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ABSTRACT
Gigabit networks can not be fully utilized by today’s end
systems. The processing requirements of next generation
network protocols with enabled encryption features will
aggravate this situation. To overcome these shortcomings
this paper presents an approach and prototype implemen-
tation for hardware support of IP/IPsec protocols. We out-
line a hardware/software partitioning, where the data path
of the IP/IPsec protocol is accelerated by a network pro-
cessor. In contrast to other approaches, we reuse existing
software protocol stack implementations.

KEY WORDS
IPSec hardware support, Virtual Private Networks, Net-
work Processor, high speed networks.

1 Introduction and Motivation

With the growth of the Internet and the involved increase
of the available network bandwidth as well as the increase
of the data volume, the processing of network protocols re-
quires an increasing amount of overall computing of the
used processors. Thus even high end systems cannot fully
utilize today’s high speed networks.

Due to the increasing industrial globalization and ge-
neral security requirements, the local networks of coopera-
ting institutes are more and more connected via secure IP
tunnels, commonly called Virtual Private Networks. Due
to the usage of secure but CPU-intensive encryption and
decryption algorithms, the usable network bandwidth for
interconnection is usually very small when using relatively
inexpensive software solutions.

There have been quite a number of approaches for
hardware support of secure communication protocols. Ty-
pically, they focus on the hardware offload of the encryp-
tion and decryption algorithms. Thus, the main protocol
handling and the I/O handling have to be handled in re-
latively slow software solutions without getting high band-
width usage [7] or extremely expensive hardware solutions.

Furthermore these hardware crypto engines are inflexible
by supporting new cryptographic algorithms.

In this paper we present an approach for IPsec hard-
ware acceleration based on network processors. The main
emphasis is to drastically improve throughput and latency.
Further essential requirements include on wire compatibi-
lity to other software and hardware based VPN implemen-
tations as well as to enable existing applications to take ad-
vantage of the protocol acceleration in a transparent man-
ner. By combining high performance and the flexibility of
a software programmable architecture network processors
are an ideal suit for line speed operation.

In the following chapter we compare several IPsec
software implementations based on Linux. Afterwards, we
describe our hardware/software partitioning of the IPsec
protocol stack, which allows taking advantage of existing
software implementations. Next, we present our prototype
architecture, which is based on the INTEL IXP2400 net-
work processor [6]. Here we give a brief overview of the
processor architecture and the design flow. Next we dis-
cuss the mapping of the IPsec data path onto the network
processor and the synchronization with the software stack
as well as the operating system integration. Finally we con-
clude our results and address future work.

2 Linux IPSec Implementations

2.1 FreeS/Wan

The most common IPv4 IPsec implementation for systems
using a Linux kernel version of 2.2 or 2.4 is FreeS/Wan [3].
This software offers the possibility of host to host connec-
tions as well as host to network and network to network in-
terconnections. With special patches, X.509 authentication
and AES cipher are supported. Although of this versatility
the FreeS/Wan code is not included into the main Linux
kernel due to former U.S. export limitations for strong
cryptographic software and today’s doubts on the quality
of the source code.



2.2 Lightweight IPsec Tunnel implementa-
tion for Linux 2.4

The IPsec Tunnel implementation for Linux 2.4 Kernels
[13] developed by Tobias Ringström is not a complete
IPsec implementation. It’s main goals are to provide an
easy to use and RFC compliant tunnel implementation with
simple manual keying and normal routing as well as no re-
quirement of kernel source code patching. Due to the usage
of the CryptoAPI ciphers and digests, new cryptographic
algorithms are easy to use.

2.3 Upcoming Linux 2.6 Kernel

With the Linux developer kernel version 2.5.45, a new
IPsec implementation is integrated into the Linux kernel
[8]. It is based on USAGI, an IPv6 and IPsec project for
Linux, KAME, an IPv6 and IPsec implementation for seve-
ral BSD-derivatives and the Widely Integrated Distributed
Environment (WIDE) project. For cryptographic calcula-
tions like authentication and encryption, the new version of
the wellknown CryptoAPI is used, which is also integrated
in the upcoming Linux 2.6 kernel version.

3 IPsec Acceleration Approach

Today’s transport protocols like IPsec are far too com-
plex to be completely implemented in custom hardware.
Furthermore, this approach would limit the flexibility and
maintainability of the solution. On the other hand, only a
relatively small part of the protocol implementation has
high speed processing requirements. The remaining parts
consists of lower priority tasks like exception handling,
buffer registration or connection management. Thus, only
a small part of the implementation has to be accelerated
by special hardware. The rest can still be performed by a
modified software implementation, because relatively time
expensive but very rare administration tasks are tolerable.

In the past only the cryptographic algorithms were ac-
celerated using special hardware, so the processing bottle-
neck was shifted to the software protocol processing and
the communication between the host processor and the
crypto engine. By implementing the whole IP/IPsec receive
and send path onto network processors, the protocol pro-
cessing can be accelerated as well.

4 Data Path Partitioning

For an optimized implementation of the data path onto the
network processor, the send as well as the receive path has
to be analyzed. Thus, synchronization points and data bet-
ween the hardware and the software implementation have
to be detected.
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Figure 1. Linux 2.6 IPsec Receive Path

4.1 Receive Path

The schematic overview of the upcoming Linux 2.6 IPsec
receive path is illustrated in Figure 1. The received net-
work packet is handled by the device handler of the net-
work card and put into the ethernet layer. After that – if an
IP transport protocol is detected – the extracted IP packet is
handled by the IP layer; at first by ip rcv and ip rcv finish.
Unencrypted network packets, which have to be forwarded
will be commited to ip forward. Local deliverable and en-
crypted IP packets will be next handled by ip local deliver.
If the packet is coded, decoding is done by xfrm4 rcv,
otherwise it is sent to the next protocol layer handler.

At first, the authentication header of the encrypted
network packet is tested and – if it succeeded – the packet is
decrypted. After finishing decoding, if the network packet
is to be delivered locally, xfrm4 rcv sends the data back to
ip local deliver, which will put it into the layer 4 protocol
handler. If the decrypted packet has to be forwarded, the
data will be sent by xfrm4 rcv to the beginning of the net-
work receive path, to netif rx and the – now plain – network
packet will be handled by the network stack.

4.2 Send Path

Figure 2 shows a schematic overview of the Linux 2.6 IPsec
send path.

In transport mode for host to host connections the data
from upper layers are received by ip queue xmit. If the data
have to be encrypted, the encoding is done by esp output
and the 3des encryption functions and thereafter the data
will be authenticated by ah output and the md5 hash func-
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tions. Afterwards, the encrypted or in case of an unen-
crypted data connection the plain data packet is sent from
ip queue xmit via ip output, in case of necessary fragmen-
tation ip fragment, to ip finish output. Next the IP packet
is put to dev queue xmit and sent to the network.

In case of network routing, the tunnel mode will be
used. The packets will be processed by ip forward finish.
Same as in ip queue xmit, if the network packet has to
be encrypted, the data will now be encoded similar to
the transport mode. After that, the IP packet is put to
ip finished output and sent to the network.

4.3 Data Path Synchronization

Since only the described IP and IPsec send and receive data
path will be implemented on the network processor, several
data interfaces are necessary for the accelerated implemen-
tation.

4.3.1 Receive Path

• Non-IP packets have to be put into netif rx from the
Linux network stack.

• In case of IP forwarding the network packets have to
be sent to the forward handler of the Linux network
stack.

• After finishing IP and IPsec handling, the extracted
data have to be delivered to the layer 4 handler of the
Linux kernel.

4.3.2 Send Path

• If the application data have to be sent via the IP proto-
col, the layer 4 implementation has to put the data into

the IP queue of the hardware accelerator.

• Forwarded packets must be sent to the IP forwarder
part of the hardware IP send path.

• Since the network processor handles the network de-
vice as well, non IP packets have to be put to the de-
vice queue of the hardware network stack.

4.3.3 Synchronization data

To enable full IP/IPsec protocol processing in the network
processor, the IP stack implementation needs several data
for encryption and routing desicions.

The IPsec Security Associations (SA), stored in the
SA Database (SAD), specify, if and how the IP packets
have to be encrypted and authenticated. A Security Asso-
ciation consists of the source and the destination IP address,
the IPsec protocol (AH or ESP), the Security Parameter In-
dex (SPI), the used algorithms and the secret encryption
keys.

The Security Policies (SP), stored in the SP Database
(SPD), defines the usage of the Security Associations. Each
SP contains the IP adresses of the communicating partners,
the used mode (tunnel or transport mode), the IP protocol
to be encrypted and the port of the protocol, the IPsec pro-
tocol (ESP or AH) and the connection direction (sending or
receiving).

These data are stored in the Linux kernel xfrm state
structures, so the network processor protocol stack has to
access these data.

The final implemented flow of the synchronization
data is illustrated in figure 3.

5 IXP Data Path Implementation

5.1 Data Path Measurement

5.1.1 Measurement environment

The measurement of the IPsec data path processing was
done between two hosts with following configuration: Host
A – Mobile P3 (1,13GHz), 512 MB-SDRAM, 100MBit
LAN Intel Etherexpress Pro 100 and Host B – Mobile P4
(1,8GHz), 512 MB-DDRAM, 100MBit LAN Sis 900.

Both hosts used kernel version 2.5.66 and Debian
Linux 3.0 Operating System. The kernel itself was confi-
gured to support IPsec protocol version 4, Crypto-API and
OProfile [11].

The IP security connection between host A and B
was configured to work in transport mode with Authentica-
tion Header and Encapsulated Security Payload. The algo-
rithms used were HMAC-MD5 for Authentication Header
and 3DES in CBC-Mode for Encapsulated Payload. The
keys were set manually with preshared keys.

The network load was generated using netperf [5].
Netperf was configured to produce heavy TCP network



traffic in a way that it was possible to separate the send
and receive path in Kernel sources when measuring with
OProfile. The data stream was set up to send large packets
from Host A to Host B and receive only small ones.

All measurements were done on host A with OPro-
file. For measurement the hardware processor events
CPU CLK UNHALTED and DATA MEM REFS have
been mainly used to get informations about the CPU uti-
lization and memory accesses. In all measurements the
OProfile daemon was configured to count samples every
1000 events. With higher granularity the system got frozen.

5.1.2 Processor load

Kernel Function Time Memory
(%) (%)

md5 5,4 3
ah output 0,8 0,7
esp output 0,3 0,2
cbc encrypt 2,6 2,4
3des encrypt 76 78
others 8,9 11,2
sum 94 96
ip queue xmit 0,3 0,1
ip output 0,2 0,1
ip finish output ≈0 ≈0
others 4,4 3,8
sum 5 4
dev queue xmit 0,5 0,5
sum 0,5 0,5

Table 1. IPsec send path measurement results

Kernel Function Time Memory
(%) (%)

md5 8 3,8
ah input 0,8 0,6
esp input 0,2 0,2
cbc decrypt 3,6 8,8
3des decrypt 74 74
others 7,7 9
xfrm4 rcv 0,2 0,2
sum 94,5 96,6
ip local deliver 0,1 0,1
ip rcv finish ≈0 ≈0
ip rcv 0,2 0,1
others 4,7 3,1
sum 5 3,3
netif rx 0,5 0,1
sum 0,5 0,1

Table 2. IPsec receive path measurement results

Tables 1 and 2 show the measured values of the send
respectively receive path. The time values describe the per-
centage of time the functions need for packet processing,
relative to the overall processing time for the IP/IPsec pro-
tocol stack.

The memory value illustrates the amount of the por-
tion of memory accesses done by the referenced function
in relation to the overall memory references in the protocol
stack.

As indicated, these measurements are based on the
usage of the CPU CLK UNHALTED event.

Both tables show also, that the time spent at the net-
work layer is both at send and receive path less than 1%
of CPU time. So, very little computation to the packet has
been done by that layer.

The measured values show as expected that the main
CPU time is spent at the cryptographic functions. These
functions directly limit the IPSEC throughput at all. In par-
ticular the functions needed for Authentication Header, in
this case md5 and hmac, do not need that much time to
process. The most time consuming function is 3DES.

The time spent for processing data packets is much
more smaller than one percent.

5.1.3 Memory access

These measurements are based on the usage of
DATA MEM REFS event, which reacts on all memo-
ry references, cachable and non cachable.

At the network layer the memory is refenced only a
few times, supposeable due to the zerocopy mechanism in
Linux network architecture. Memory transactions are hea-
vily done in the CryptoAPI functions. In fact there are over
95% of all memory accesses. Therefrom belong over 75%
to the 3DES implementation. The hash algorithms HMAC
and MD5 are relatively leightweight with about 3% each.

5.2 IXP Architecture Overview

The INTEL IXP2400 is a fully programmable network
processor unit (NPU) that implements a high-performance
parallel processing architecture. It combines a high-
performance Intel XScale core, multiple memory units,
a PCI interface, a multi-purpose network interface and
eight 32-bit independent multi-threaded microengines on
a single chip.

A major problem for the design of network processors
is the gap between CPU and memory performance. Hence,
the architecture allows having multiple pending memory
transactions. While waiting for the operation to complete
another thread may perform computing tasks. A new fea-
ture with the second generation of INTEL NPUs is hy-
per task chaining. This allows improving the efficiency of
pipeline processing by having direct access to next neigh-
bor transfer registers. As a consequence, synchronization



time is greatly reduced compared with SRAM based me-
chanisms.

5.3 Data Path Implementation
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Figure 3. IPSec Protocol processing implementation

Following the measurement results, the IXP receive
data path implementation is done as illustrated in figure 3
using pipeling and parallelizing techniques.

The first microengine (ME) represents the network
layer and acts as a networking device. It receives the Ether-
net packages and handles the Ethernet packet information.
Non-IP packets are directly sent to the unchanged Linux
software network stack – in this case the IXP implemen-
tation acts like a non-intelligent network interface card. In
case of a received IP packet it will be forwarded to the next
microengine, which is representing the IP layer. This se-
cond microengine handles the IP header information, does
checksum computing and acts as a multiplexer to distribute
the packets to a set of microengines, which are implemen-
ting the IPsec layer.

These microengines handle all the IPsec decryption
and authentication. Since currently only 3DES, MD5 and
SHA-1 are supported, each of the IPsec microengines is
running identical code. With adding more cryptographic
algorithms, a mechanism for dynamic changing the micro-
engines program code for load balancing has to be imple-
mented.

At the end of the network stack pipeline a demul-
tiplexing microengine is situated, which serializes the IP
stream and delivers it to higher protocol layers.

The send path implementation – illustrated in figure 3
too – is working similar but in reverse order.

This implementation of the IP/IPsec protocol stack
does not mandatory shorten latency time but it is raising
drastically the data-throughput.

To improve the latency time, the crypto engines have
to be optimized, because these algorithms take the largest
portion of overall computing time as shown in section 5.1.

5.4 Crypto Engine Optimization

The crypto core of the IPsec protocol uses both authenti-
cation algorithms and symmetric block ciphers. In our test
scenario we used the cryptographic hash functions MD5
and SHA-1 for the authentication part and 3DES to con-
ceal the transmitted packages.

First tests have shown the good performance of MD5
and SHA-1 without any sophisticated optimizations. We
therefore concentrated on the optimization of the 3DES.
Using the 3DES algorithm a plaintext is encrypted by con-
catenating three DES functions using three different keys.
Decryption works just the other way round. As each DES
function relies on the output of the previous one, there is
obvioulsy not much space for optimizations. Let us there-
fore have a closer look to the inner of a DES function. It
can be divided into two main parts: the generation of round
keys from the encryption key and the actual encryption
part. The later one takes a plaintext and after a permutation
divides it into a left and right part. Now sixteen rounds of a
so called Feistel cipher [9] are processed. In each of these
rounds the right part of the input is first encrypted using the
function f and then combined with the left part by a bitwise
xor operation. The function f is based on the two principles
of diffusion and confusion by using an expansive permuta-
tion function and specific S-boxes respectively. After all,
the plaintext should be mixed up completely.

There are several related works on the optimization
of DES. E.g., for hardware implementations Broscius and
Smith [2] have presented a composite optimization ap-
proach by decomposing a single round into several paral-
lel computations by generating the necessary round keys
in advance, computing each round in a pipelined parallel
structure1, and performing the system I/O in parallel with
the encryption computation.

For software implementations you gain the best per-
formance by realizing the S-box calculations via table
lookups [12]. As the Intel IXP 2400 lies somewhere in
between software and hardware, we are currently working
on combining both mentioned approaches to maximize en-
cryption throughput.

5.5 Implementation Results

In result to the implementation, a significant speedup of
IPsec processing was not visible. The reason is the required
use of large S-boxes for the crypto engines. Unfortunately
the IXP2400 microengines have only a limited amount of
local memory, comparable with cache memory of common
desktop processors. Thus there were a lot of time consu-
ming memory accesses.

Hence, for efficient use of the described acceleration
approach upcoming network processors like the IXP2800
or even the IXP2850 have to be used. Nevertheless, this

1Unfortunately, this works only for operation modes which do not re-
quire ciphertext feedback like CBC does. Therefore, this approach is not
applicable in our case.



implementation demonstrates the possibilities of this acce-
leration approach.

6 Related work

Much attention has been focused on the design of cryp-
tographic accelerators for IP security speedup of software
VPN implementations.

An approach for FreeS/WAN acceleration is de-
scribed in [14]. It suggests to split the different functiona-
lity of KLIPS into three parts and use generic engines for
acceleration of these function units, the tunnel processing
engine, protocol processing engine and the crypto proces-
sing engine.

A software patch for using hardware crypto engines
with FreeS/WAN is specified in [10]. It describes the usage
of an asynchronous crypto API to improve the speedup of
the hardware crypto engine.

There is a number of ASIC based approaches for
IPsec acceleration, like the Hifn products as specified in
[4], but only with a limited flexibility when implementing
new cryptographic algorithms and changed or enhanced
protocols.

Comparable to our IP/IPsec acceleration approach, a
TCP acceleration based on network processors is presented
in [1].

7 Conclusions and future work

Supporting high performance networks and advanced ser-
vices at the same time presents a challenge for today’s pro-
tocol implementation architectures. Even high end systems
can not fully utilize high speed networks using IP security
protocols. Therefore, we presented a hardware supported
acceleration approach for the IP/IPsec protocol.

Designing protocol engines is a complex task. As a
consequence we decided to take advantage of an existing
software IP/IPsec stack and extracted the data path which
was accelerated by specific hardware. For data path parti-
tioning systematic methods were successfully used to re-
duce partitioning and implementation time.

Future work includes other cipher algorithms than
3DES in our crypto engine. We are specifically working on
an implementation of the new Advanced Encryption Stan-
dard (AES), the designated successor of DES.
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