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Abstract—The ever increasing demand for Internet traffic,
storage and processing requires an ever increasing amount of
hardware resources. In addition to this, infrastructure providers
over-provision system architectures to serve users at peak times
without performance delays. Over-provisioning leads to underuti-
lization and thus to unnecessary power consumption. Therefore,
there is a need for workload management strategies to map
and schedule different services simultaneously in an energy-
efficient manner without compromising performance, specially
for heterogeneous micro-server architectures. This requires sta-
tistical models of how services interfere with each other, thereby
affecting both performance and energy consumption. Indeed,
the performance-energy behavior when mixing workloads is not
well understood. This paper presents an interference analysis
for heterogeneous workloads (i.e., CPU- and memory-intensive)
on a big.LITTLE MPSoC architecture. We employ state-of-the-
art tools to generate multiple single-application mappings and
characterize the interference among two different services. We
observed a performance degradation factor between 1.1 and 2.5.
For some configurations, executing on different clusters resulted
in reduced energy consumption with no performance penalty.
This kind of detailed analysis give us first insights towards more
general models for future workload management systems.

Index Terms—Energy-efficient computing, MPSoCs, heteroge-
neous, mapping, scheduling, interference

I. INTRODUCTION

A wide range of power management strategies have been
proposed at various levels of abstraction to make Internet
servers energy-efficient. These include dynamic voltage and
frequency scaling at core level [1], efficient resource al-
location and dynamic task migration by a scheduler [2];
server virtualization and workload consolidation through the
live migration of virtual machines [3], and dynamic load-
balancing at the application level [4]. Complementary to the
runtime adaptation strategies, effort is also being made both
by the academia and the industry to develop energy-efficient
and energy-proportional processor architectures including (1)
the efficient integration of multicore and heterogeneous pro-
cessors, (2) fast and efficient simultaneous multi-threading,
(3) non-uniform cache architecture, and (4) advanced branch
prediction strategies, among others.

A further improvement in the energy-awareness of Internet
servers can be achieved through a closer examination of
the resource requirements and execution characteristics of
individual services and their mutual interference as they share
resources at runtime. This is because (1) not all resources of
a server (CPU, memory, IO bandwidth, etc.) may be utilized
by the running services with a comparable proportion, and
(2) contention for a particular resource (e.g. last-level cache
[LLC]) may result in execution latency for all the contending
services as well as inefficient energy consumption. Knowledge
of the execution characteristics can be useful to schedule
complementary services on the same server and to avoid the
co-location of contending services.

Nowadays, heterogeneous architectures have become com-
mon on the server side [5]. Energy-efficient application map-
ping onto such architectures have been broadly studied in
the embedded domain [6], but the effect on micro-servers
is not studied enough. Therefore, it is necessary to develop
strategies which take service characteristics into account. In
this paper we borrow state-of-the-art mapping algorithms and
use them to quantitively investigate the resulting interference
between contending threads belonging to different services
with dynamic workload. We do this on a heterogeneous multi-
processor architecture using a CPU-intensive application and
a memory benchmark. We expect our analysis to enable so-
phisticated energy-aware thread-to-core mapping algorithms,
that take into account the resource utilization characteristics
of the building blocks of executing services.

The rest of this paper is organized as follows: In Section II,
we summarize related work; in Section III, we introduce our
concept; in Section IV, we describe our experimental setup;
in Section V, we present and discuss results and share the
insight we obtained. Finally, in Section VI, we give concluding
remarks and outline future work.

II. RELATED WORK

A large amount of research has been conducted by adapting
embedded domain’s techniques and principles for server-side
computing and are therefore related to our work. This includes



Dreamcloud [7] that develops workload management strategies
for complex embedded systems for cloud-based use cases, and
ANTAREX [8] that uses domain specific languages to express
self-adaptivity and enable runtime auto-tuning.

In this paper we employ dataflow applications and built
on top of years of research on mapping these applications
to embedded heterogeneous multi-core architectures, e.g., for
performance [9], for energy efficient computing [10] and for
multiple objectives [11] (see also survey in [6]). Some of these
works use formal models of computation that make it pos-
sible to provide design-time guarantees for multi-application
scenarios, e.g., synchronous dataflow in [12] or Kahn Process
Networks (KPN) in [13], [14].

There are several approaches to model the interference of
co-located applications. The authors in [15] propose a model
for Virtual Machines (VMs) with a CPU-dependent and a fixed
CPU-independent component. The latter results mainly from
contention in shared caches and the memory bandwidth [16].
The authors in [17] observe that the runtime consists of
calculation time and the access times of the cache levels and
memory. When services are consolidated, both the number of
LLC-misses and the memory access time increase. Based on
performance counters, such as LLC misses and references,
they defined interference sensitive and interference intensive
applications. A more detailed framework for estimating
the worst-case execution time (WCET) and the worst-case
response time (WCRT) caused by contention in the caches and
the memory bus was proposed by the authors in [18]. There are
several approaches to minimize such contention. The authors
in [19] propose cache partitions as new hardware feature to
isolate different services and a software control unit between
cores to manage the intra-task communication. A closer intra-
task cache analysis can be found in [20] and [21] where a
messaging graph is built for each service to determine the
best task mapping. Furthermore, the WCET can be improved
drastically by inserting appropriated locks [22]. Other shared
resources such as disk I/O have been also studied in [23].

In contrast to the aforementioned works, we assume a
more dynamic server scenario by randomly varying workload
instead of using only static benchmarks. Thanks to the con-
sideration of distribution functions for the workload and its
interference, we seek a more general statistical characteriza-
tion. Further, we integrate the compilation process into the
realization of a new thread-to-core mapping, which optimizes
the executable service with respect to the currently assigned
resources. Regarding interference analysis, we investigate dif-
ferent levels of contention including CPU time of a single
core, cache and globally shared resources. Moreover, we
consider the energy saving not only by switching off un-
utilized machines, but rather by workload consolidation.

III. CONCEPT

Assuming that a data center provides a limited number of
services but serves a sizeable number of users, its workload
can be classified into a delay-sensitive query-based workload
and delay-tolerant batch workload. The former is typically

Service execution
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Fig. 1: Energy-efficiency is achieved by taking into account high-level service
execution, compilation and low-level thread/task scheduling.

generated by users whereas the latter consists of a collection of
background jobs. The workload type depends on the services
the data center provides. On the other hand, the magnitude of
a query-based workload at any given time cannot be known a
priori except in a probabilistic sense whereas the magnitude
of a batch workload can be approximated before its execution.

The execution of batch workloads can be optimized to
achieve execution (performance) and energy efficiency by
combining knowledge of workload statistics, service execution
characteristics, and resource consumption characteristics. This
task requires a holistic approach involving service execution,
compilation and low-level thread/task scheduling (c.f. Fig. 1).
The service execution layer estimates the magnitude of the
batch workload and sets constraints on the quality of service
execution (such as on job completion time). The compiler
examines the anatomy of executable services, infers their
resource consumption profile, and maps executable subtasks
to physical cores based on an analysis of available parallelism.
The scheduler monitors the resource consumption characteris-
tics of executing services, identifies and quantifies interference
effects, and reschedules or re-maps subtasks to avoid both
underutilization and overloading conditions.

The service execution layer also aims to achieve a higher-
level efficiency by matching the supply and demand of re-
sources in the data center. This can be done by dynamically
consolidating the executing and incoming workloads on a few
number of servers and by switching off the rest. However,
dynamic workload consolidation may create and exacerbate
resource contention at a local level and may degrade the
service execution quality. At the same time, local contention
can be deliberately tolerated if its effect is significantly smaller
than the overall gain which can be achieved through service
consolidation. Hence, a trade-off between using as less as
possible resources and the contention has to be conducted
in advance. We need to quantify the contention of services
running on a shared resource in order to foresee and deal with
its effects. This can be done by quantifying either performance
degradation or the extra power consumption incurred as a
result of contention. Furthermore, this time can be correlated
with the resource consumption characteristic of the executing
workloads in order to determine the cause of contention and
to minimize its effect.

As a first step towards implementing the conceptual ap-
proach proposed in this section, we experimentally investigate
how the effect of contention can be reflected on the statistical
footprint of job completion time and the power consumption
on a heterogeneous architecture.

IV. EXPERIMENTAL SETUP

In order to experimentally investigate the impact of
(1) processor architecture, (2) the resource consumption char-



Fig. 2: Dataflow application mapping flow in MAPS.

acteristic and (3) the mapping of service elements onto phys-
ical resources on the performance of services and the energy-
efficiency of service execution, we set up an experiment
environment consisting of (a) the Odroid-XU4 heterogeneous
processor platform1, (b) a mapper, and (c) a CPU-bound
(JPEG transcoder) service and a memory-bound benchmark.

Processor architecture. The heterogeneous platform con-
sists of an octa-core “big.LITTLE” architecture, with a cluster
of four “LITTLE” (ARM Cortex-A7) cores and a cluster of
four “big” (ARM Cortex-A15) cores. Each LITTLE core has
an exclusive 32 kB L1 cache and shares a 512 kB L2 cache
with the other LITTLE cores. Similarly, each big core has
exclusive 32 kB L1 cache and shares 2 MB L2 cache with
the other big cores. The most significant contention between
LITTLE and big cores occurs on the main memory. The higher
performance of the big cores is due to a higher peak operation
frequency as well as a more complex micro-architecture (3-
way out-of-order execution pipeline as opposed to the single
in-order execution pipeline of the Cortex-A7).

Mapping. The mapper takes a software implementation of
a service and decides on the assignment to physical resources
and the ordering of execution of application elements (i.e.,
data, communication and computation) to achieve a given
optimization goal such as performance or energy-efficiency or
both. There are many possible parallel programming models,
but for our experiment we focus on dataflow programming
models, that is, a graph-based model, where vertices represent
processes and edges represent FIFO channels through which
processes communicate with each other by exchanging data.
Such models expose parallelism by allowing processes to
be executed simultaneously, independently on each other.
We chose “C for Process Networks” (CPN) [24], a KPN-
based programming language [25]. Along with an application,
parameters are supplied to the mapper; these parameters may
refer to the workload (such as size of the workload). For
our experiment, we employ MAPS [9], [26], a design-time
mapper and adapt it to produce multiple mappings depending
on the application parameters. Fig. 2 shows the MAPS flow
for generating multiple mapping configurations for dataflow
applications onto heterogeneous multicore architectures.

As its input, the mapper takes a CPN application, a descrip-
tion of the target architecture along with the corresponding
performance model, and a configuration that includes user
requirements (mapping constraints and real time constraints).
Process traces are generated from the source code by the
tracer and contain information about the control paths, fol-

1http://www.hardkernel.com/main/products/prdt info.php?g code=
G143452239825

lowed by every process and the channel access events (read
and write). We configured MAPS to use the performance-
oriented heuristic Group-Based Mapping (GBM) which iter-
atively assigns resources to the application by analysing its
dynamic critical path [27]. To produce mappings with different
trade-offs between execution time and resource utilization,
MAPS was configured to generate mapping variants that utilize
different subsets of architectural components. To reduce the
overall exploration time we reduced the number of subsets by
removing symmetric resource configurations [28]. Resultant
mapping variants are then used to generate executables.

Applications. In the literature, benchmarks are often ana-
lyzed with a fixed workload configuration. We, in turn, conduct
our analysis two parallel application that allow a variable
load: a dataflow implementation of the JPEG encoder/decoder
(as described in [9]) and the RandomAccess memory bench-
mark [29]. The latter tests the speed at which a machine
can update the elements of a table spread across global
system memory (measured in Giga-updates-per-second). The
benchmark takes as its input three parameters, namely, the
length of the global table, the number of update sets, and
the number of updates in each set. We fixed the first and the
last parameter to 226 (≈̂250 MB) and 1024, respectively, and
varied the update sets from 1 to 10 000.

Measurement setup. In order to investigate the impact
and level of interference when two services share computing
resources, we generate probabilistic workloads. To this end,
we divide time into slots of equal durations (10 s). At the
beginning of each slot, both the CPU- and memory-bound
services receive jobs. The job sizes (the image size for JPEG
and the count of update sets for RandomAccess) are sampled
from an exponential probability distribution. Therefore, each
application is intermittently affected by the other one which
runs at the beginning but might finish earlier. Finally, we
measure the power consumption of the Odroid-XU4 board
using YOKOGAWA WT210 power analyzer with a sample rate
of approximately 10 Hz.

We study three different scenarios: (1) all variants executed
alone to serve as reference, (2) two JPEG instances are
executed, and (3) each JPEG mapping is co-located with the
memory benchmark. (2) and (3) are divided into running on (a)
the same cores (e.g., configuration 8), (b) different cores but
same cluster (e.g., configuration 12), and (c) different clusters
(e. g., configuration 15). The resulting 16 experiments with
the particular mappings generated by MAPS are illustrated in
Fig. 3. Every measurement run for 1 h to achieve a statistical
significant amount of interval samples of approx. 360.

V. EVALUATION

In this section we examine the interference of the config-
urations in Fig. 3. The type of interference effects we wish
to investigate can be broadly categorized as intra-core (core
level), intra-cluster (cluster level), and inter-cluster (board
level) contention. The intra-core contention manifests itself
mainly in the form of context switches (shared CPU cycles)
and contention for the L1 cache. The intra-cluster contention
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manifests itself mainly in the form of contention for the
L2 cache. Finally, the inter-cluster contention manifests itself
mainly for contention for the shared memory bus. We focus on
the impact of interference on job completion time and overall
power consumption.

A. Job completion time

Fig. 4 shows the completion time for the JPEG transcoder
when executing with another JPEG instance. The first three
curves on the top Fig. 4a serve as a reference (config. 1–
3). The curves indicate that the job completion time mirrors
the workload statistics, i.e., the CDFs can be approximated
as exponential distributions which reflects the exponential
distribution of the workload. Moreover, the difference in the
performance of the three configurations (2 LITTLE, 2 big, 2
LITTLE and 2 big cores) was comparably small as long as the
transcoder was executed in isolation. This clearly indicates that
using 2 LITTLE and 2 big cores does not give a significant
performance gain compared to using only 2 big cores. On
the other hand, as the transcoder shares a single core with
another service (Fig. 4a, config. 6–7), the job completion
time significantly increased. Interestingly, this feature does not
discriminate between LITTLE and big cores. When the two
services executed on separate cores, whether the arrangement
is intra- or inter-cluster, the job completion time reduces
considerably compared to the intra-core job completion times.

Fig. 5 shows the CDFs of the completion time when JPEG
executed in parallel with the memory benchmark. The intra-
cluster (Fig. 5b) interference effect on the LITTLE cores
remained the same as in JPEG-JPEG, but changed slightly
on the big cores. Similarly, the difference between using big
or LITTLE cores becomes larger for the intra-cluster configu-
rations (12–13) when compared with JPEG-JPEG, suggesting
an elevated contention on the L2 cache. On the other hand,
the distribution of the inter-cluster configurations (15–16)
(Fig. 5c) remained more or less the same as for the JPEG-
JPEG configuration.

Fig. 6 shows the CDFs of the completion time for the
memory benchmark when it executed in parallel with JPEG.
The first two lines in the top of Fig. 6a correspond to
configurations 4–5. In the other plots, the memory benchmark
shared the same cores with the transcoder (8–9). As expected,
regardless of the types of core shared, the job completion time
deteriorated. But the plot suggests that it is preferable sharing

two big cores rather than executing the memory benchmark
in isolation on two LITTLE cores. Otherwise, the memory
benchmark seems to be unaffected by the execution of the
transcoder in the intra-core and inter-core configuration, for
the distributions of its completion time remain more or less
the same.

B. Power consumption

Fig. 7 displays the CDFs of the overall power when two
instances of JPEG execute in parallel. The Fig. 7a serves as
a reference, for it describes the power consumption of config.
1–3. As an indication of the energy-proportionality of the
processor, all curves are similar and there is no conspicuous
penalty for availing more cores for the exclusive use of the
service. But as we have already seen above, over-provisioning
did not produce any appreciable gain in job completion time.
The Fig. 7b displays the cost of intra-core contention in
both cores, but the effect is considerable in the big cores.
In contrast, the effect of intra-core and inter-core contention
on the power consumption is minimum. This can be seen, for
example, in the Fig. 7c, which displays the power consumption
characteristic of the intra-cluster configuration (10–11).

Fig. 8 displays the CDFs of the overall power consump-
tion when JPEG was executing in parallel with the memory
benchmark. As in the previous case, here as well, the intra-core
contention (Fig. 8b, config. 8–9) on the big cores produced the
worst power consumption. For all the other cases, the power
consumption does not seem to favour any particular configu-
ration for the execution of the memory benchmark suggesting
that the decision to favour a particular configuration should be
made based on the performance aspect (job completion time,
for our case).

C. Summary

Fig. 9 shows a comparison of the average energy overhead
(Eshared−(E1+E2)

E1+E2
, idle excluded) and the average performance

degradation factor ( tshared
tsingle

) for the JPEG-JPEG as well as the
JPEG and memory benchmark cases. In both scenarios we
expect a performance degradation factor of 2 when running
on the same cores. The overhead of context switching, cache
misses and alike results in a degradation factor of around 2.5.
When running on different cores the effective execution time
is the same. Thus, the expected factor is 1, but is affected
by sharing at the L2 cache. As observed, JPEG is sensitive
to the type of the second application, with a factor of 1.1
in the JPEG-JPEG case and 1.4 in the JPEG and memory
benchmark case. The latter is due to much more L2 cache
misses for JPEG. The memory benchmark itself with an
average performance degradation of 1.05 is not significantly
affected by the JPEG application. Last but not least we could
not measure any significant contention in performance when
running on different clusters.

What energy is concerned, we observe more savings the less
contention occurs. Due to job execution time overhead there is
an energy overhead of 15 to 41 % when running on the same
cores. When running on different cores on the same cluster
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there is almost no energy overhead or even a small energy
saving of −2 to −17 % with the memory benchmark. This can
be explained by shared resources such as the L2 cache which
have to be powered only once even when more cores are active.
Surprisingly there is also an energy reduction when running
on different clusters although more subsystems such as second
caches have to be powered on. Probably since performance is
not degraded thanks to almost no contention, the hardware can
return to a deep sleep state very soon. Hence, energy can be
saved by consolidating services on a subset of machines but
on the machine itself it is justified to distribute the services to
independent resources in order to avoid the energy overhead
due to increased job completion time caused by contention.

Based on these results, we can derive some insights for the
future workload management strategy. The services and their
types might be used as an input and the workload management
has to decide how to co-locate them on the available resources.
Particularly, running a memory intensive service on LITTLE
cores and a CPU intensive service on big cores leads to
energy-efficient co-location. If there are too many services,
the scheduler should prefer the co-location on LITTLE cores.

VI. CONCLUSION

In this paper, we have conducted an interferences analysis
of CPU- and memory-intensive applications running on a
heterogeneous micro-server architecture. We analyzed the job
completion time and the power consumption, focusing on
different levels of contention, namely, intra-core, intra-cluster,
and inter-cluster. With only a single application, we could not
observe any appreciable gain in performance in case of over-
provisioning of the hardware. At the core level, we observed a
significant performance degradation factor of up to 2.5 due to
contention. At the cluster level, we observed a strong depen-
dency of performance degradation on the types of applications
which were co-located. When a CPU intensive application
is co-located with a memory intensive application, the latter
is the one the performance of which degrades worse. In the
inter-cluster configuration, the performance degradation was
not considerable. In this case, the overall power consumption
was smaller than the sum of the power consumption of the
individual executing jobs. We also observed that the effect of
consolidation was strongly dependent on the type of co-located
applications due to the contention for cache. Therefore, the
resource manager need new mapping algorithms which take
the instantaneous load and the internal thread communication
via caches into account.

In future, our aim is to predict the job completion time and
the power consumption in co-location scenarios based on the
results of our experiment. This will enable us to consolidate
services in accordance with their execution, compilation and
scheduling characteristics.
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