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Abstract—Several reproducible experiments are required be-
fore actual deployment of wireless sensor networks takes place if
stable and predictable outcomes of protocols and data processing
algorithms are desired. Considering the typical size of wireless
sensor networks and the number of parameters that can be
configured or tuned, conducting repeated and reproducible exper-
iments can be both time consuming and costly. The conventional
way of evaluating the performance of different protocols and
algorithms under different network configurations is by changing
the source code and reprogramming the testbed, which requires
some effort. In this paper, we propose a traffic flow control
management system that facilitates the execution of repeated
experiments in an efficient and flexible way. We implemented our
system on top of TinyOS for the TelosB platform and demon-
strated the scope and usefulness of the system by conducting
several experiments in two real testbeds.

Index Terms—Experiment, experiment management, testbed,
TFCP, wireless sensor networks

I. INTRODUCTION

In order to obtain predictable performance and reproducible
results from wireless sensor networks, complex and repeated
experiments should be conducted with testbeds before actual
deployments take place. Since most applications have their
unique characteristics and requirements, the testbeds should
be flexible and effectively separate the experiment phase
from the application development and network management
phases. In the past decades, the research community has made
a considerable progress in developing reliable and flexible
testbeds. Some of these provide web interfaces so that ap-
plication developers can install program images on remotely
available networks and execute code. Then experiment results
(sensed as well as performance related data) can be extracted
from the networks and delivered to the developers for off-
line analysis and debugging. Some of these testbeds, besides
providing common services, such as infrastructure manage-
ment, experiment control (experiment scheduling and resource
reservation), and data collection, enable also the inclusion
of domain specific services, such as sensor data profiling
[4], mobility management [10], and distributed and on-line
tracing/debugging [16].

In most testbeds experiment procedures are embedded into
the application logic and, hence, intra-experiment activities

(such as an activation or deactivation of the collision avoid-
ance functionality of a MAC protocol or the modification of
network parameters) have to be carefully planned before a
program is compiled and flashed to individual nodes. Arbitrary
configurations cannot be carried out without affecting the
execution of the application logic. Furthermore, the specifica-
tion of complex procedures comes at the price of developing
complex application-layer services. If application developers
wish to introduce new procedures unforeseen at the time of
uploading their image the only option they have is modify-
ing their image and reinstalling it, which is a tedious and
time consuming process. Furthermore, embedding experiment
procedures in the application logic have another side effect,
namely, experiment execution times will be subject to timers’
error due to drift. To alleviate this problem time synchroni-
sation should be necessarily a part of the application logic.
Otherwise, experiments may not be reproducible. Finally, most
existing testbeds provide experiment data management at the
server side but not for individual nodes. There are no common
interfaces or library files available for application developers
to seamlessly gather data and performance indicators from
individual nodes.

In this paper we propose a comprehensive traffic flow
controller which integrates a set of toolkits for seamlessly
performing changes to and configure protocols and algorithms
during experiments. Our contributions can be summarised as
follows:

1) We define a set of primitives to control experiments
as they are being conducted. These primitives provide
simple and enhanced controlling strategies.

2) We propose a light-weight protocol to communicate
commands that control experiments at runtime.

3) We propose system architecture to integrate, process,
and manage the traffic flow control commands.

4) We implemented the system architecture on top of
TinyOS for the TelosB platform and employed it for
different testbeds to demonstrate the usefulness of our
approach.

The remaining part of this paper is organized as follows:
In Section II, we review related work and position our own



work. In Section III, we provide an example to highlight
the difficulty associated with conducting moderately complex
experiments in wireless sensor networks. In Section IV, we
propose a traffic flow control protocol to exchange experiment
commands and to collect experiment-related data from the
network. In Section V, we present our system architecture for
managing experiments. In Section VI, we demonstrate how we
employed our system to conduct experiments in two different
testbeds. Finally, in Section VII we give concluding remarks
and outline future work.

II. RELATED WORK

Testbeds are intended to efficiently test wireless sensor
networks before actual deployments. Compared to the area
or volume an actual deployment occupies, testbeds are con-
siderably compact, so that they can be installed in labs
or in areas which are easily accessible. This means, some
communication parameters are intentionally scaled and events
can be deliberately injected into the network to suit the test
setting and to emulate actual events.

There are several testbeds, most of which are available for
public use. Some of these are TWIST [11], WISEBED [6],
MoteLab [20], and TempLab [4]. These testbeds share similar
design principles. As far as hardware is concerned they provide
additional wired or wireless interface (USB, Ethernet or Wi-
Fi) as backbone channels for stable programming, controlling
and data logging. As far as software is concerned, they provide
(a) web-based interfaces to remotely access the testbeds and
to manage experiments; and (b) mechanisms to automatically
program, configure, and run the testbeds according to specific
requirements. Rakotoarivelo et al. [15] meaningfully separate
the software services into three logical services: control,
management, and measurement. The experiment services of
existing or proposed testbeds can be classified into two broad
categories, inter-experiment and intra-experiment management
services.

A. Inter-experiment Management

Almost all publicly available testbeds provide inter-
experiment management services [10][12]. These testbeds
provide web-interfaces to enable users to install their own
program images on the testbeds and to specify experiment pro-
cedures remotely. Combined with different scheduling polices
(for example, priority-based [20] or microeconomic processing
[7]), physical resources can be reserved and experiments can
be conducted automatically. During the experiment execution,
the data collection service actively gathers in the background
application-, protocol-, or network-specific data and store them
in a local or remote database. After the execution of the
experiments, users can download the data and perform off-
line analysis.

B. Intra-experiment Management

WISEBED [6] is the first collective effort of nine European
universities to build a heterogeneous wireless sensor network
testbed. It provides a group of command line scripts to help

users to manage their experiments [1]. Users can send arbitrary
binary messages to individual nodes at runtime via a web
interface or a script to interact with the experiment. This
feature is useful and flexible both to retrieve and modify the
state of execution, nevertheless, requires elaborate design and
specification of experiment procedures (users are required to
define and implement their own experiment control protocol).

In contrast, FlockLab [13] uses a hardware input/output
mechanism (GPIO) to interrupt and control the experiment ex-
ecution at a node level (which is more efficient than software-
based interruption), however, it requires a dedicated hardware
platform with an interface board. RadiaLE [3] is an application
specific framework which aims to facilitate the design and
implementation of link quality estimators (LQE) in wireless
sensor networks. It consists of one control station (a PC) and
49 TelosB nodes which are connected via USB cables and
hubs to form a radial topology. The control station has the
ability to configure the network parameters and to initiate data
transmission by sending command to specific nodes, according
to the desired traffic pattern. The control method, however,
is basic and application-dependent (can be used for studying
LQE only).

Minerva [16] is a distributed debugging testbed and provides
python script interfaces to reset, halt and resume the execution
of nodes which can be used for intra-experiment management.
But, the testbed requires a special hardware support (a debug-
ging board connected to a sensor node via JTAG interface)
limiting its usefulness to carry out complex experiments in
different testbeds.

In this paper we aim to augment the existing testbeds by
separating experiment execution procedures (both intra- and
inter-experiment activity sequences) from the application logic
and by transferring them to the server side. This frees appli-
cation developers from the burden of specifying and coding
into their application logic detailed and inflexible procedures.
Our approach enables the execution and control of experiments
remotely. Should experiment execution logics be changed or
modified at runtime, they can be done without interrupting
the experiment or affecting the application logic or the need
to reprogram nodes.

III. CHALLENGES AND REQUIREMENTS

In order to illustrate the difficulty of conducting moderately
complex experiments with existing testbeds, we provide an
example using seven wireless sensor nodes (Figure 1). The
experiment is intended to investigate the effect of random
interference on the reliability of the network (measured in
terms of overall packet loss). The experiment schedules specify
the beginning and end of transmission times; inter-packet
intervals (IPI) with which packets should be transmitted;
communications types (unicast or broadcast); and a transient
failure of nodes. The schedules also define the transmission
patterns of nodes (when and for how long they should trans-
mit).

In the first schedule, node 1 and 2 communicate with
node 3; node 4 broadcasts to all nodes; and node 5 and 6
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(b) schedule-2

test case 1
node channel tx-power (dBm) IPI (ms) receiver

node-1 26 0 20 node-3
node-2 26 0 50 node-3
node-3 26 0 100 -
node-4 26 0 100 broadcast
node-5 26 -10 100 node-7
node-6 26 -10 200 node-7
node-7 26 -10 250 -

(c) parameters for test case 1

test case 2
node channel tx-power (dBm) IPI (ms) receiver

node-1 24 -10 20 node-3
node-2 24 -10 50 node-3
node-3 24 0 100 -
node-4 24 0 10 broadcast
node-5 24 -3 100 node-7
node-6 - - - -
node-7 24 -3 250 -

(d) parameters for test case 2

Fig. 1: An example experiment: (a) and (b) Scheduling the transmission time and duration of nodes – The activity state of each
node is represented by a solid line whereas the inactivity state is represented by a dashed line.. (c) and (d) Fixing protocol
parameters for two test cases.

communicate with node 7. The Table in Figure 1 (c) displays
the configuration of some of the physical-layer parameters for
schedule-1. In the second schedule, node 6 is entirely termi-
nated and transient failure is introduced to node 7 (which is a
receiver). The Table in Figure 1 (d) displays the configuration
of parameters for schedule-2.

The simplest way to perform the above experiments is to
embed the experiment flow (schedules) into the application
logic using timers to control the experiment at runtime. This,
however, introduces some challenges. Firstly, a time synchro-
nisation protocol has to be implemented at the application
layer to synchronise the timers of all nodes. Otherwise the
discrepancy in time drift in each node may lead to incongruity
of schedule execution. Secondly, the integration of the time
synchronisation protocol at the application layer violates the
principle of separation of concern, because the application
developer is concerned not only with the development of the
application logic but also with network management. Thirdly,
suppose our initial plan was to run schedule-1 only but
after having observed the experiment results, we decided to
modify the first schedule to produce the second and rerun
the experiment. In this case, the application logic has to be
modified in the source code, recompiled, and flashed to all
the nodes. Reprogramming nodes not only is time consuming
but also decreases the lifetime of the hardware (the number
of erase/reprogram cycles is limited in most existing flash
memories; for example, for the MSP430 MCU (used in the

TelosB platform), the operation is limited to 10,000 times
[18]). Additionally, the whole network needs to be reset manu-
ally for each round of the experiments resulting in unnecessary
user intervention. In order to address these challenges, we
propose a traffic flow control framework having the following
features.

Integrability. Our framework is easily integrable with
testbeds or application-dependent infrastructures. Researchers
can use the framework to build and control their own ex-
periment with little or no modification to their testbeds.
Experiments can rerun multiple times to extract reproducible
results without any manual involvement.

Scalability. As different infrastructures contain different
number of nodes (from tens up to hundreds) [3] [11] [9], and
different experiments require different combinations of nodes,
our framework is both scalable and adaptive.

Reconfigurability. Most experiments are performed mul-
tiple times, not only under the same configuration but also
with different parameter settings, to test the effect of dif-
ferent configurations on performance, network lifetime, and
energy consumption. Some of the parameters that should be
adjusted at runtime are (1) the duty cycle of MAC protocols
[5] [8], (2) communication channels and transmission power
levels to study link quality fluctuations [17] [19]; and (3)
entries in routing tables. Thus, the framework should enable
the configuration of these parameters without the need to
reprogram the network. Additionally, in some experiments,



event injections such as mimicking temporary node failures
is useful to support.

Automatic execution. In existing testbeds, experiments
automatically begin as soon as the nodes are active. Manual
intervention is required to stop and restart experiments. In
some cases advanced devices are used to remotely control
experiments, but this makes experimentation unnecessarily
expensive. Our framework employs software-controlled mech-
anism to manage experiments automatically.

Seamless data collection. One important and imperative
process during experiment execution is extracting data and
performance indicator metrics (such as RSSI, SNR, and times-
tamps) from the network. This process, however, should not
interfere with the normal operation of the network (for ex-
ample, by taking away precious bandwidth or communication
time). Therefore, the framework should be able to seamlessly
gather these data, temporarily store them locally, and enable
the efficient collection at a most convenient time for on-line
as well as off-line analysis and debugging.

IV. TRAFFIC FLOW CONTROL PROTOCOL

In order to cleanly separate experiment execution from
experiment management, we propose a server-client architec-
ture. The server specifies experiment schedules and dispatches
them; individual nodes execute experiments and provide feed-
back. This simple approach relieves individual nodes from the
burden of managing and executing experiments at the same
time. Our approach requires a system architecture to orches-
trate experiment procedures and a communication protocol to
communicate commands, feedbacks, and experiment data. In
this section we introduce the protocol and in the next the
system architecture.

We propose a traffic flow control protocol (TFCP) in or-
der to facilitate the remote management of inter- and intra-
experiment executions. We define a set of control primitives
which can be exchanged by the control protocol.

A. Traffic Flow Control Primitives

The traffic flow control primitives abstract a set of com-
mands which control the execution of experiments in an
application-independent manner. We classify our primitives
into basic and enhanced primitives, according to their control
granularity in an experiment execution. These primitives reside
on top of any of the existing communication protocols and
serve as agents for exchanging messages between experiment
controller (server) and sensor nodes (client).

The basic primitives consist of start and stop commands,
which are used to begin and stop an experiment. We keep them
to two in order to limit the number of overhead messages that
should be exchanged between the server and the nodes. The
enhanced primitives, on the other hand, enable the execution of
more complex experiments and provide fine-grained control.
They consist of the following commands: pause, continue,
terminate, reset, clear, and read. The combination of pause
and continue can be used to suspend the execution of an
experiment at an individual node for an arbitrary time, while
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Fig. 2: TFCP encapsulated as the payload of an existing
communication packet.

the terminate command can be used to break an experiment
entirely. The last three primitives are useful for managing
logged data and local resources.

The enhanced primitives can also be used for event injection
into a network. Suppose we wish to test how a routing protocol
copes with the dynamic behaviour of a network. The dynamic
behaviour of individual nodes, such as when they leave and
join a network or become temporarily unavailable causes a
topology change which in turn affects the performance of the
routing protocol significantly. It is not unusual to observe in
real wireless networks arbitrary appearance and disappearance
(failure) of nodes. The enhanced primitives provide adequate
mechanisms to emulate and test these types of failures. Us-
ing pause and continue transient failures can be introduced
whereas terminate can be used to emulate permanent failures.
Compared with mechanically turning on and off nodes, which
is presently the most frequently used approach to emulate node
availability and to introduce transient failures, our approach is
more efficient because it enables nodes to retain runtime states
even when they are no longer available as active nodes.

B. Protocol Design

Our protocol can be encapsulated inside the payload of the
backbone communication network (such as Ethernet and IEEE
802.11). This way it can easily be ported to or integrated
with different backbone networks. This is shown in Figure 2.
The TFCP layout is composed of a session ticket, type, and
command + parameters or data units which are of variable
length. The session ticket is a 1-byte-length random number
which is used to identify and separate different test rounds. We
categorise the messages exchanged between the experiment
controller (server) and nodes into four groups, based on their
QoS requirement and functionality. Table. I summarises how
the primitives are categorised. The commands in the “setup”,
“control” and “manage” groups require reliable communica-
tion (feedback is required to indicate failure or the successful
execution of experiments). The commands in “control” group
can be executed exactly once within an experiment, while the
ones in the other two groups can be executed multiple times.
Unreliable communication (no explicit feedback is required)
is sufficient to extract data from individual nodes.



TABLE I: TFCP message types and commands.

type QoS command parameters initiator description
setup reliable, init application server setup the parameters of test round

once or more dependent
control reliable, start none server initiate the test round

exactly once stop none node notify finish of test round
pause none server suspend execution
continue none server resume execution
terminate none server stop execution permanently

manage reliable, clear none server erase data storage
once or more reset none server reset the node

read block id server retrieve data from the local storage
data unreliable - - node data report from nodes to server

script 
execution 

agent
data 

acquisition

node manager

command 
distributor

serial/socket 
comm agent

TFCP stack

command 
interpreter

script 
execution 

agent

script 
execution 

agent

command 
serializer 

script 
parser 

script 
checker 

Document
Documentscript 

file
input

control script interpreter

socket comm 
agent

TFCP stack

serial comm 
agent

TFCP stack

phase-I

phase-II

phase-III

Fig. 3: The software architecture of the experiment controller.

message 
processing

database

message   queue

get_message( )

msg filter

listener

cmd handler

serial/socket comm agent 1

TF
C

P 
st

ac
k

listener

cmd handler

serial/socket comm agent n

TF
C

P 
st

ac
k

msg filter

st
or

e(
 )

data 
retrieve data_retrieve_cmd

Fig. 4: The software architecture of the data acquisition
module.

V. SYSTEM ARCHITECTURE

The system architecture for controlling advanced exper-
iments consists of two major building blocks, the server-
side block and the client-side block. The server-side block is
useful for (1) defining experiment schedules and procedures,
(2) dispatching the schedules, and (3) collecting relevant data
from the network for analysis and debugging. The client-side
block is a middleware that intercepts control packets from the
network stack and control the execution of experiments locally.

TABLE II: keywords used in control script

keyword function description
init section id initial parameter section
flow-x section id flow definition section, x is flow id
node-x node id node identity, x is the address
flow definition define sequence of commands
repeat counter the execution number of flow
wait timer gap between two consecutive execution
start command start group of nodes immediately
stop command wait until receiving stop signal
pause command pause the execution of specific node(s)
continue command continue to run the specific node(s)
terminate command force the node(s) to stop

A. Server-Side Block

The system architecture of the server-side block is depicted
in Figure 3. The control script interpreter and the data acqui-
sition component are two separated entities. Each exchanges
messages directly with the node manager. The node manager
is a proxy for exchanging information between the server and
sensor nodes and maintains a communication and a command
execution agent for each active node, i.e., for each node which
is involved in an experiment.

At the server-side, experiments are executed in three phases.
First, users of the testbed specify their experiment scenario
(procedure) using a list of key words we have defined (these
are listed in Table II). An experiment procedure should specify
initial parameters (such as the communication channels and
transmission power levels of individual nodes), the sequence
of actions, the number of times each test case should be
repeated, and the intermission duration between experiments.
These aspects are categorised into init (section ID) and flow-
x. The init section contains the initial parameters of nodes
involved in the experiment and the flow-x section contains the
sequence of actions each node performs during the experiment.
Experiment scripts are supplied to a script interpreter which
prepares and dispatches procedures to the network. It consists
of six sub-blocks and carries out dispatching in three phases.

Phase-I: This phase is responsible for script level validation
and pre-preparation. When a control script is supplied to the
control script interpreter, it first scans the entire file and checks
whether the script is valid, based on predefined rules. For
instance, the script must contain one init section and at least
one flow section. If any of the rules are not fulfilled, the
system raises an error flag and notifies the user and stops the



execution. If the validation is successful, a script parser works
on the control script to get participants’ information (node
address). The node manager requires this information to create
and manage serial communication agents as well as command
execution agents. In addition, the script parser ensures that
each active node in the flow section is declared in the init sec-
tion to make sure that all nodes are properly configured before
performing the experiment; otherwise, unexpected results may
occur or the experiment may not successfully proceed.

Phase-II: This phase is responsible for command level
preparation and interpretation. The first operation of phase-II is
serialising the commands in time sequence. The initialisation
command (initial parameters of each node defined in the init
section) is inserted prior to all other commands which are
specified in the flow section. All the remaining commands and
their parameters are kept in a chain. The command interpreter
maintains a dictionary, which maps the literal commands into
their executable proxy and translates the parameters into binary
format. After the interpretation, each command contains three
fields: the address of target node, executable command ID,
and parameters. The key role of the command distributor is
to distribute commands to specific script execution agents of
the target nodes. The command distributor is an event-based
component which is controlled by a timer, so that commands
are dispatched in the time sequence they are specified in their
scripts.

Phase-III: This phase is responsible for command execu-
tion. The last stage of the control script interpreter is to execute
the commands, which is carried out by script execution agents
(SEA). An SEA is a logical representation of a physical node
at the side of the server and it is managed by a node manager.
The creation of SEA relies on both the control script and
the existence of corresponding nodes which are physically
connected to the server. A configuration file is used to map
the addresses specified in the control script to a physical
node. An SEA receives commands from the dispatcher, caches
the commands locally, and forwards them sequentially to a
communication agent to be transmitted to individual nodes.
It also implements a feedback mechanism to ensure that
commands are executed successfully or, if they fail to execute,
to inform the dispatcher about it.

The physical communication of experiment procedures is
carried out by serial and/or socket communication agents
(SCA), which are themselves managed by the node manager
residing in the server block. The agents are created during
the initialisation stage of command execution. Each agent
has a command handler and listener. The command handler
maintains a transmission channel for an active node. All
the command messages are encapsulated in concrete TFCP
packets and passed to the command handler via which they
are transmitted to the specific node. The listener, on the other
hand, regularly polls the receiver channel and maintains a
local message buffer to store incoming TFCP packets. A valid
message frame is detected, validated, and unpacked by the
TFCP stack and messages are passed to the message filter for
further processing.
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Fig. 5: The software architecture of the middleware component
for TinyOS

In addition to the three command execution phases, the
server-side block also implements a data acquisition compo-
nent as displayed in Figure 4. Our system supports both push
and pull modes. In the push mode, data are reported to the
server automatically while experiments are being executed;
in the pull mode, data are stored locally and retrieved by
the server using data retrieve command after the experiment.
In both modes, the data messages are received by the SCA
and filtered by the message filter component. The message
filter is a component that filters specific type of messages. For
instance, in our implementation, only the data message can
pass the filter and then pushed to the unified message queue.
After processing, the data messages are stored in a database. In
the present implementation, the message processing function
is a stub which only stores the message in raw format into
the database. Users can define their own procedure to process
messages before storing.

B. Client-Side Block

The client-side block of our system receives commands,
schedule and execute them locally, and provides feedback to
the server-side block. Figure 5 illustrates the architecture of
the client-side block for TinyOS environment using a USB
interface for a backbone network. The TFCP layer sits on top
of the driver layer (for our case, but it can also be implemented
on top of any communication stack), where it can utilize either
serial or network connection for data and/or command transfer
between nodes and the server. The TFCP layer exposes 5
interfaces to application layer for control and status report
purpose. These are (a) message processing, (b) configuration,
(c) traffic flow control, (d) log manager, and (e) status report
(not shown in the figure).

The message processing component is responsible for man-
aging sessions; recognise, classify, and distribute commands,
and provide reliable communication. Since hundred percent



communication cannot be guaranteed in any communication
link (not even for a serial communication), some of the
sensor nodes may not have been properly configured before
starting an experiment (for example, the transmission channel
may not have been set). This may hinder an experiment
from being executed successfully. To deal with this issue, we
introduce session keys. A session key is updated only during
a configuration phase and each command in the same session
will hold the same key for consistency. Nodes which do not
have the appropriate session key will not participate in the
current experiment. The command recogniser, classifier, and
distributor make up a command processing chain. The reliable
communication component is responsible for providing feed-
back or to raise an error flag to the server after a command is
locally executed.

The configuration component is responsible for setting up
the experiment parameters. After proper validation, the param-
eters are distributed to two interfaces (radio and network). The
radio configuration interface is used to set the radio-related
parameters, such as communication channels and transmission
power levels and the network configuration interface is used
to initialise application-specific parameters, such as destination
and next-hop addresses and inter-packet-interval (IPI).

The log management component provides four main func-
tionalities: storage management, data storage, data retrieval,
and status report. We divided the local flash into several blocks
(the number of blocks and block size can be configured at
compilation time). At booting, the storage manager checks
the block list and finds available free blocks to use. If there
is no available block, the system will halt and generate an
error message to notify the user. The binary image of each
log item is stored in blocks sequentially. For each test run,
only one block is used. If the block is full, all the remaining
items are withdrawn, for erasing the flash at runtime costs
time (it takes more than a few seconds to erase the whole
flash). During data retrieval, the whole block is read at one
time by specifying the block ID to simplify the design and
implementation complexity. Collecting performance indicator
metrics in real time is one of the main tasks of TFCP. All
the information is reported to the server as a push process.
Unlike printf(), which can only send string messages, the
status report function provides a common interface to transfer
any data of any format as a binary stream. The entire TFCP
stack implementation in a TinyOS environment for the TelosB
platform has a footprint of 1058 Bytes of ROM and 84 bytes
of RAM.

VI. EXPERIMENTS USING TFCP

We used our system to conduct experiments in two different
testbeds. In the first testbed, we investigated link quality fluctu-
ation and the performance of two burst-transmission strategies
which deal with link quality fluctuations. The deployment for
this experiment setting took place in an outdoor environment
and the network consisted of 14 TelosB nodes. We set up a
backbone network using USB cables and active USB hubs for
programming the nodes and managing experiments executions.

TABLE III: Parameters used for burst transmission experi-
ments in outdoor environment.

parameter value
environment outdoor
distance between nodes 10 - 30 m
information to collect timestamp, RSSI, noise, LQI, seqno.
channel 26
tx-power 0 dBm, -10 dBm
packet length 28 bytes
IPI 20 - 100 ms
burst size 500 - 10000
total number of packets 10,000

In the second testbed, we evaluated the performance of TFCP
in a lab environment with variable number of nodes (physical
and virtual nodes). We used hybrid communication channels
(serial and Ethernet) as backbone networks to manage the
experiments.

A. Link Quality Fluctuation

The quality of links in any network and particularly in
wireless sensor networks considerably affects the reliability
(expected packet loss) and lifetime of the networks (due to
retransmission of lost packets). The effects of poor reliability
can be observed in the quality of data that can be extracted
from them (for example, in terms of expected end-to-end
latency and jitter). Independent studies [2], [14] have shown
that link quality fluctuation is frequently observed in wireless
sensor networks even in static deployments. Most existing
strategies dealing with link quality fluctuation rely on sufficient
statistics collected from the networks to estimate stable and
bursty durations. The statistics collection process requires
repeated and complex experiments to insure that the statistics
are representative.

Fig. 6: A snapshot of the control script for investigating link
quality fluctuation.

For our testbed we used two burst transmission strategies
that rely on the statistics of link quality fluctuations. Both
strategies first transmit packets continuously in burst and
gather link quality metrics from acknowledgement packets
(RSSI, LQI, background noise, timestamp and sequence of
received acknowledgement packets). These metrics are then
used to establish statistics pertaining to link quality fluctua-
tions and to compute expected stable durations (both good and
bad). The expected stable durations are taken into account to
determine the number of packets that can be transmitted in
burst. The first strategy defines stable durations as random
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Figure 4: Left: A wireless sensor network deployment in a garden. Right: The SNR values of received acknowledgement 
packets. 
 
Whereas the proposed approaches identify the importance of link quality estimation, their main 
purpose is determining whether a single future packet should be transmitted or delayed. In view of 
the complexity and cost of prediction and establishing the necessary statistics, the advantage of 
these approaches is marginal. In contrast, we aim to estimate the expected duration of stable 
periods and to transmit as many packets as can be fit into these periods. The difficulty of our 
approach is determining the duration of stability in a probabilistic sense. In order to investigate link 
quality fluctuation, we deployed wireless sensor networks in indoor and outdoor environments. One 
of the outdoor deployments was in a garden consisting of 14 TelosB nodes, as can be seen in 
Figure 4 (left). At different times, a pair of nodes communicated with each other to send packets in 
burst. Lost packets were not retransmitted. A transmitter node stored the RSSI, LQI, and SNR 
values of acknowledgement packets to evaluate link quality fluctuation. The inter packet interval of 
the burst transmission was 20 ms, so that nodes have enough time to store the link quality metrics. 
Figure 4 (right) shows the SNR values of acknowledgement packets when node 5 communicated 
with node 12 to transmit 2000 packets (transmission power = -3 dBm and distance = 23 m).  

 

 
 

Figure 5: Left: A sequence of received ACK packets. Right:  A plot of ARR vs. SNR. 
 

In Figure 5 is shown the sequence of acknowledgement packets (left) and the relationship between 
the SNR and the acknowledgement reception ratio (ARR) (right). The ARR (0 ≤ ARR ≤ 1) is a 
measure of the successful packet delivery capacity of a link; it is computed as follows: The 
transmitter node divides all packets into chunks (each chunk typically having 10 packets) and each 
chunk is transmitted in burst. The ARR of that chunk is the ratio of the number of received 
acknowledgement packets to the total size of the chunk. The SNR value of that chunk is the 
average SNR value of the received acknowledgement packets. All the remaining chunks are 
transmitted and the ARR and the average SNR of each chunk are calculated likewise. Figure 5 
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Fig. 7: Experiment results for link quality fluctuation. (a) The topology of the textbed. (b) The snapshot of the SNR of
acknowledgement packets gathered in real time. (c) The packet delivery rate of the two strategies during different experiment
runs for a specific link.

variables and establishes the cumulative distribution function
of stable durations for each link (we label this strategy as
“CPB”) whereas the second strategy employs a two-stage
Markov process to model link quality fluctuations as states
(we label this strategy as "DMB"). This strategy also relies
on statistics to determine the expected duration of states and
state transitions.

To collect sufficient statistics for both strategies, first a
communication pair is identified and the physical parameters
for communication are fixed (channel, transmission power
level, and packet size). Then the number of packets which
should be transmitted in burst and the inter-packet interval
are determined. Then each experiment is repeated 10 times
and the link quality indicators are locally stored. While the
experiments are being conducted, the link quality indicators
are gathered from the individual nodes using TFCP. Tables III
displays the specifications and parameters we defined for the
experiments. Figure 7 (a) displays the topology of one of the
testbeds. Figure 6 displays the snapshot of our control script
in which two links ([node 1, node 10] and [node 1, node
12]) are identified for the experiments. In the first link 10,000
packets are transmitted in burst with an inter-packet-interval
of 20 ms. There is a 20 s intermission between experiment
runs. Likewise, in the second experiment 5000 packets are
transmitted in burst between node 1 and node 12 with an
inter-packet-interval of 100 ms. The intermission is the same
as the first experiment. Figure 7 (b) and (c) display a snapshot
of the SNR fluctuation of a specific link as observed in real
time, and a comparison of the packet delivery rate of the two
strategies and a baseline in which no strategy was used to
transmit packets.

B. Performance Evaluation

We evaluated the performance of TFCP in two ways: (1)
The deviation of start time during the simultaneous execution
of an experiment as the network size increases; and (2) the
deviation of an experiment completion time as the duration
of experiment increases. In the first case, we conducted a
set of small experiments with variable number of physical

nodes (from 5 to 20) as well as virtual nodes (up to 500). In
each of the experiments all nodes should begin the experiment
simultaneously. The experiments consist of nodes periodically
transmitting a fixed amount of packets; each experiment is
repeated 100 times. Fig. 8 (a) shows the average deviation of
the starting time as a function of network size. As can be seen,
even for a large network consisting of 500 nodes, the testbed
guarantees a deviation of experiment start time which is below
200 ms. Likewise, Fig. 8 (b) displays the deviation of intended
time of completion for different experiment durations. In this
experiment we set up a testbed of 10 TelosB nodes which were
connected to the controlling server via USB cables and hubs.
We performed a series of experiments the duration of which
varied from 10 seconds to 24 hours. The maximum deviation
between the actual experiment duration and the intended
duration was in the order of hundred milliseconds only. Lastly,
we inserted arbitrary number of control commands (pause
and continue commands) in the experiments lasting up to 600
seconds, and varied the number of nodes from 1 to 10. We did
not observe significant increments of experiment completion
times when the number of commands increased (shown in Fig.
8 (c))

VII. CONCLUSION

In this paper we proposed a system architecture for man-
aging complex experiments in wireless sensor networks. The
system architecture consists of a server-side block for speci-
fying, managing, and dispatching inter- and intra-experiment
activities and a client-side block for receiving and executing
commands and for collecting experiment-related feedback and
data. We also defined light-weight traffic flow controlling
primitives and a communication protocol for exchanging com-
mands and feedbacks. The system-side block is implemented
in python whereas the TCFP stack at the client-side was
implemented for TinyOS environment has a footprint of 1058
bytes of ROM and 84 bytes of RAM in a TelosB platform.
Our approach does not require special hardware or backbone
network infrastructure.
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Fig. 8: Performance analysis of TFCP: (a) Deviation in experiment starting time for networks of different sizes. Ideally, all
nodes should begin executing an experiment at the same time regardless of the network size; (b) Time deviations between
intended and actual experiment completion time for different experiment durations; (c) The deviation in the duration of arbitrary
control commands in a single experiment.

We tested our system with our local testbed having small
network sizes. We investigated the performance of two burst
transmission techniques dealing with link quality fluctuations.
The network consisted of 14 nodes and pairs of nodes commu-
nicated with each other while we gathered useful metrics from
the network to establish statistics pertaining to link quality
fluctuations. We used these statistics to estimate expected
stable durations. The platform simplified the execution of all
experiments and provided us with great latitude to define and
redefine experiment settings. In future we are aiming to extend
our system architecture to include additional features such
as mobility management and to interface our system with
Matlab and the R-statistical platform, so that statistical data
can be directly transferred from our system to these tools
for statistical analysis. Work is also in progress to make the
source code and the testbeds available online for the research
community.
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