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Abstract—Wireless electrocardiograms (WECGs) allow long-
term monitoring of patients in their residential and work environ-
ments. However, the measurements are easily affected by motion
artifacts. To reason about and remove the artifacts, reference
models (signals) are needed. One way to construct these models
is by employing motion sensors that pick up the motion affecting
the electrodes of a WECG. In this paper, we experimentally
examine the existence of correlations between the measurements
of inertial sensors and motion artifacts. We employed three
reference sensor types (3D accelerometer, 3D gyroscope, and skin
impedance sensor). Our analysis includes actual measurements
taken from eleven healthy subjects carrying out six different
movements: Stand up, bend forward, walking, running, jumping
and climbing stairs. We found that the best place to attach
inertial sensors is the sternum of the torso. Although all three
sensor types exhibit comparable levels of correlation to isolated
motion artifacts, the gyroscope performs best in removing motion
artifacts with an adaptive filter.

Index Terms—Accelerometer, adaptive filter, electrocardio-
gram, gyroscope, impedance, inertial sensor, motion artifact

I. INTRODUCTION

Detecting and treating diseases belonging to the group of
Cardiovascular diseases (CVDs) is one of the most important
challenges facing the healthcare system in the 21st century.
These diseases are characterized by high mortality and mor-
bidity, thereby accounting for 17.9 million deaths every year
[1]. Their detection and monitoring are therefore vital in order
to initiate the correct treatment.

Recent advances in telemedicine have provided mobile
devices that offer continuous monitoring of cardiac activ-
ity. Wireless electrocardiograms (WECGs) can be employed
outside of clinical settings to monitor cardiovascular health
for subjects in risk groups to detect anomalies that occur
suddenly or episodically (e.g., occult arrhythmia, which are
paroxysmal, transient, and appearing in particular situations
[2]). Furthermore, remote monitoring can help patients in risk
groups maintain an independent lifestyle while ensuring that
their health is closely monitored.

The WECG is obtained by attaching electrodes on the skin
surface and measuring the potential difference in between.
Rhythmic contractions of the heart muscle generate action
potentials, which are then picked up by these electrodes.
Unfortunately, these measurements are regularly affected by
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different noise types: muscle noise, baseline wander, powerline
interference, and motion artifacts. One of the most challenging
distortions are motion artifacts because their spectrum and
magnitude overlap the cardiac information delivered [3]. Their
appearance can cause significant diagnostic errors ranging
from falsely diagnosed arrhythmia to resembling pathological
conditions such as atrial flutter/fibrillation [4].

Many methods have been proposed to remove motion
artifacts from WECG: wavelet denoising [5]–[7], blind source
separation [8], [9], and neural networks [10]. The adaptive
filter remains the most commonly used method for artifact
removal, despite the recent advances in signal processing. It
estimates the motion artifacts in the electrocardiogram (ECG)
by employing a reference signal correlated to the noise. The
low energy consumption and simplicity make its application
expedient for mobile monitoring [11], [12]. These monitoring
devices usually consist of sensors to measure the ECG but also
integrate an inertial measurement unit (IMU) to characterize
the movements performed. The IMU contains an accelerometer
and a gyroscope to record three-dimensional acceleration and
rotational velocity, respectively. Complementary to the inertial
sensors, the skin-electrode impedance can be recorded by
inducing a low alternating current and measuring its motion-
induced variation.

The skin-electrode impedance [13], [14] and the accelerom-
eter [14], [15] represent two well-established reference sensors
investigated. Although IMUs typically incorporate a gyroscope,
this type of sensor has not been examined in the literature for
its ability to remove motion artifacts.

In the following, we examine the relationship between
the three sensor types available and isolated motion artifacts
to identify the sensor that correlates best with the artifacts
and removes them from the signal in the best possible way.
Furthermore, a motion affects different parts of the body
differently, thereby making the deployment of motion sensors
to model and reason about motion artifacts challenging. In this
paper, we investigate:

• the extent to which the measurements of motion sensors
correlate with motion artifacts, and;

• how the placement of sensors influences the analysis of
motion artifacts.



II. MATERIAL AND METHODS

The following section provides a detailed description of
the experimental setup and processing step employed and the
methodology to compare the reference sensors.

To reason about motion artifacts removal in ECG, many
approaches employ the MIT-BIH database that contains, among
others, noise-free ECG and recordings of isolated motion
artifacts [16]. Artificially corrupted ECGs can subsequently
be generated by combining the artifacts and the noise-free
ECG segments. Unfortunately, this database does not contain
any information on the movement types executed, nor does
it include the data from reference sensors to characterize the
movements. Therefore, we designed our own experimental
setup to (1) record ECG corrupted by motion and (2) char-
acterize the relationship between reference sensors and the
motion artifacts. We employed the Shimmer3 platform [17]
which provides the synchronous measurement of the ECG,
a 3D accelerometer, and a 3D gyroscope. Furthermore, the
skin-electrode impedance can be measured between a pair of
electrodes by injecting an alternating current (fmod = 32 kHz
and IImp = 30 µA).

For each experiment, we employed five Shimmer3 nodes
per person. We deployed them in different locations in the
torso region and at the back: One of the nodes was placed
at the chest, at the height of the sternum. Three nodes were
placed as close as possible to the wet ECG electrodes (Kenndal,
H135SG): left arm (LA), right arm (RA), and left leg (LL).
The skin was prepared using alcohol wipes to clean the contact
area. All leads were fixed to the torso with surgical tapes
to minimize localized motion. Figure 1 illustrates the sensor
arrangement.

The ECG can be recorded either in motion or at rest.
When the subject is in motion, the information retrieved
on the skin surface contains the cardiac information mixed
with the motion artifacts according to an unknown function
f(v). Without the exact knowledge of the mixing process,
they cannot be separated with 100% accuracy, and analyzing
their characteristics is not straightforward. To record isolated
motion artifacts with minimal cardiac influence, we attached
an additional sensor node at the back of each subject. Figure 1
illustrates the arrangement of the bias (B), reference (R), and
positive (P) electrodes at the back. By suppressing cardiac
action potentials this way, it is possible to investigate the
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Figure 1. Electrode and sensor location at the front and the back of the
subjects.

relationship between (a) the motion artifacts generated by
motion alone and (b) the output of the motion sensors.

Attaching inertial sensors to capture motion artifacts inadver-
tently interferes with the body’s function and external structure.
Sensors attached near the electrodes push and pull them during
movement because of the extra weight they introduce to the
skin’s surface. This effect generates its own motion artifacts.
In order to minimize this effect, we introduced a minimum
distance between the electrodes and the sensor platforms, but
in doing so, we also limited the sensors’ ability to measure
the motion directly affecting the electrodes accurately.

We recorded data from eleven healthy subjects undertaking a
selection of everyday activities. We deliberately included high-
intensity (running, jumping, climbing stairs) and light-intensity
movements (standing up, bending forward, and walking).
Thereby, we wish to address the different characteristics of
movements and how these translate to the correlation to
reference sensors. We tried to make the execution of the motions
as natural as possible. Only bending forward, standing up from
a chair, and jumping were performed on the spot. For the
remaining movements, no restrictions were made on the pace
or magnitude of the execution, and the subjects were able to
move freely while performing the respective movement type.
We recorded 120 s for each movements at a sampling rate of
fs = 512Hz. The raw data was subsequently bandpass filtered
in the range of 0.05–150 Hz following the American Heart
Association (AHA) recommendations for the standardization
in ECG analysis.

III. RESULTS AND DISCUSSION

We divide this section into three subsections. First, we
investigate the influence of sensor placement on the correlation
between inertial sensors and noisy ECG. We then compare
the extent to which the different motion sensors’ outputs are
correlated with the isolated motion artifacts (measured at the
back of a subject) and determine their ability to remove these
artifacts from noisy ECG.

Figure 2 displays sample inertial measurements and the asso-
ciated ECG/motion artifacts recorded at the back while bending
forward. A cursory look suggests that the measurements are
correlated. We wish to quantify the prevalence of this feature in
different subjects and movement types. Therefore, we employed
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Figure 2. An example of the electrocardiogram at the back and the reference
sensors for one subject performing the movement bending.



a moving window cross-correlation – the correlation between
two zero-mean time-shifted signals – defined as:

Rxy(m) = E[xn+my
∗
n] (1)

where E is the expected value and x and y are two time-series.
We subsequently normalized the cross-correlation so that the
autocorrelations of x and y at zero lag are equal to one, and the
cross-correlation can attain values in Rxy ∈ [−1; 1]. Because
we are interested in the relation between the motion artifacts
and the reference sensors under the best possible conditions,
we employ the maximum absolute cross-correlation – Rmax =
max |Rxy| in the following. Moreover, for the comparisons we
make, we shall consider the median of Rmax along with the
median absolute deviation (MAD) to reduce the influence of
outliers in the dataset.

A. Impact of Sensor Placement

In this section, we investigate the impact of sensor placement
on the strength of the correlation. Our focus will be on the
correlation between the motion sensors and the noisy ECG
(lead I). We thereby wish to investigate whether placing the
inertial sensors next to the ECG electrodes can enhance the
correlation to the noisy ECG or whether it is sufficient to use
a single sensor.

The gyroscope and the accelerometer record three-
dimensional angular velocity (rotational motion) and linear
acceleration, respectively. In general, these sensor axes score
different correlation-coefficients since they are affected differ-
ently by one and the same movement. For our comparison,
for each sensor, we select only one of the axes for which the
absolute cross-correlation is the best:

|R|max,xcorr = max
axis ∈ {x,y,z}

{|R|max,xcorr,axis} (2)

The time lag of the cross-correlation was limited to one
second. Subsequently, the cross-correlation is calculated be-
tween the noisy ECG and each axis of the accelerometer or
gyroscope, respectively. Thus, Rmax,xcorr denotes the highest
cross-correlation observed over the three orthogonal axes of
one sensor type.

Figure 3 displays the values of |R|max,xcorr for the different
types of movements and different sensor placements. The
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Figure 3. Median of the maximum cross-correlation coefficient between
different accelerometer positions and the ECG-lead I.

sensor in question is the accelerometer. Overall, the motion
sensors’ outputs are well correlated with the noisy ECG for
bending, jumping, and running (the first two exhibiting median
correlation coefficients greater than 0.4). Walking and running
are also the types of movements for which sensor placement
matters. In all of them, the sensors placed at the back and the
hip result in weaker correlations, while the sensors placed in
the upper part of the body score comparatively high but similar
correlations. Standing up and climbing the staircase resulted
in relatively weak overall correlation coefficients, but sensor
placement does not seem to affect the former significantly.

Figure 4 displays the cross-correlation coefficients for the
gyroscope experiments. Like the experiments with accelerom-
eters, overall, bending, running, and jumping exhibit high
correlations, and standing up and climbing structures small
correlations. Sensor placement appears to matter for walking,
running, jumping, and climbing stairs, all of which require
translational motions.

Discussion: Three conclusions can be made from the above
results:

1) While placing motion sensors in the upper body is
advantageous (compared to placing them at the hip or
the back), there is no apparent advantage in placing them
near the electrodes of the WECG.

2) Because of the comparable results we observe between
the three sensor placements (LA, RA, center), it can be
construed that the motion artifacts we can measure using
inertial sensors are more likely the results of macro body
movements as opposed to localized electrode movements.

3) Gyroscopes are more sensitive to sensor placement
compared to accelerometers.

B. Correlation to Isolated Artifacts

Figure 5 expresses the correlation between the three sen-
sors and the artifacts recorded at the back. Climbing stairs
exhibits the weakest correlation for all sensor types. By
comparison, bending forward scores the strongest correlation
with Rmax > 0.5 and little deviation across sensor types.
The remaining movements (standing up, walking, running,
and jumping) score similar correlation coefficients. Notable
differences among the sensors are present for walking, running,
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Figure 4. Median of the maximum cross-correlation coefficient between
different gyroscope positions and the ECG-lead I.
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Figure 5. Median of the maximum cross-correlation coefficient between the
reference and the artifact at the back.

and jumping, for which the gyroscope scores the weakest
correlation coefficient. Overall, the accelerometer and the
impedance sensor correlate better with the artifacts for most
of the movements.

From our analysis, it can be construed that no single sensor
stands out in picking up motion artifacts in all the cases we
considered, but the impedance sensor and the accelerometer
performed comparatively well. The correlation coefficients we
present for the impedance sensor are partially consistent with
the results of Buxi et al. [18]. However, in their study they
present a maximum correlation for running of Rmax = 0.6
which significantly differs from our results (Rmax = 0.3).
The origin of this deviation is likely manifold: measurement
duration (tm,Buxi = 60 sec vs. tm = 120 sec), execution (on
the spot vs. translational) or impedance frequency (fimp =
2.2 kHz vs. fimp = 32 kHz).

C. Application to Motion Artifact Removal

In the following, we investigate how the differences in
correlation are reflected in the removal of motion artifacts.
We thereby wish to determine if one sensor type performs
significantly better than the others. Therefore, we employed an
least mean square adaptive filter (LMS-AF), commonly used
to remove motion artifacts from ECG measurements.

f(v) LMS-AF
u(n)

v(n)

+

s(n) x(n) ŝ(n)

−

v̂(n)

Figure 6. Block diagram of an adaptive filter for motion artifact removal.

The LMS-AF automatically adapts its filter coefficients to
minimize an error function, in this case, provided by the least
mean square (LMS) error. Therefore, a reference input u(n) is
required, which is ideally well correlated to the motion artifacts
v(n). Subsequently the filter coefficients are optimized with
regard to the LMS error between the noisy ECG x(n) and
the output of the LMS-AF v̂(n) to generate an estimation
of the artifact-free ECG ŝ(n). The underlying assumption is

that the reference sensor and the motion artifacts in the ECG
are correlated, and the cardiac information and the motion
artifacts are uncorrelated. Figure 6 illustrates the framework
of an adaptive filter to remove motion artifacts from the ECG.

We generated artificially corrupted ECG with a known signal-
to-noise ratio (SNR) between −10 to 5 dB by combining the
isolated artifacts recorded at the back and clean ECG segments
recorded in rest. This way, it is possible to compare the results
for the particular reference sensors objectively. To evaluate
the performance, we considered the SNR and the root mean
squared error (RMSE):

SNRdB = 10 · log10
(
Psignal

Pnoise

)
(3)

RMSE =

√√√√ 1

n

n∑
i=1

(si − ŝi)2 (4)

where Psignal is the power of the cardiac information in the
ECG and Pnoise is the power of the noise, i.e., the motion
artifacts. The RMSE is subsequently calculated between the
noise free ECG s and the estimated noise-free ECG ŝ generated
by the filter. The step-size µ influences performance of the
LMS-AF significantly. A large step-size (µ = 0.1) increases
the convergence speed but can introduce distortions into the
signal, even though the motion artifacts are marginal. On the
other hand, a small step-size (µ = 0.01) introduces negligible
distortion but converges slowly and therefore fails to track fastly
changing motion artifacts. Unfortunately, the step-size applied
in the literature is not consistent (µ = 0.01 [19], µ = 0.08
[20]). Therefore, we reviewed the performance for different
step sizes by considering µ ∈ [0.01; 0.1]. We subsequently
analyzed the results with regard to the SNR and RMSE to
select an appropriate step-size for each sensor type. We found
that the following step-sizes performed best: µacc = 0.07,
µgyr = 0.07 and µimp = 0.06.

Table I
COMPARISON OF THE PERFORMANCE FOR DIFFERENT REFERENCE SENSORS.

Sensor SNR in dB RMSE

before after before after

Impedance -10 -5.2 0.159 0.216
-5 -2.6 0.131 0.163
0 -1.3 0.095 0.141
5 -0.7 0.062 0.133

Accelerometer -10 -2.4 0.159 0.167
-5 -1.2 0.131 0.144
0 -0.4 0.095 0.133
5 -0.1 0.062 0.127

Gyroscope -10 -1.4 0.159 0.146
-5 -0.5 0.131 0.131
0 -0.1 0.095 0.126
5 0.0 0.062 0.124

Table I displays the results for the LMS-AF as mean values
over the six movement types and eleven subjects considered.
Although the previous results suggested that all sensors perform
on a comparable level, the SNR and the RMSE after applying
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Figure 7. Comparison of motion artifact removal in ECG for three different
reference sensors.

the algorithms indicate that the gyroscope outperforms the
other sensor for all noise levels regarded.

Figure 7 depicts the results of motion artifact removal for a
generically chosen subject. The results are consistent with our
numeric evaluation – all available reference sensors remove
the artifacts to a certain extent. However, there are fine-grained
differences in the performance and characteristics of the partic-
ular sensors. The gyroscope removes most of the artifacts and
produces a clean signal without protruding points. On the other
side, both the skin-electrode impedance and the accelerometer
remove motion artifacts but also introduce significant signal
distortion into the measurements. The disturbances caused
by the accelerometer appear predominantly in high frequency
but low amplitude components. The distortion introduced by
the skin-electrode impedance is around 200% of the R peak
amplitude and is likely located in the same spectral range.

IV. CONCLUSION

In this paper, we examined the correlations between motion
artifacts superimposed on the measurements of a WECG
and different types of motion sensors (3D accelerometer,
3D gyroscope, and skin-impedance sensor). We employed
Shimmer3 sensor platforms and experimented with six different
types of stationary and translational movements. Our analysis
focused on the sensors’ capacity and the placement of the
sensors to capture motion artifacts. Our observation indicates
that all the sensors we considered captured artifacts to certain
extents, depending on the movement types. The position that
registered the best correlation coefficients for most movements
was the center of the torso (sternum). There is no apparent
advantage in placing the sensors next to the electrodes. The
gyroscope outperforms the other reference sensors in removing

motion artifacts from the ECG. It results in a higher SNR and
a lower RMSE for all noise levels considered.
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