
Comprehensive Structured Context Profiles (CSCP): Design and Experiences

Sven Buchholz, Thomas Hamann, and Gerald Hübsch
Department of Computer Science, Dresden University of Technology

{buchholz, hamann, huebsch}@rn.inf.tu-dresden.de

Abstract

In dynamic heterogeneous environments, such as Per-

vasive Computing, context-aware adaptation is a key con-
cept to meet the varying requirements of different clients.
To enable such functionality, context information must be
gathered and eventually presented to the application
performing the adaptation. Therefore, a common repre-
sentation format for the context information is required.

This paper introduces a novel representation language
for context information: Comprehensive Structured Con-
text Profiles (CSCP). CSCP is based on the Resource
Description Framework (RDF) and is designed to be
comprehensive and thoroughly structured to describe the
entire context of mobile sessions. Besides the design of
CSCP, the paper describes our experiences with CSCP in
a running system, a Mobility Portal for context-aware
adaptive access to email and Web information services.

1. Introduction

An inherent challenge in service provisioning in a dy-

namic heterogeneous environment, such as Pervasive
Computing, is the adaptation of the service and its content
to the current context conditions. Context-aware adapta-
tion may be generic or application-specific and may span
both network and application layers. Examples for con-
text-aware adaptation are: adjustment of protocol parame-
ters, compression and encryption of payload data, media
conversion, transcoding, and information filtering.

Within the scope of a research project targeted at ena-
bling access to corporate email and Intranet information
services by mobile users, we have developed a Mobility
Portal performing context-aware adaptation. It combines
application-spanning media conversion and transcoding
as well as application-specific information filtering. The
Mobility Portal is the central access point for mobile
users. By managing and evaluating context information, it
allows for personalized, context-aware service provision
and content adaptation. In the considered application
scenario, relevant context information comprise the capa-
bilities of the client device, transmission characteristics of
the network connection, and user specific information.

The latter includes viewing and filtering preferences,
topics of interests, authentication information, subscriber
information, etc. Even though the prototype system is
restricted to device, network, and user specific context –
combined to the session context profile – the presented
concepts are easily extensible to reflect further aspects,
such as environmental information (e.g. location, noise
level).

The context information of the profile must be de-
scribed in a common representation language and it must
be unambiguously assigned to the client’s application-
level session to enable adaptive context-aware applica-
tions. A context profile representation should be applica-
ble throughout the entire process of context management.
Therefore, there are a couple of requirements concerning
the representation format. A context profile representation
should be: (1) structured to provide for natural modeling
of context and efficient filtering, (2) interchangeable
among the different components of the system, (3) de-
composable/composable to allow for distributed mainte-
nance of the context profile, (4) uniform for all flavors of
context data (hardware, user, environment, etc.), (5) ex-
tensible to future needs, and (6) standardized to allow
context information to be exchanged among entities that
do not belong to the same administrative domain.

This paper introduces a novel representation language,
called Comprehensive Structured Context Profiles
(CSCP) that is designed to meet the above requirements.
Existing approaches for context representation are
examined in Section 2. Section 3 depicts the context man-
agement aspects of the Mobility Portal architecture. The
CSCP language itself is described in Section 4, whereas
the CSCP query processing in the Mobility Portal is illus-
trated in detail throughout Section 5. The final section
presents concluding remarks.

2. Previous Work on Context Representation

The predominant approach for context representation

in current work is the W3C’s Composite Capability/
Preference Profiles (CC/PP) language [1]. CC/PP is a
framework for describing device capabilities and user
preferences based on RDF [2], an XML-based meta data

description framework. CC/PP defines the basic structure
of context profiles and introduces a mechanism for profile
decomposability. Whereas CC/PP is interchangeable,
decomposable, uniform and extensible, it lacks sufficient
structuring. Its strict two-level-hierarchy is not appropri-
ate to capture complex profile structures. Furthermore,
CC/PP does not allow for context-sensitive interpretation
of attributes requiring globally unambiguous attribute
naming.

IETF Media Feature Sets [3] have been designed for
protocol-independent content negotiation. They specify
device capabilities and user preferences by unstructured
attribute/value pairs, which we consider inappropriate.
Complex capabilities and preferences are expressed by
Boolean expressions of predicates about single attributes.
Media Feature Sets suffer another major drawback: they
are not decomposable and there are no formal, machine-
readable means for extensions.

Besides the standardized representation formats by the
W3C and IETF, there are even product and vendor spe-
cific approaches (e.g. [4]). Typically, they are tailored to
certain kinds of context information, such as user profiles.
They are not comprehensive, uniform representation for-
mats for arbitrary kinds of context information.

3. Mobility Portal Prototype

The Mobility Portal (Fig. 1) provides adaptive access

to portal services through a Web proxy using a single
source publishing approach [5]. Furthermore, adaptive
access to email accounts (i.e. adaptation or pruning of
attachments) through native email protocols (viz. POP3)
is provided by an adaptive email proxy. The actual con-
tent adaptation is performed by the adaptation engine.

The adaptive Web proxy and email proxy, the adapta-
tion engine as well as adaptive portal services retrieve
information about the context of the client’s session, such
as user preferences and device capabilities from the con-
text management component (CMC) of the Mobility Por-
tal. The CMC is the central entity for context manage-
ment. After initial setup of a context profile by the context
monitor on the mobile device the context profile is trans-
ferred to the CMC using an HTTP-based protocol called
the Context Information Exchange Protocol (CIEP). The
CIEP is a session protocol defining primitives for session
setup including user authentication and transfer of the
initial context profile, context profile updates, and session
shutdown. Due to the session semantics of the CIEP con-
text profiles do not need to be re-sent during the lifetime
of a session. As opposed to that, the CMC stores the con-
text profile in a local profile repository and assigns a
Mobile Session Identifier (MSID) with the associated
CIEP session. The MSID is negotiated between the CMC
and the context monitor on the mobile device during ses-
sion setup.

CIEP sessions are long lived and may span multiple
application sessions, i.e. multiple HTTP requests, WAP or
POP3 sessions. In order to identify the CIEP session that
an application session is assigned to, the MSID has to be
conveyed within the application protocols. Therefore, the
mobile client has to be extended by protocol proxies that
maintain the session context by inserting the MSID into
client requests sent to the portal (cf. Fig. 1). The protocol
proxies are configured with the MSID of the current CIEP
session by the context monitor.

In the prototype, we have implemented protocol prox-
ies for HTTP and POP3. In HTTP, the MSID is conveyed
in the user-agent header of each HTTP requests. As
POP3 is stateful, the MSID is sent once per POP3 session
during POP3 session establishment alongside the manda-
tory user authentication information. Both protocol exten-
sions are easy to implement and require minimal compu-
tational effort on the mobile client, thus yielding almost
no performance decrease on state-of-the-art Pocket PCs.

However the proxy solution cannot be implemented on
all mobile platforms. This is due to limited multitasking
support on platforms running Palm OS 4 or lower as well
as on low-end mobile phones. In these cases, the proto-
type uses the network address of the mobile client as
MSID. Although this approach basically works for all
protocols supported by the client, there is an inherent
problem with WAP 1.x. The WAP 1.x content delivery
architecture specifies a WAP gateway between the client
and the content server, which is the Mobility Portal in our
case [6]. Hence, the Mobility Portal only receives requests
sent by the gateway. Thus, it is unaware of the network
address of the mobile client. Clients using the same gate-
way cannot be distinguished by the portal. This problem
is solved by an extension of the WAP gateway. It is modi-
fied to insert the serialized network address of the mobile
client into the HTTP user-agent header of the request
that is forwarded to the portal. While this approach is
transparent to the Mobility Portal it requires a dedicated
WAP gateway.

Furthermore, the limited multitasking capabilities of
some client platforms renders automatic context monitor-

Figure 1. Mobility Portal – System Scenario

ing impossible. Hence, context updates require user inter-
action. As opposed to that, session setup and shutdown is
always connected with user interaction since the user is
required to provide authentication information.

4. Comprehensive Structured Context

Profiles

As illustrated in Section 2, existing solutions particu-

larly lack sufficient structuring for complex context pro-
files. Hence, we propose a representation format that is
thoroughly structured and comprehensive to allow for all
flavors of context information: Comprehensive Structured
Context Profiles (CSCP). Just as CC/PP, CSCP is based
on RDF and thus inherits its interchangeability and exten-
sibility. Yet CSCP overcomes the deficits of CC/PP re-
garding structuring. It does not impose any fixed hierar-
chy. It rather supports the full flexibility of RDF to ex-
press natural structures of context information. Attribute
names are interpreted context-sensitively according to
their position in the profile structure. Thus, unambiguous
attribute naming throughout the profile is not required.

In the Mobility Portal scenario, context information is
stored in CSCP session profiles (Fig. 2). A profile de-
scribes all context information relevant to a client’s mo-
bile session. It is initially assembled on the client and
transferred to the portal during session establishment
using XML serialization. The initial assembly of a profile
on the client does not mean that all context information
must be gathered on the client and transferred via the
wireless link. A profile may rather contain references to
external resources, such as device defaults (Fig. 2 (a)),
which can be retrieved from the device vendor’s web site,
or the user profile (Fig. 2 (c)) stored by the portal. The
CSCP defaults mechanism is similar to the one of CC/PP.
Unlike CC/PP, which provides for overriding of default
attribute values only, the CSCP mechanism additionally

allows to merge profile subtrees with their corresponding
default subtrees and thus allows for complex profile struc-
tures. The respective defaults semantics of a subtree is
determined by the meta property cscp:resRule
(Fig. 2 (b), Tab. 1+2).

Furthermore, the defaults mechanism is utilized to
propagate updates of the session profile. Updates are
expressed by a differential profile that refers to the previ-
ous profile as its default profile and that overrides attrib-
ute values that have changed. By this means, a client does
not need to re-send a complete session profile during the
lifetime of a session.

 In order to extend the capabilities to express prefer-
ences, CSCP provides mechanisms to attach conditions

Figure 2. Sample session profile (RDF graph notation [2])

Table 1. Defaults semantics for profile subtrees

cscp:resRule Description
merge
(default)

merging of the new subtree with
its corresponding default subtree

override new subtree substitutes the attrib-
ute value in default profile

Table 2. Defaults semantics for containers

cscp:resRule Description
override
(default)

new container substitutes the
attribute value in default profile

append union with the default container
whereas new elements are ap-
pended to the default container

prepend union with the default container
whereas new elements added at
the head of the default container

intersection intersection with the default
container

difference difference of default container
and new container

and priorities to attributes. Priorities are applied to resolve
potential conflicts between preferences and service capa-
bilities. They are expressed by a decimal number in the
interval (0, 1) (cf. Fig. 3 (a)). A maximum priority of 1
means the attribute is indispensable. If no priority is
specified, a default priority of 0.5 is assumed.

By CSCP conditions, we allow for preferences to vary
depending on other context conditions. CSCP conditions
are formulated by expressions over attributes of other
entities in the profile that are referenced by CSCP path
expressions (cf. next paragraph). CSCP supports numeric,
string, and subset comparisons of attribute values within
Boolean terms to formulate conditions. Figure 3 (b) illus-
trates an example of a conditional attribute value. It ex-
presses a minimum font size of 10pt if the dot pitch in the
x-dimension is less than 0.2 mm. This conditional value
of the minimum font size overrides the alternative attrib-
ute value of 8pt that is assumed if the condition is evalu-
ated to false. By means of multiple conditional RDF
statements about a single attribute, if-then-elsif-else ex-
pressions may be formulated. The conditions of the dif-
ferent statements about an attribute are successively
evaluated and the attribute value is set to the one in the
first statement that evaluates to true.

CSCP profiles are queried by referencing attribute val-
ues of entities in the profile. Attribute values are refer-
enced using CSCP path expressions. A CSCP path ex-
pression always starts at a named resource (i.e. root node)
identified by its URI. Attributes of this resource are ad-
dressed by simply appending a query component to the
URI containing the attribute name. As the value of the
selected attribute can be a resource itself, attribute names
can be chained in a dot-separated list, thus forming a path
traversing a sub-tree of the root node of the CSCP profile.
Unlike plain RDF, CSCP semantics allows for only a
single valid attribute value at a time. Hence, CSCP paths
are unambiguous even if there are multiple statements
about an attribute (having different conditions).

Besides the CSCP language, we have also defined
CSCP vocabularies to express session profiles comprising
device, network, and user specific context information.
The vocabularies are tailored to the Mobility Portal sce-
nario. Nevertheless, the CSCP vocabulary is easily exten-
sible for future applications using RDF Schema [7].

5. CSCP Processing in the Mobility Portal

Figure 4 shows the CSCP query engine of the Mobility

Portal, which is used by adaptive applications to access
context information stored in the session profile. The
implementation of the profile repository is based on the
Jena Semantic Web Toolkit [8] that provides functions to
map RDF models to relational databases, a MySQL data-
base in our implementation. Furthermore Jena supports
the RDF Query Language for RDF models (RDQL) [9].

The adaptation engine as well as the context-aware
portal services request context information from the query
engine of the CMC by passing CSCP path expressions to
the CSCPNavigator (Fig. 4 (0)+(9)). The CSCPNavigator
maps CSCP path expressions to RDQL queries and
executes them on the CSCP profiles (Fig. 4 (1)+(2)).
Afterwards, the query results (CSCPResult) are passed to
the CSCPResultProcessor (Fig. 4 (3)+(8)). It processes
CSCP semantics in the RDQL query result, such as
conditions, priorities and defaults. If conditional attribute
values encounter, they are passed to the CSCPCondi-
tionEvaluator (Fig. 4 (4)). This component parses and
resolves conditions to Boolean values (Fig. 4 (7)). CSCP
path expressions referenced within CSCP conditions are
resolved by recursive calls to the CSCPNavigator
(Fig. 4 (5)+(6)).

The client-side context monitoring components and the
CMC implementation, which is based on Java Servlet
Technology, communicate via HTTP.

Figure 3. CSCP conditions and priorities

Figure 4. CSCP Query Engine

6. Conclusion

In this paper, we have introduced a novel representa-

tion language for context information: Comprehensive
Structured Context Profiles (CSCP). CSCP is based on
RDF and it is designed to be comprehensive and thor-
oughly structured to describe the entire context of mobile
sessions. CSCP overcomes the deficits of existing ap-
proaches regarding structuring. In addition, it provides
extended mechanisms to express preferences, viz. condi-
tions and priorities.

Furthermore, we have presented our experiences with
CSCP in a running prototype. We have implemented a
Mobility Portal providing personalized, adaptive email
and Intranet information services for mobile users with
adaptation to a substantial amount of context parameters.
The described system allows efficient management of
context information associated to a client’s mobile session
including context profile setup, transmission, storage, and
utilization. It employs an extensible architecture to allow
future support of further application protocols in addition
to HTTP, WAP, and POP3, supported by our prototype.
Support for client-side context monitoring and manage-
ment has been successfully implemented for the Pocket
PC platform using Sun’s PersonalJava [10] and for Palm
OS devices and mobile phones using the Java 2 Micro
Edition MIDP 1.0 [11], providing for cross-platform
compatibility.

Even though the evaluation of complex CSCP paths,
conditions, and priorities may be time-consuming, the
major performance issues is the actual adaptation proce-
dures not the CSCP processing. Nevertheless, future
activities will include a review of profile repository access
mechanisms to speed-up CSCP query processing.

CSCP was designed to fit the Mobility Portal scenario.
However, it is flexible and open to be generally applicable
for context-aware applications.

7. References

[1] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, “Composite
Capability/Preference Profiles (CC/PP): Structure and Vocabu-
laries”, W3C Working Draft, 2001.
[2] O. Lassila, R. Swick, “Resource Description Framework
(RDF) Model and Syntax Specification”, W3C Recommenda-
tion, 1999.
[3] G. Klyne, “A Syntax for Describing Media Feature Sets”,
RFC 2533, 1999.
[4] “4.4.2: Keeping user profiles”, in “IBM WebSphere Applica-
tion Server Version 3.5 Advanced Edition”, IBM Corporation.
(http://www.ibm.com/software/webservers/appserv/doc/v35/ae/
infocenter/was/040402.html)
[5] S. Göbel, S. Buchholz, T. Ziegert, A. Schill, “Software
Architecture for the Adaptation of Dialogs and Contents to
Different Devices”. Int’l Conf. on Information Networking
(ICOIN-16), Cheju Island, Korea 2002.
[6] “Wireless Application Protocol Specification”, Open Mobile
Alliance, 2001. (http://www.openmobilealliance.org/wapdocs/
wap-210-waparch-20010712-a.pdf)
[7] D. Brickley, R. Guha, “Resource Description Framework
(RDF) Schema Specification 1.0”, W3C Candidate Recommen-
dation, 2000.
[8] “Jena Semantic Web Toolkit”, HP Labs.
(http://www.hpl.hp.com/semweb/download.htm)
[9] “RDQL - RDF Data Query Language“, Hewlett-Packard
Company. (http://www.hpl.hp.com/semweb/rdql.html)
[10] “PersonalJava Application Environment”, Sun Microsys-
tems Inc. (http://java.sun.com/products/personaljava)
[11] “Mobile Information Device Profile (MIDP)“, Sun Micro-
systems Inc. (http://java.sun.com/products/midp/)

