we obtain the following
statement.

Lemma 3 A vector a ∈ Bn represents a pattern if and only if C ≥ μ�a + qε · √σ�a
holds.

Proof Because of Lemma 1, we obtain the equivalence

P
[
c�a > C

]
≤ ε ⇐⇒ C ≥ μ(a) + qε ·

√
σ 2(a).

Then the statement immediately follows from μ(a) = μ�a and σ 2(a) = σ�a. ��
Hence, the set P(E) of all patterns of an instance E can be described by

P(E) =
{
a ∈ Bn

∣∣∣μ�a + qε ·
√

σ�a ≤ C
}

. (3)

Note that a pattern refers to one possibility to assign a subset of jobs to a single server.
Unfortunately, the current representation of the pattern set is nonlinear and, therefore,
rather inappropriate for off-the-shelf solution methods that are known from ordinary
cutting and packing problems.

To overcome this problem we now derive a more appropriate representation of the
pattern set. Based on Lemma 3, we obtain that the condition

C − μ(a) ≥ qε

√
σ�a (4)

ensures the pattern property of a vector a ∈ Bn . A more suitable characterization is
given by the following main contribution.

3 More precisely, we have qε = QX (1 − ε), where QX is the quantile function of X ∼ N (0, 1).

123



Cutting stock problems with nondeterministic item lengths…

Theorem 2 Assume that 0 < ε ≤ 0.5 holds. Then, a vector a ∈ Bn represents a
pattern if and only if

∑

i∈I

(
q2ε · σ 2

i + 2Cμi − μ2
i

)
ai − 2

∑

i∈I

∑

j>i

μiμ j ai a j ≤ C2 (5)

and C ≥ μ(a) hold.

Proof Let a ∈ Bn represent a pattern. Since 0 < ε ≤ 0.5 holds, we have qε ≥ 0 by
(2). Therefore, inequality (4) leads to C ≥ μ(a). By squaring both sides of (4) we
obtain

(C − μ(a))2 ≥
(
qε ·

√
σ�a

)2 = q2ε · σ�a = q2ε ·
∑

i∈I
σ 2
i ai . (6)

According to μ(a) = μ�a, the term (C − μ(a))2 on the left hand side results in

C2 − 2C
∑

i∈I
μi ai +

⎛

⎝
∑

i∈I
μi ai

⎞

⎠

2

= C2 − 2C
∑

i∈I
μi ai +

∑

i∈I

∑

j∈I
μiμ j ai a j

= C2 −
∑

i∈I

(
2Cμi − μ2

i

)
ai + 2

∑

i∈I

∑

j>i

μiμ j ai a j ,

where ai = a2i for binary ai was used in the last line. So far, we have transformed
condition (4) into

C2 −
∑

i∈I

(
2Cμi − μ2

i

)
ai + 2

∑

i∈I

∑

j>i

μiμ j ai a j ≥ q2ε ·
∑

i∈I
σ 2
i ai .

Rearranging the terms leads to (5).
Note that, for the reverse direction, the same steps can be applied. Here, the property

C ≥ μ(a) is important to take square roots on both sides of (C − μ(a))2 ≥ (qε ·√
σ�a)2 [see (6)] without causing a case study. ��

Remark 4 Note that, in practical applications, we always have ε  1, and hence the
condition of the above theorem is satisfied. Moreover, observe that (5) can also be
written as ∑

i∈I

(
q2ε · σ 2

i + 2Cμi

)
ai − a�μμ�a ≤ C2 (7)

which involves the negative (semi-)definite rank-one-matrix−μμ�, i.e., the left-hand-
side of (7) represents a concave function.

4 Lower and upper bounds for the optimal value of the ND-CSP

Since the ordinary bin packing problem (or cutting stock problem) is contained in the
set of all ND-CSP (namely for σi = 0, i ∈ I ), the problem under consideration is
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obviously NP-hard meaning that approximation algorithms and heuristic solutions
are of great scientific interest. Hence, before dealing with exact solution approaches,
we will present different possibilities to obtain lower and upper bounds for the optimal
objective value of theND-CSP.Note that these information can also be helpful to (later)
reduce the numbers of variables and/or constraints in the exact modeling approaches.

4.1 Lower bounds

Let E = (n, c,C,P, ε) denote an instance of the ND-CSP with normally distributed
item sizes. A first (almost trivial) lower bound is based on the quantity

γ := γ (E) := max

{
∑

i∈I
ai

∣∣∣∣
∣
a = (a1, . . . , an)

� ∈ P(E)

}

(8)

that indicates the maximum number of jobs (or items) that can be contained in one
single consolidation (or pattern). Because of (3), the constraint a ∈ P(E) in problem
(8) is nonlinear. Therefore, reasonable approximations of γ can be of interest. In
particular, an easily computable upper bound for γ can be obtained by solving the
binary knapsack problem

γ0 := γ0(E) := max

{
∑

i∈I
ai

∣
∣∣∣∣

∑

i∈I
μi ai ≤ C, ai ∈ B , i ∈ I

}

. (9)

Then, the value

lb1 := lb1(E) :=
⌈
n

γ0

⌉
(10)

obviously states a lower bound for the optimal objective value. Observe that this
value does not make use of all the available instance-specific input data, since lb1 is
independent of the variances σ 2

i , i ∈ I .
A more sophisticated way to obtain a lower bound is given by the following obser-

vation:

Lemma 4 Let 0 < ε ≤ 0.5 be given, then the value

lb2 := lb2(E) :=
⎡

⎢
⎢⎢

1

C

⎛

⎝
∑

i∈I
μi + qε

√∑

i∈I
σ 2
i

⎞

⎠

⎤

⎥
⎥⎥

(11)

defines a lower bound for the optimal objective value z� of the ND-CSP with normally
distributed workloads ci ∼ N (μi , σ

2
i ), i ∈ I .

Proof Consider an optimal solution of the ND-CSP with objective value z�. Then,
any of the patterns (belonging to this solution) has to satisfy the feasibility condition
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presented in Lemma 3. Let Ik ⊆ I denote the items of pattern k, then we have

∑

i∈Ik
μi + qε ·

⎛

⎝
∑

i∈Ik
σ 2
i

⎞

⎠

1/2

≤ C

for k ∈ {1, . . . , z�}. Summing up all these conditions leads to

z�∑

k=1

⎡

⎢
⎣
∑

i∈Ik
μi + qε ·

⎛

⎝
∑

i∈Ik
σ 2
i

⎞

⎠

1/2
⎤

⎥
⎦ ≤ z� · C

or, equivalently,

∑

i∈I
μi + qε

z�∑

k=1

⎛

⎝
∑

i∈Ik
σ 2
i

⎞

⎠

1/2

≤ z� · C .

Due to
z�∑

k=1

⎛

⎝
∑

i∈Ik
σ 2
i

⎞

⎠

1/2

≥
√√√√

z�∑

k=1

∑

i∈Ik
σ 2
i =

√∑

i∈I
σ 2
i

we finally obtain

z� ≥ 1

C

⎛

⎝
∑

i∈I
μi + qε

√∑

i∈I
σ 2
i

⎞

⎠

whenever qε ≥ 0 is satisfied (i.e., for 0 < ε ≤ 1/2). Then the claim follows by
rounding up the right hand side (which is possible due to z� ∈ Z+). ��
Whenever there are several bounds the question of dominance relations arises. In what
follows, we will clarify that neither lb1(E) > lb2(E) nor lb2(E) > lb1(E) holds for
all instances E of the ND-CSP. Without loss of generality, we use C = 1 for the
corresponding exemplary instances:

– Consider an instance E with normally distributed workloads ci ∼ N (μi , σ
2
i )with

μi = 1/3+ δ (for some sufficiently small δ > 0) and σi := σ for all i ∈ I . Then,
we obviously have γ0 = 2 which leads to lb1 = �n/2�. On the other hand, we
obtain

lb2 =
⌈n
3

+ n · δ + qε

√
n · σ

⌉
.

Altogether, this leads to
lim
n→∞ (lb1 − lb2) → ∞

for appropriately chosen values of δ and σ .
– Consider an instance E with n = 2k (for k ∈ N) normally distributed workloads
ci ∼ N (μi , σ

2
i ) satisfying μi = 2/n (for i = 1, . . . , k), μi = 1 − δ (for i =
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k + 1, . . . , n and some sufficiently small δ > 0), and σi := σ for all i ∈ I . Then,
we have γ0 = n/2 which implies lb1 = 2. On the other hand, we obtain

lb2 =
⌈
1 + n

2
(1 − δ) + qε

√
n · σ

⌉
.

Altogether, this leads to
lim
n→∞ (lb2 − lb1) → ∞

for appropriately chosen values of δ and σ .

As these examples show, there is no dominance relation between these two lower
bounds. More interestingly, the absolute difference between both values can be arbi-
trarily large. Therefore, and since both computations can be done with very low effort,
the value

lb := lb(E) := max {lb1(E), lb2(E)} (12)

will be used as a general lower bound in our simulations.

Remark 5 Interestingly, the second set of exemplary instances also shows that

lim
n→∞

lb2(E)

lb1(E)
→ ∞

holds for appropriately chosen values of δ and σ , i.e., the ratio lb2(E)/lb1(E) of both
lower bounds is unbounded. However, as regards the opposite fraction lb1(E)/lb2(E)

we have

sup
E

lb1(E)

lb2(E)
= 2.

An exemplary sequence of instances leading to this upper bound is given by C = 1,
μi = μ = 1/2+ δ and σi = σ for all i ∈ I (with sufficiently small values δ → 0 and
σ → 0).

4.2 Upper bounds

In contrast to lower bounds, upper bounds of minimization problems are often based
on the construction of feasible solutions. Hence, not only an approximation for the
optimal objective value but also a feasible consolidation strategy will be obtained.

4.2.1 An upper bound based on a deterministic CSP

The first approach consists in transforming the given nondeterministic setting to a
scenario with modified (but deterministic) item lengths so that state-of-the-art solution
approaches can directly be applied. To this end, let us go back to the definition

P(E) =
{
a ∈ Bn | μ�a + qε ·

√
σ�a ≤ C

}
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of the pattern set for a moment. Obviously, one of the main drawbacks of this descrip-
tion is the nonlinear constraint. Fortunately, assuming 0 < ε ≤ 1/2 (in order to ensure
qε ≥ 0), the following observation can be made: thanks to

√∑

i∈I
ui =

∥∥
∥
(√

u1, . . . ,
√
un
)�∥∥
∥
2

≤
∥∥
∥
(√

u1, . . . ,
√
un
)�∥∥
∥
1

=
∑

i∈I

√
ui (13)

for all u1, . . . , un ≥ 0, we obtain a sufficient (and linear) condition for a ∈ Bn to be
a pattern by means of

μ�a + qε · r�a ≤ C,

where r = (

√
σ 2
1 , . . . ,

√
σ 2
n )� = (σ1, . . . , σn)

�. Hence, a subset of P(E) with linear
description is given by

P̃(E) =
{
a ∈ Bn | (μ + qε · r)� a ≤ C

}
. (14)

In order to approximately solve the nondeterministic cutting stock problem, it is possi-
ble to consider an instance ED = (n, l,C, e) with e = (1, . . . , 1)� ∈ Rn (to indicate
that each item is available only once) of an ordinary (deterministic!) 1D CSP (or BPP)
where li = μi + qε · σi holds for all i ∈ I . Then, all models and corresponding
algorithms known in literature (de Carvalho 2002; Delorme et al. 2016; Martinovic
et al. 2018, e.g., the pattern-based model, the arcflow model, or the one-cut model)
can be applied. Note that, since only a subset P̃(E) of the pattern set P(E) is used,
we obtain an upper bound (referred to as ubCSP := ubCSP(E)) for the optimal objec-
tive value of the original ND-CSP. According to the well-known MIRUP conjecture
(Scheithauer and Terno 1995), a (much) faster way to obtain an upper bound of nearly
the same quality consists in solving the continuous relaxation (of the corresponding
deterministic CSP) and adding one to its rounded-up optimal value. Since there is no
non-MIRUP instance (of the CSP) known in literature, this idea can be considered as
an exact approach for (almost) all instances.

Remark 6 The quality of this approach mainly depends on the tightness of the inequal-
ity used in (13). It is well-known that

∥∥∥
(√

u1, . . . ,
√
un
)�∥∥∥

2
≥ 1√

n

∥∥∥
(√

u1, . . . ,
√
un
)�∥∥∥

1

holds for any u = (
√
u1, . . . ,

√
un)� (with u1, . . . , un ≥ 0), where equality is attained

if and only if u1 = · · · = un . However, in most practical cases, this worst-case ratio
of 1/

√
n can be replaced by a much better value. On the one hand, since only a subset

of items can simultaneously be involved in a pattern, n can be replaced by γ from (8).
On the other hand, the tightness of (13) improves if the variances σ 2

1 , . . . , σ 2
n come

closer to each other.
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4.2.2 An upper bound based on an FFD-heuristic for the ND-CSP

The previous upper bound ubCSP was based on transferring the ND-CSP to an instance
of the ordinary CSP with modified item lengths. There, we noted that the performance
of this approach strongly depends on the tightness of inequality (13), see Remark 6.
Moreover, observe that the variables obtained by solving the deterministic CSP (for
instance with the arcflow model) have to be retranslated to the original pattern context
which might lead to some additional work.

Hence, we will now introduce a method to obtain approximate solutions without
modifying the given instance of the ND-CSP. Thereby, not only the obtained objective
value ubFFD := ubFFD(E), but also the consolidation strategy itself can directly be
used as a feasible (nearly optimal) solution of the ND-CSP. The following algorithm
can be interpreted as a first fit decreasing heuristic (FFD) (Johnson et al. 1974) with
respect to the mean values μi (i ∈ I ) of the item sizes:

Algorithm 1 First Fit Decreasing Heuristic for ND-CSP

1: Initialize an empty pattern a(1), and renumber all items so that their mean values do not increase, i.e.,
μ1 ≥ μ2 ≥ · · · ≥ μn .

2: for all i ∈ I do
3: Find the lowest-indexed pattern a( j), such that item i can be added to a( j) without violating the

feasibility condition in Lemma 3. If such a pattern does not exist, generate a new (empty) pattern
and assign item i to it.

4: end for

From a theoretical point of view, there is no dominance relation between the two
upper bounds ubFFD and ubCSP. For that purpose, consider C = 100, ε = 0.05,
qε ≈ 1.6449, and normally distributed workloads ci ∼ N (μi , σ

2
i ), i ∈ I :

– A very simple instance E with ubFFD(E) = 1 < 2 = ubCSP(E) is given by n = 2,
μ = (40, 50)�, and σ = (9, 16)�.

– A possible instance E with ubFFD(E) = 3 > 2 = ubCSP(E) is given by n = 10,
σi = 1 for all i ∈ I , and μ = (15, 15, 16, 16, 16, 18, 18, 20, 22, 23)�. Here
we have the optimal allocations (referred to by the indices of the given items)
B1 = {7, 8, 9, 10}, B2 = {2, 3, 4, 5, 6}, and B3 = {1} for the FFD heuristic, as
well as B1 = {1, 2, 3, 8, 10} and B2 = {4, 5, 6, 7, 9} for the deterministic CSP.

A more detailed investigation of the computational behavior of the introduced upper
(and lower) bounds is part of the next subsection.

4.3 Numerical experiments

In order to compare the numerical performance of all approximate approaches, we
randomly generated 20 instances each for C = 100, and every pair (ε, n) of input data
with ε ∈ {0.05, 0.1, 0.25} and n ∈ {10, 20, 30, 50, 100}. Here, μi was chosen from
uniformly distributed integer numbers in [10, 50], and σi was selected from uniformly
distributed integers in
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Table 1 Average simulation results for the lower and upper bounds

ε = 0.05 n = 10 n = 20 n = 30 n = 50 n = 100

lb1 2.55 4.00 5.10 7.95 12.80

lb2 3.80 6.95 10.25 16.35 31.30

ubFFD 4.15 7.80 11.45 18.65 36.40

ubCSP 5.25 9.20 13.05 20.30 38.60

tFFD 0.0008 0.0012 0.0021 0.0048 0.0148

tCSP 0.0220 0.0298 0.0388 0.0557 0.0929

ε = 0.10 n = 10 n = 20 n = 30 n = 50 n = 100

lb1 2.50 3.95 5.00 7.70 12.65

lb2 3.80 6.85 10.05 16.40 31.25

ubFFD 4.15 7.85 11.45 19.00 36.50

ubCSP 5.25 9.05 12.60 20.55 38.70

tFFD 0.0008 0.0012 0.0017 0.0046 0.0158

tCSP 0.0217 0.0298 0.0387 0.0563 0.0931

ε = 0.25 n = 10 n = 20 n = 30 n = 50 n = 100

lb1 2.50 3.90 5.15 7.55 12.60

lb2 3.65 6.95 10.40 15.75 31.55

ubFFD 4.15 7.95 11.95 17.95 36.65

ubCSP 5.20 9.15 13.15 19.80 38.80

tFFD 0.0008 0.0011 0.0019 0.0040 0.0147

tCSP 0.0205 0.0258 0.0391 0.0617 0.0902

[
1,

⌊
1

2
· min

{
μi

qε

,
C − μi

qε

}⌋]
, (15)

which implies that

– the solvability condition P[ci > C] ≤ ε presented in Theorem 1 is guaranteed,
– and the probability P[ci < 0] is very small (e.g., less than 10−4 for ε = 0.05).

Table 1 contains the averaged values of:

– the lower bounds lb1 and lb2,
– the upper bounds ubFFD (obtained by the FFD heuristic) and ubCSP (obtained by
the deterministic CSP),

– the computation times tFFD and tCSP (in s).

Remark 7 Since the choice of ε has a direct influence on the possible values of σi (in
order to avoid too large probabilities for c < 0 or c > C), see (15), the three sub-tables
of Table 1 are not based on the same instances for fixed n and varying ε.

It can clearly be seen that in our simulations the average value of lb2 is strictly
better than that of lb1. More interestingly, this relation could be observed for every
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single instance of our test set. This is mainly caused by the general fact that lb2 uses
all available input data of the given instances so that more accurate approximations
are usually possible. As regards the upper bounds, both approaches are very fast and
provide solutions of roughly the same quality. The (time) complexity of the FFD algo-
rithm is known to beO(n · log(n)), whereas the other heuristic (i.e., the approximation
based on a deterministic CSP) mainly depends on the (worst-case) performance of the
simplex method which is exponential4 in the numbers of variables nv and constraints
nc. In our particular sets of random instances, it turned out that the first fit decreasing
heuristic always leads to slightly better estimates for the optimal objective value of the
original problem which may be caused by the fact that the exact pattern definition is
used therein. Moreover, this heuristic approach was (marginally) less time-consuming
in all investigated cases.

Hence, even if both approximation algorithms (to obtain upper bounds) possess
a similar performance, we will use the FFD heuristic for our further considerations.
Based on this decision, the (approximation) quality of the feasible solution obtained
by Algorithm 1 is of great interest, and shall therefore be addressed by the following
theorem. Note that, for the sake of a better readibility, the corresponding proof and
the discussion of the additional assumptions are shifted to Appendix A.

Theorem 3 Let E = (n, c,C,P, ε) be an instance of the ND-CSP with normally
distributed workloads satisfying

1. 0 < ε ≤ 0.5,

2.
∑

i∈I
μi + qε ·

(
∑

i∈I
σ 2
i

)1/2

> C,

3. ∃β ∈ R+ ∀i ∈ I : σi ≤ βμi .

Then, we have

1 ≤ FFD(E)

OPT (E)
<

5

2
+ 2qεβ.

According to (15), our randomly generated instances definitely satisfy σi ≤ μi/(2qε)

(which means β ≤ 1/(2qε)), and therefore a performance ratio of at most 7/2 is
guaranteed for the simulation results presented above. However, as the comparison of
lb2 and ubFFD clearly shows, the true performance of the FFD heuristic is much better
in our simulations.

Remark 8 Most probably, the upper bound provided by the previous theorem is not
tight in the sense, that

sup
E

FFD(E)

OPT(E)
= 5

2
+ 2qεβ

holds. In general, a very weak inequality used within the proof (see Appendix A) is
given by ∑

i∈I ′
k

μi ≤ 2
∑

i∈Ik
μi

4 However, note that the average empirical complexity of the simplex method is given by O(n2c · nv)

(Bazaraa et al. 2005, p. 206), for instance with nc ∼ O(n + C) and nv ∼ O(nC) in the theoretical worst
case, if the arcflow model is chosen to solve the related optimization problem (thanks to reduction methods
(Martinovic et al. 2018), the actual numbers are much lower, in general).
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(with |I ′
k | = |Ik | + 1), which can be improved if, for instance, |I ′

k | ≥ 2 is known (or
can be assumed if those bins that only contain one single item are somehow treated
separately).

5 An assignmentmodel for the ND-CSP

5.1 The basic model

As a consequence of the considerations in Sect. 3 (and especially Theorem 2), we are
now able to formulate an assignment model that roughly corresponds to the approach
ofKantorovich (1939) for ordinary cutting stock problems. In order to ease the notation
we will use the abbreviation

αi := q2ε · σ 2
i + 2Cμi − μ2

i

for all i ∈ I . Moreover, let u ∈ Z+ denote an upper bound for the optimal objective
value of the considered ND-CSP. For instance, u = ubFFD (see Sect. 4) can be chosen.
Then, we define decision variables

yk =
{
1, if bin k is used,

0, otherwise,

for k ∈ K := {1, . . . , u}, and

xik =
{
1, if item i is assigned to bin k,

0, otherwise,

for (i, k) ∈ I × K . Thereby, we obtain the following (basic) assignment model:

Assignment Model for the ND-CSP

z =
∑

k∈K
yk → min

s.t.
∑

k∈K
xik = 1, i ∈ I , (16)

∑

i∈I
αi xik − 2

∑

i∈I

∑

j>i

μiμ j xik x jk ≤ C2 · yk, k ∈ K , (17)

∑

i∈I
μi xik ≤ C · yk, k ∈ K , (18)

yk ∈ B, k ∈ K , (19)

xik ∈ B, (i, k) ∈ I × K . (20)
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The objective function minimizes the total number of used bins. Condition (16)
states that each item i ∈ I is packed exactly once. Conditions (17) and (18) can be
interpreted as coupling conditions between both types of variables: if yk = 1 holds
(i.e., if the k-th bin is used), the pattern property of Theorem 2 has to be satisfied for
the corresponding items. On the other hand, if yk = 0 holds (i.e., if the k-th bin is not
used) all corresponding variables xik (i ∈ I ) have to be equal to zero which is ensured
by (18).

Altogether, this formulation possesses nv = u + u · n ≤ n2 + n binary variables
and nc = n + 2u ≤ 3n constraints (n + u ≤ 2n of them are linear, and u ≤ n of them
are quadratic).

5.2 An improved formulation

The basic model presented in the previous subsection contains some drawbacks that
are mainly based on the Kantorovich-type structure of the model itself. In particular,
the following symmetry property can be observed:

Remark 9 If ( y�, x�) with

y� = (
y�
1, . . . , y

�
u

)�
, x� = (

x�
ik

)
(i,k)∈I×K

represents a (feasible) solution of the assignment model, then a further (feasible)
solution ( ỹ, x̃) with ỹk = y�

π(k) and x̃ik = x�
iπ(k) for all i ∈ I and k ∈ K can

be obtained by an arbitrary permutation π ∈ �(K ) on the set K . In particular, the
assignment model possesses (at least) u! optimal solutions.

In general, such symmetries in the set of feasible solutions should be avoided since they
may most probably degrade the performance of branch-and-bound based techniques
for the solution. To this end, it is possible to define a certain (pattern) order prior to the
optimization. In other words, note that it is sufficient to consider only those variables
xik with k ≤ i . This corresponds to the fact that we can always number the obtained
patterns with respect to the following criterion: item i = 1 appears in pattern k = 1,
item i = 2 either appears in pattern k = 1 or in a new pattern k = 2, etc. Thereby, we
obtain xik = 0 for k > i and x11 = 1; hence, it is sufficient to consider the index set
Q := {(i, k) ∈ I × K | i ≥ k} for the x-variables. In order to simplify the notation
we additionally define

Tk := {(i, j) ∈ I × I | (i, k) ∈ Q, ( j, k) ∈ Q, j > i}

for all k ∈ K .
Moreover, some of the y-variables can be set to yk = 1 prior to the optimization

if a lower bound η ∈ Z+ for the optimal objective value z� is known in advance. As
motivated in Sect. 4, we will use η := lb from (12).
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Improved Assignment Model for the ND-CSP (Model 1)

z =
∑

k∈K
yk → min

s.t.
∑

(i,k)∈Q
xik = 1, i ∈ I , (21)

∑

(i,k)∈Q
αi xik − 2

∑

(i, j)∈Tk
μiμ j xik x jk ≤ C2 · yk, k ∈ K , (22)

∑

(i,k)∈Q
μi xik ≤ C · yk, k ∈ K , (23)

yk = 1, k ∈ {1, . . . , η}, (24)

x11 = 1, (25)

yk ∈ B, k ∈ K , (26)

xik ∈ B, (i, k) ∈ Q. (27)

Note that it is also possible to completely remove those variables that are fixed prior
to the optimization, but then the quite regular structure of the coefficient matrices and
right hand sides appearing in the (linear) inequalities may be lost which would cause
certain additional expenses in terms of the model generation itself (for CPLEX).

In this formulation, the number of variables is given by

nv = u + u(u + 1)

2
+ (n − u)u ≤ n + n(n + 1)

2
∼ O

(
n2
)

,

whereas the (effective) number of constraints is still given by nc = n + 2u ≤ 3n ∼
O(n) (plus a small number of equality constraints to fix some variables in advance).
Hence, both models (the basic model and the improved version) are of pseudopolyno-
mial complexity.

Remark 10 Note that this improved model still contains the quadratic terms xik · x jk
for k ∈ K and (i, j) ∈ Tk . However, it is possible to remove this nonlinearity by
introducing additional binary variables ξ ki j ∈ B (instead of the products xik · x jk) and
demanding

ξ ki j ≤ xik, ξ ki j ≤ x jk, ξ ki j ≥ xik + x jk − 1,

for all k ∈ K and (i, j) ∈ Tk . Then, we obviously have ξ ki j = 1 if and only if
xik ·x jk = 1 holds. In this way, a linear description of the pattern set can be obtained by
means of (at most)O (

n3
)
additional binary variables and (at most)O (

n3
)
additional

linear constraints.

More precisely, the idea of the previous remark leads to the
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Linearized Improved Assignment Model for the ND-CSP (Model 2)

z =
∑

k∈K
yk → min

s.t.
∑

(i,k)∈Q
xik = 1, i ∈ I , (28)

∑

(i,k)∈Q
αi xik − 2

∑

(i, j)∈Tk
μiμ jξ

k
i j ≤ C2 · yk, k ∈ K , (29)

∑

(i,k)∈Q
μi xik ≤ C · yk, k ∈ K , (30)

ξ ki j ≤ xik, k ∈ K , (i, j) ∈ Tk, (31)

ξ ki j ≤ x jk, k ∈ K , (i, j) ∈ Tk, (32)

xik + x jk − ξ ki j ≤ 1, k ∈ K , (i, j) ∈ Tk, (33)

yk = 1, k ∈ {1, . . . , η}, (34)

x11 = 1, (35)

yk ∈ B, k ∈ K , (36)

xik ∈ B, (i, k) ∈ Q, (37)

ξ ki j ∈ B, k ∈ K , (i, j) ∈ Tk . (38)

It can be calculated that this model contains

nv = u + u(u + 1)

2
+ (n − u)u + u

6

(
3n2 − 3u · n + u2 − 1

)

≤ n + n(n + 1)

2
+ n

6

(
n2 − 1

)
∼ O

(
n3
)

binary variables and

nc = n + 2u + u

2

(
3n2 − 3u · n + u2 − 1

)
≤ 3n + n

2

(
n2 − 1

)
∼ O

(
n3
)

linear constraints (and some further equality constraints for fixing variables). Hence,
the difficulty of handling quadratic constraints has been replaced by coping with sig-
nificantly increased numbers of binary variables and constraints. Due to these reasons,
both modeling approaches (i.e., the improved model and its linearized version) can be
expected to be very hard to solve, even for moderately sized instances.

6 Simulation results

For our numerical simulations,we implemented bothmodels inMATLABR2015b and
solved the corresponding integer programs by means of its CPLEX-interface (version
12.6.1) on a Quad-Core Intel i7-5600 with 2.6 GHz and 12 GB RAM. Therefore,

123



Cutting stock problems with nondeterministic item lengths…

Table 2 Comparison of both models for ε = 0.05

n = 10 n = 12 n = 14

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

t 0.07 0.07 0.57 0.15 28.95 3.24

nit 894.15 2.0 × 103 2.4 × 104 8.8 × 104 8.4 × 105 2.2 × 105

η 3.80 4.55 5.00

z� 4.05 4.80 5.50

u 4.15 4.90 5.60

nv 34.85 170.95 49.10 280.50 65.30 426.65

nc 19.30 534.30 22.80 867.20 26.20 1.31 × 103

Table 3 Comparison of both models for ε = 0.1

n = 10 n = 12 n = 14

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

t 0.06 0.05 0.78 0.28 20.81 3.09

nit 1.3 × 103 809.7 3.0 × 104 1.8 × 104 6.7 × 105 2.1 × 105

η 3.80 4.60 5.15

z� 4.00 5.05 5.60

u 4.15 5.20 5.75

nv 34.70 169.95 51.15 288.80 66.70 434.05

nc 19.30 531.30 23.40 893.00 26.50 1.33 × 103

we randomly generated 20 instances for C = 100, and each pair (ε, n) with ε ∈
{0.05, 0.1, 0.25} and n ∈ {10, 12, 14}. In order to avoid too large items,5 μi (i ∈ I )
was chosen from uniformly distributed integer numbers in [10, 50]. Moreover, σi
(i ∈ I ) was selected from uniformly distributed integer numbers (depending on μi )
as described in (15) of Sect. 4.

In our first computational experiment, we compare the average performance of
both models6 with respect to the following criteria: the computation times t (in s), the
number of CPLEX iterations nit , the optimal objective value z�, the number of binary
variables nv , and the number of constraints nc. Moreover, we report on the values of
the lower bound η = lb [as defined in (12)] and the upper bound u = ubFFD provided
by the FFD heuristic.

Among others, the following observations can be made based on the Tables 2, 3
and 4:

5 Very large items are likely to appear alone in feasible patterns, such that the problem might be reduced
prior to the optimization. Hence, dealing with moderately sized or rather small items typically increases
the number of possible combinations, leading to more difficult scenarios.
6 The first model is given by the improved assignment formulation, whereas the second model refers to the
linearized approach. Note that, obviously, the optimal values of both models are the same.
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Table 4 Comparison of both models for ε = 0.25

n = 10 n = 12 n = 14

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

t 0.09 0.09 0.67 0.27 19.49 3.42

nit 1.8 × 103 3.4 × 103 2.7 × 104 1.7 × 104 5.2 × 105 2.4 × 105

η 3.65 4.60 4.90

z� 4.00 5.05 5.30

u 4.15 5.10 5.40

nv 34.75 170.25 50.55 286.75 63.55 417.95

nc 19.30 532.20 23.20 886.55 25.80 1.3 × 103

– Inmost scenarios, the firstmodel (with the quadratic constraints) required a (much)
higher computation time compared to its linearized version, even though the num-
bers of variables and constraints are significantly higher in this second approach.
It turned out that CPLEX needs a lot of time to find feasible solutions of the
improved assignment model; therefore, for most of the more complex instances
(n ∈ {12, 14}), the number ofCPLEX iterations is considerably higher compared to
the linear formulation. Solving quadratically constrained binary programs might
be easier for CPLEX, if special structures or favorable properties of the con-
sidered quadratic terms (e.g., positive (semi-)definite matrices leading to convex
constraints) are available which is not the case in our formulations. Hence, wemay
state that the second formulation is more appropriate to be considered for further
simulations.

– Obviously, both models are very hard to solve, in general. Even for the rather small
instances considered above, up to approximately half a minute is needed to solve
a single instance. It can be seen in the computational data, that in some cases up to
roughly onemillion iterations have to be performed underlining the difficulty of the
considered ND-CSP (both numbers are observed for the case (n, ε) = (14, 0.05)).

– The upper bound u obtained by the FFD heuristic provides very good estimates
for the optimal objective value. In many cases, we even noticed that z� = u holds.
Of course, this tightness is mainly based on the fact that we are dealing with
rather small instances and objective values, respectively. Nevertheless, according
to these observations, the FFD heuristic can be seen as an important tool for the
approximate solution of larger instances.

– The computational data only vary slightly with respect to different values of ε. It
seems that, in these small examples, ε does not influence the pattern property (3)
(or the upper bound u) very much.

Remark 11 As indicated in Remark 7, the computations are not based on the same
set of instances for fixed n and varying ε. Hence, although increasing the value ε

would normally lead to a higher level of tolerable server overload (and, thus, to a
lower optimal objective value), the value of z� has increased, for instance, for the step
(n, ε) = (14, 0.05) → (14, 0.1).
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Table 5 Computational results for the linearized model (Model 2) and ε = 0.25

n = 9 n = 10 n = 11 n = 12 n = 13

t 0.04 0.09 0.18 0.27 1.02

nit 894.0 3.4 × 103 1.1 × 104 1.7 × 104 7.8 × 104

η 3.40 3.65 4.05 4.60 4.65

z� 3.65 4.00 4.55 5.05 5.20

u 3.75 4.15 4.55 5.10 5.30

nv 128.50 170.25 221.60 286.75 350.65

nc 404.75 532.20 688.45 886.55 1.1 × 103

n = 14 n = 15 n = 16 n = 17 n = 18

t 3.42 13.29 51.31 202.90 666.33

nit 2.4 × 105 8.9 × 105 3.1 × 106 1.0 × 107 2.4 × 107

η 4.90 5.20 5.80 6.00 6.20

z� 5.30 5.70 6.30 6.50 6.80

u 5.40 5.80 6.55 6.55 6.90

nv 417.95 508.30 631.75 748.20 819.05

nc 1.3 × 103 1.6 × 103 1.9 × 103 2.3 × 103 2.5 × 103

Because of the points observed in the first series of test instances, we nowonly focus on
the linearized approach and a fixed value ε = 0.25. Again, we randomly generated 20
instances each (under the same conditions as above) and report on their computational
behavior for different choices of n. Note that for those values of n that have already
been considered previously, we use the corresponding data of Table 4.

Table 5 shows that also the linearized model can only cope with medium-sized
or rather small instances in reasonable time. This behavior is mainly caused by the
fact that a very large number of binary variables has to be considered. Moreover,
note that we are dealing with an assignment model that is principally related to the
Kantorovich model for ordinary cutting stock problems which is known to possess
some computational drawbacks, e.g., a quite weak continuous relaxation leading to
many iterations and large branch-and-bound trees, in general. Without going more
into detail, note that, in all our calculations, the LP bound (at the root node) was equal
to the lower bound η.

As we have seen, the exact approaches are, at the moment, appropriate to deal with
instances of rather small or medium sizes. However, note that in practice jobs that
only differ slightly (in terms of μ or σ ) might be considered as equivalent. Then, the
number n of different (groups of) jobs is usually small, and the resulting problems
can be solved (by appropriately modified modeling formulations) within reasonable
time. Interestingly, the corresponding calculations also pointed out the good quality
of the FFD heuristic, at least for the considered choices of n. Consequently, this very
fast heuristic (see Sect. 4) might also provide upper bounds of reasonable quality for
much larger numbers of items.
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Remark 12 Note that is it not straightforward to efficiently apply some other well-
known modeling frameworks to the nondeterministic context. More precisely, this is
due to the following explanations:

– Column generation: Due to the huge cardinality of the pattern set, a model of
Gilmore–Gomory-type cannot be solved directly by standard software, in general.
Although the correspondingLP relaxation can (theoretically) be tackled by column
generation, its applicability seems to be limited in the current scenario. This is
mainly based on the fact that, in our case, the generation problems arising during
this procedure are very hard because of the nonlinear description of the pattern set.
Even using the quadratic characterization introduced in Sect. 3 would either lead
to a concave constraint or to a very large number of additional binary variables
and constraints in the slave problems. Moreover, as x�

j ∈ [0, 1] ( j ∈ J , where
J is an index set of P(E)) would hold for the counting variables of any optimal
solution, common (easy) rounding approaches cannot be applied to obtain feasible
integer solutions of reasonable quality. Altogether, solving the LP relaxation of a
pattern based model would only provide an additional lower bound for the optimal
objective value of the ND-CSP. However, as our current lower bound lb from (12)
actually leads to sufficiently good approximations (withmuch lower computational
efforts), see Sect. 4, a more detailed consideration of this approach is not needed.

– Branch-and-bound (b&b) togetherwith columngeneration: In order to exactly
solve the pattern-based model, a branch-and-bound procedure has to be applied
together with column generation. Note that, besides the high efforts to solve the
LP relaxation at the different nodes of the branching tree (as described in the
previous point), the combination of b&b and column generation for cutting and
packing problems is very hard, in general. This is mainly because of the fact that
branching constraints usually destroy the regular structure of the subproblems so
that problem-specific and tailored branching strategies have to be developed, see
de Carvalho (1999) and Vance et al. (1994). Hence, an application of this solution
method is not obvious and requires a more detailed theoretical analysis which
would be out of the scope of the current manuscript.

– Arcflow (or one-cut) models: In general, the basic principle of these pseudopoly-
nomial formulations (de Carvalho 2002; Delorme et al. 2016; Dyckhoff 1981;
Martinovic et al. 2018) is given by different states indicating the progress of filling
a single bin of capacity C and allowing an easy translation to the pattern context.
Hence, a reasonably convenient description of the pattern set (or the single pat-
terns) is of great importance. In our case, based on the characterizations presented
in Sect. 3, a pattern can either be described by one single nonlinear inequality or
by one linear and one quadratic inequality. Whichever the case may be, note that
these constraints do not exhibit a separable structure, meaning that adding an item
to a current state (in order to obtain its successive state) would also need all the
information of the previously contained items (and not only the information of
the considered current state) due to the nonlinear behavior of the σ -terms. Conse-
quently, an efficient implementation of an arcflow graph (or a one-cut structure)
does not seem to be straightforward.
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7 Conclusions and outlook

In this paper, we investigated a cutting stock problem with nondeterministic item
lengths that is of high relevance for server consolidation applications. In particular, we
considered the special case of normally distributed item lengths in more detail. Within
this framework, we derived two lower bounds as well as two approximate solution
techniques to obtain upper bounds by either transferring the considered problem to a
deterministic setting with modified item lengths or directly applying an appropriately
adapted FFD heuristic to the stochastical scenario. Moreover, we developed an exact
description of the pattern set, and showed how this representation can be used to state
two exact models of pseudopolynomial complexity.

A main part of our future research is given by identifying valid inequalities for
the proposed models in order to strengthen their continuous relaxations. Note that
this may prove beneficial for branch-and-bound techniques since a lower number of
iterations can be expected, in general. Another important field of research is given
by tackling the problems mentioned with respect to possible alternative modeling
formulations. In the light of our numerical results, also a more detailed theoretical
analysis of the FFD heuristic (and possibly further heuristics), especially regarding a
tighter performance guarantee, seems to be worthwile. Moreover, multi-dimensional
extensions andgeneralizations (e.g., for jobs that are described by several characteristic
data) will be investigated in order to obtain fully application-oriented descriptions of
server consolidation problems.

A Proof of Theorem 3

At first, we briefly comment on the different assumptions listed in the theorem:

1. This condition implies qε ≥ 0 and is important for most of the inequalities used
in the following proof.

2. This assumption leads to OPT(E) ≥ 2, so that only the trivial case where all jobs
can be processed on a single server is excluded. (Note that the FFD heuristic will
always find an optimal assignment whenever OPT(E) = 1 holds.)

3. This condition can be interpreted as a coupling constraint between themean values
and the variances of the workloads.

Assume that the FFD heuristic provides a solution using s = FFD(E) non-empty
bins. Due to OPT(E) ≥ 2 we certainly have s ≥ 2, and for k ∈ {1, . . . , s} the pattern
property

∑

i∈Ik
μi + qε ·

⎛

⎝
∑

i∈Ik
σ 2
i

⎞

⎠

1/2

≤ C . (39)

has to hold, where Ik ⊂ I contains the indices of the items allocated to bin k. Fur-
thermore, let i�(k) define the index of the last object that was added to bin k during
the FFD heuristic. In particular, item i�(k) cannot be packed feasibly into the bins
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1, . . . , k − 1. For the first s − 1 bins, this observation leads to:

∑

i∈Ik∪{i�(k+1)}
μi + qε ·

⎛

⎝
∑

i∈Ik∪{i�(k+1)}
σ 2
i

⎞

⎠

1/2

> C . (40)

Defining I ′
k := Ik ∪ {i�(k + 1)} ⊃ Ik we further obtain

s − 1 <
1

C

⎛

⎜
⎝

s−1∑

k=1

⎡

⎢
⎣
∑

i∈I ′
k

μi + qε ·
⎛

⎝
∑

i∈I ′
k

σ 2
i

⎞

⎠

1/2
⎤

⎥
⎦

⎞

⎟
⎠

= 1

C

⎛

⎜
⎝

s−1∑

k=1

∑

i∈I ′
k

μi + qε ·
s−1∑

k=1

⎛

⎝
∑

i∈I ′
k

σ 2
i

⎞

⎠

1/2
⎞

⎟
⎠ .

Since exactly one item was added to Ik [and since its mean value is bounded above by
the smallest mean value corresponding to the index set I (k)], the following inequality
holds: ∑

i∈I ′
k

μi ≤ 2
∑

i∈Ik
μi .

Thanks to qε ≥ 0, this observation can be used to continue our main calculation:

s − 1 < · · · ≤ 1

C

⎛

⎜
⎝2

s−1∑

k=1

∑

i∈Ik
μi + qε ·

s−1∑

k=1

⎛

⎝
∑

i∈I ′
k

σ 2
i

⎞

⎠

1/2
⎞

⎟
⎠

Based on the fact that the p-norm ||x ||p of a fixed vector is monotonically decreasing
for increasing value of p, we obtain

⎛

⎝
∑

i∈I ′
k

σ 2
i

⎞

⎠

1/2

≤
∑

i∈I ′
k

σi

for all k ∈ {1, . . . , s − 1}. By means of qε ≥ 0 this leads to

s − 1 < · · · ≤ 1

C

⎛

⎝2
s−1∑

k=1

∑

i∈Ik
μi + qε ·

s−1∑

k=1

∑

i∈I ′
k

σi

⎞

⎠ .

But now, we have

s−1∑

k=1

∑

i∈Ik
μi ≤

∑

i∈I
μi and

s−1∑

k=1

∑

i∈I ′
k

σi ≤ 2
∑

i∈I
σi ,
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due to
⋃s−1

k=1 Ik ⊆ I (possibly some objects from bin s are missing in order to obtain
the complete index set I ) and the fact that

⋃s−1
k=1 I

′
k contains each element of I at most

twice (but most of them exactly once, some of them are possibly not contained at all).
Applying the third assumption σi ≤ βμi , we obtain

s − 1 < · · · ≤ 1

C

(

2
∑

i∈I
μi + 2qε ·

∑

i∈I
βμi

)

.

Altogether we have shown

FFD(E) = s <
1

C

(

(2 + 2qεβ)
∑

i∈I
μi

)

+ 1,

which can be used in the following calculation

FFD(E)

OPT (E)
<

1
C

(
(2 + 2qεβ)

∑
i∈I μi

)+ 1

OPT(E)
=

2+2qεβ
C

∑
i∈I μi

OPT(E)
+ 1

OPT (E)

≤ 2 + 2qεβ + 1

2
= 5

2
+ 2qεβ,

where OPT(E) ≥ 1
C

∑
i∈I μi and OPT(E) ≥ 2 were used. ��
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