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Abstract— The increasing population size of the elderly is
fostering the development of telehealth and assisted living
systems. In this respect, monitoring vital biophysical conditions
using wireless devices, such as the wireless electrocardiogram
(WECG), plays a pivotal role in telemonitoring. However, the
freedom of movement brings with it motion artifacts, the
magnitude of which can be significant enough to interfere with
the cardiac signals. To reason about and remove the artifacts,
reference models (signals) are needed. In the context of WECGs,
one way to construct these models is to employ motion sensors
that can pick up the motion affecting the electrodes of the
WECGs. In this paper, we experimentally examine the spectra
of motion artifacts and the existence of correlations between
inertial sensors and motion artifacts. We make use of three
different types of sensors (3D accelerometer, 3D gyroscope, and
skin-electrode impedance sensor) to assess the characteristics
of different movement types. We found that the spectra of
motion artifacts are determined by the type of movement.
While lower-intensity motion artifacts (e.g., bending forward)
are most pronounced below 2 Hz, others (e.g., running) manifest
themselves in a series of distinct peaks between 1–10 Hz.

Index Terms— accelerometer, electrocardiogram, gyroscope,
inertial sensor, motion artifacts, skin-electrode impedance, tele-
monitoring

I. INTRODUCTION

The electrocardiogram (ECG) is widely used to diagnose
and monitor Cardiovascular diseases (CVDs). Its wireless
version can be useful for monitoring patients in their res-
idential settings [1], [2]. One of the challenges associated
with the employment of such devices is the existence of
motion artifacts that can be significant enough to interfere
with cardiac signals and, hence, impede their evaluation, both
manual and automatic.

Different approaches have been proposed to reason about
and remove artifacts. Among the techniques belong inde-
pendent component analysis [3], tensor decomposition [4],
wavelet denoising [5] and adaptive filtering [6]. As far as
their characterization is concerned, Buxi et al. [7] investigated
the correlation between motion artifacts and electrode-skin
impedance for various motion types. The authors’ measure-
ment setup was based on capturing an ECG signal at the back
of a subject, assuming that cardiac influence is negligible
there. The different activities performed to generate artifacts
were divided into (1) local skin artifacts (push/pull electrode,
stretch/twist skin) and (2) global artifacts (Walking, Running,
Jumping). Their results suggest that measurements pertaining
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to the variation in the electrode-skin impedance can serve as
a reference signal for the reduction of motion artifacts (for
example, in adaptive filtering). However, their study is missing
a comparison with inertial measurements. Furthermore, even
though the activities causing global artifacts were of high
intensity, they, nevertheless, were performed on the spot, thus
not representing actual daily motions.

Cömert et al. [8] examined the spectral characteristics
of the electrode-skin impedance for textile electrodes. The
authors simultaneously measured the impedance at eight
different current frequencies while applying a controlled
motion sequence and specific magnitudes of force on the
electrodes. Their findings suggest that if the aim is to detect
or reduce motion artifacts, impedance frequencies should
not be used within the range of biosignals (i.e., ECG and
EMG that are below 500 Hz). The authors propose to use
frequencies between 17 kHz and 1 MHz instead since artifacts
and motion reference correlate best there.

The human movement is composed of complex and highly
coordinated mechanical interactions of the musculoskeletal
system. Muscles generate forces and apply moments to joints
to provide static and dynamic stability to the body. Many
gait parameters change with increasing speed, including
step length, cycle duration, and muscle activation intensity.
Although walking and running share some fundamental
kinetics and kinematics, they are also distinctly different.
In fact, both kinematics and kinetics change abruptly from a
walking gait to a running gait [9].

How these properties translate into the generation of
motion artifacts in ECG has not been thoroughly studied.
Characterizing the spectral properties of motion artifacts has
so far been limited to Thakor et al. [10] who investigated
the spectra for running on a treadmill only. In this paper, we
investigate:

• the spectral characteristics of motion artifacts for various
movement types, and;

• how these characteristics translate to the correlation
between the measurements of different reference sensor
types and motion artifacts.

The remaining part of this paper is organized as follows:
In Section II we describe our measurement setup, including
the movement types considered and the equipment employed.
In Section III we analyze the spectral properties for different
movement types. In Section IV we analyze how these
characteristics translate to the correlation between reference
sensors and motion artifacts. Closing with Section V where
we provide concluding remarks.



II. MATERIAL AND METHODS

To measure cardiac action potentials and physical exertions,
we employed the Shimmer3 platform [11], which consists of
a wireless electrocardiogram (WECG), a 3D accelerometer,
and a 3D gyroscope, among others. In addition, the platform
integrates two ADS1292R chips (Texas Instruments), enabling
the simultaneous measurement of the ECG and skin-electrode
impedance (fmod = 32 kHz, and IImp = 30 µA). Furthermore,
all the available sensors can be sampled synchronously.

This study includes actual measurements taken from eleven
healthy subjects (mean age = 30 yr, SD = 6 yr) performing
the following activities: standing up from a chair, bending
forward, walking, running, jumping on the stop and going
up and down a flight of stairs. The list accommodates high
impact motions (running, jumping, and climbing stairs) but
also movements of moderate intensity (standing up, bending
forward, and walking). Light activities were deliberately
included as they are associated with elderly monitoring and
independent living. The experimental procedures involving
human subjects described in this paper were approved by
the Institutional Review Board. One Shimmer3 node was
attached at the center of the sternum of each subject to
register movement and record the cardiac activity through
a set of wet ECG electrodes (Kenndal, H135SG). The skin
was prepared using alcohol wipes to clean the contact area,
and all leads were fixed to the torso with surgical tape to
minimize localized motion. Figure 1a illustrates the applied
sensor arrangement.

(a) Front (b) Back

Fig. 1. Electrode and sensor location at the front and the back of the
subjects.

An additional sensor node was placed at the back of each
subject to capture the changes in the electrical potential caused
by motion. The electrodes were placed at the high of the
lumbar curve (cf. Fig. 1b), where cardiac influence is assumed
to be negligible [7], [12]. The configuration was chosen
to minimize the effect of cardiac action potentials and to
maximize the impact of physical motion. By suppressing
cardiac action potentials this way, it is possible to investigate
the relationship between (a) the motion artifacts generated by
motion alone and (b) the output of the motion sensors. Each
movement was performed for two minutes to contain sufficient
motion cycles for further analysis. The data were preprocessed
following the recommendations for the standardization of the
ECG made by the American Heart Association (AHA) [13].
Thereby the spectra of the signals was limited to 0.05–150 Hz.

Since the data analysis was performed offline, we employed
zero-phase digital filtering by processing the raw data in both
the forward and reverse directions (bi-directional filtering).
This method prevents phase distortions from interfering
with the outcomes of the correlation analysis. The outlined
preprocessing procedure is equally applied to all the sensor
data.

III. SPECTRAL CHARACTERISTICS OF MOTION
ARTIFACTS

In the following chapter, we examine how the different
mechanical properties of movements are reflected in the
generation of artifacts. Therefore, we considered the isolated
motion artifacts obtained from the back of each subject. After
preprocessing, we extracted the power spectrum for each
motion and subject and derived the relative power from it
by normalizing the spectra to the range of 0 to 1. Figure 2
presents the mean value of the relative spectral power for
artifacts produced by the six motions considered. Since the
relative power of the spectra decreases for f > 16 Hz, these
data are not shown here.
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Fig. 2. Frequency spectrum of motion artifacts for different types of
movements.

A cursory look suggests that the spectra for the exercises
manifest distinctive characteristics at different frequency
bands. According to these, the movements can be categorized
into three groups: The first group contains bending and
standing up, for which the relative power is concentrated
in frequencies below 2 Hz. The second group is made up by
jumping and going up and down a flight of stairs. For these
movements, the motion artifacts exhibit a distinct peak around
2 Hz. The last group contains walking and running, for which
the motion artifacts have a significantly more complex spectral
composition. Their data show numerous peaks distributed
over various frequencies.



The results indicate that motion artifacts markedly change
their characteristics with a change in movement type. Bending
forward and getting up from a chair are slowly executed
movements where the relative power is highest in lower
frequency bands. Both jumping and going up and down a
flight of stairs feature distinctive frequency peaks around 2 Hz.
Analyzing the accelerometer data for jumping suggests that
these peaks likely correspond to the primary execution pattern
(≈ 2 jumps per second). On the other hand, the spectrum
for running is much more sophisticated in its composition,
manifesting a series of characteristic peaks. This could result
from the significantly more complex movement composition
– combining forward and lateral direction patterns.

We conclude that there is no typical pattern to which
all the motion artifacts adhere. Instead, they change their
characteristics when the motion type changes. It is, therefore,
necessary to take these characteristics into account when
designing algorithms for motion artifact removal and applying
them to corrupted signals.

IV. CORRELATION BETWEEN MOTION ARTIFACTS AND
REFERENCE SENSORS

A. Motion Sensors vs. Isolated Artifacts

In the following, we intend to determine the extent to which
specific frequencies contribute to the correlation between
reference sensors and artifacts. Because many algorithms [4],
[6], [12] rely on this correlation, its characteristics and
strength determine the performance in artifact removal.

In order to analyze the correlation between specific fre-
quency bands of two time series, the data must be decomposed
into their constituting frequency elements first. Therefore,
we applied the continuous wavelet transform (CWT) [14]
on the ECG and the inertial sensor data to transform them
from time into the time-frequency space. Wavelet transforms
employ a base function Ψ, which is stretched or compressed
to capture low or high frequency components in the signal
while preserving the temporal characteristics. As a mother
wavelet, we selected the Morlet wavelet [15]. Each time
series was transformed into 106 narrow frequency sub-
bands. Subsequently, we determined the Pearson correlation

coefficient Rp between the respective frequency-constrained
artifact and reference signals. Because the accelerometer and
the gyroscope measure three-dimensional acceleration and
rotational velocity, we selected the axis that correlates best
with the isolated artifacts.

Figure 3a and 3b display the correlation between isolated
frequency bands of motion artifacts and the inertial sensors.
The movements can be categorized into two groups based
on the frequency bands in which the correlation to reference
sensors is strong. The first group, illustrated in Figure 3a,
contains the movements bending, standing up, and climbing
stairs. For these groups, the frequency range producing
Rp > 0.25 are primarily concentrated below f ≈ 1.5 Hz.
There are no obvious characteristic points that stand out
to neighboring frequencies. On the other hand, the inertial
sensor data for jumping, walking and running (cf. Figure 3b)
exhibit Rp > 0.25 for f > 1 Hz. Each of these movements
reveals distinctive peaks distributed over a range of different
frequencies (e.g., 1.5 Hz, 2.5 Hz). However, the correlation
in frequencies below 1 Hz is limited for these movements.

B. Motion Sensors and the ECG

In this section, we limit our comparison to the strength
of correlation between the ECG in motion (lead I), on the
one hand, and the accelerometer, gyroscope, and impedance
sensor in the sensor platform placed at the sternum, on the
other.

The motion types can be categorized into two groups based
on their frequency-dependent features – similar to the isolated
artifacts addressed in the previous section. The first group
contains the activities bending, stand up, and climbing stairs
and is illustrated in the upper part of Figure 4. In these
movements a correlation of a reliable degree (Rp > 0.2) can
be observed for a frequency below ∼ 1 Hz, but the values
decline consistently for higher frequencies (Rp ≈ 0.15 at
10 Hz). The movements belonging to the second group refer
to walking, running, and jumping. For these movements, the
values of the correlation coefficients are strongly frequency-
dependent for all motion sensors. Unlike the first group,
however, this group continues to exhibit distinct features in
the remaining frequency ranges as well. Indeed, there exist
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Fig. 3. Median Pearson correlation coefficient Rp depending on the frequency bands.



multiple peaks at various frequency points (e.g., 1.5 Hz and
4.5 Hz), thus revealing spectral bands in which the reference
sensors and the ECG share mutual information.

To further study the relationship between motion and the
resulting artifacts, we first employed a moving window cross-
correlation (i.e., the correlation between two time-shifted
signals) [7], [8]:

Rxy(m) = E[xn+my∗n] (1)

where E is the expected value and x and y are two time
series. The cross-correlation was normalized so that the
autocorrelations of x and y at zero lag are equal to one.
Subsequently, the cross-correlation can attain values between
-1 and 1. As part of our investigation, we examine the relation
between motion artifacts and reference sensors under the
best possible conditions. Therefore we employ the maximum
absolute cross-correlation – max |R̂xy,coeff | having values
between 0 and 1. We shall refer to it as: |R|max,xcorr.

As Figure 5 reveals, the outputs of the different sensors
score different correlation coefficients for almost all motion
types (one exception is stair climbing). The accelerometer
performs best in all the movement types save running and
walking (where the gyroscope outperforms it). For standing
up and climbing stairs, the correlation coefficients for all three
sensors are small (none of the sensors score a correlation
coefficient greater than 0.3). Figure 4 displays the median
absolute correlation coefficient between the frequency bands
of the ECG lead I and the reference sensors for frequencies
lower than 10 Hz. The correlation for higher frequencies is not
displayed here, as there are no distinct characteristic points,
and the values are too small to be interesting. Because the
skin-electrode impedance and the noisy ECG share distinctive
characteristics, they will be addressed afterward.

So far, this data reveals that motion artifacts significantly
change their properties with a change in motion. This is
reflected in their spectra and the correlation to the accelerom-
eter and the gyroscope. Even though bending and jumping
achieve comparable cross-correlation levels, the nature of
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Fig. 5. Median of the maximum cross-correlation coefficient between
different sensor types and the ECG-lead I.

the underlying frequencies contributing to this relation is
divergent.

Figure 6 displays the correlation between the ECG and
the skin-electrode impedance sensor. The accelerometer and
the skin-electrode impedance sensor at the back serve as a
reference. As can be seen, the impedance sensor correlates
with the ECG, compared to the inertial sensors, over a broader
range of frequencies. At the same time, similar to the inertial
sensors, it also exhibits a strong correlation below 6 Hz. For
all types of movements, the correlation steadily increases
from 6 Hz to about 17 Hz, but steadily declines afterward,
reaching a local minimum at 30 Hz. Neither the impedance
sensor at the back nor the acceleration sensor shows similar
characteristics.

In the range between 6–30 Hz, the impedance is highly
correlated with the ECG. Perhaps this is due to the existence
of mutual cardiac components in both signals resulting from
ventricular depolarizations. These bands are often chosen in
the literature for detecting the R-peaks in the ECG signal
(refer to [16]). Moreover, in impedance cardiography, the
bioimpedance is used, with a different electrode configuration,
to capture cardiac features such as stroke volume and heart
rate [17]. Therefore it is likely that cardiac activities influence
the impedance readouts in the employed setup. Figure 7
depicts the data from the ECG of lead I, the preprocessed
impedance, and the preprocessed ECG for one subject
performing the movement bending. The impedance and the
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ECG were preprocessed to emphasize cardiac activity (the
R-peak). Both signals were bandpass filtered (8–20 Hz) using
cutoff frequencies often applied in QRS-Detection algorithms
(refer to [16]). We preprocessed the data according to common
practices in QRS-Detection (squaring, differentiating, moving
mean – cf. [18]). The times of the occurrence of the R-peaks
extracted from the ECG match the respective patterns in the
impedance. Therefore, the correlation in the sub-bands from
6–30 Hz is likely resulting from the impedance picking up
cardiac activities.
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Fig. 7. Comparison of the ECG and the impedance.

V. CONCLUSION

In this paper, we investigated the spectra of motion artifacts
and their correlation to reference sensors. We found that
motion artifacts greatly vary in their characteristics, subject
to a change in motion. Lower intensity movements generate
motion artifacts concentrating in lower frequency bands. On
the other side, movements associated with gait dynamics
evoke artifacts that are significantly more complex in their
composition.

These findings are consistent with their correlation to
reference senors. Bending, stand up, and climbing stairs
manifest correlations in sub-bands below 1.5 Hz. However,
for jumping, running, and walking, a stable correlation can
be observed for frequencies in the useful ECG bands applied
to detect the QRS-complex.

This seems to suggest that when developing techniques to
remove motion artifacts from the ECG, the type of movements
should be carefully considered in the analysis to reflect their
characteristics. Although accelerometers and skin-electrode
impedance experience similar levels of correlation, the nature
of the underlying frequencies is divergent. Besides a stable
and appreciable correlation in the lower frequencies, the
impedance exhibits a high correlation in frequency bands
commonly used to detect heartbeats in the ECG. Therefore,
when using the change in the skin-electrode impedance as a
reference, the frequency range should be carefully chosen to
avoid removing cardiac information from the ECG.
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