
Web Services Composition using Input/Output
Dependency

Abrehet Mohammed Omer
TU Dresden, Chair for Computer Networks

01062 Dresden, Germany
+49 (0) 351 46338263

Abrehet_mohammed.omer@mailbox.tu-dresden.de

Alexander Schill
TU Dresden, Chair for Computer Networks

01062 Dresden, Germany
+49 (0) 351 463-38002

alexander.schill@tu-dresden.de

ABSTRACT
Composition of web services has received increased interest with
emerging application development architecture-Service Oriented
Architecture (SOA). Doing composition (semi-) automatically is a
crucial aspect in overcoming runtime problems that arise due to
dynamic nature of runtime environment. In SOA, applications are
created as combinations of independently developed Web
services. This leads to emergence of different dependencies
among the component services forming the composite service.
Given a set of candidate web services and a user’s request
description in terms of (I,O,P,E,G), the proposed method can find
a composite service that would satisfy user’s requirements in two
steps. First, it anticipates the potential direct and indirect
dependency between abstract services, and second, it generates
process model (PM) automatically using the dependency
information. The architecture and application of this method and
its application are discussed using a case study. Moreover, a
summary of existing techniques and their shortcomings are
presented. This approach takes advantages of a sorting algorithm
and semantic I/O matching techniques.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based services; F.2.2 [Analysis Of Algorithms
And Problem Complexity]: Non-numerical Algorithms and
Problems-Sequencing and scheduling-Sorting and searching;
D.2.m [Software Engineering]: Miscellaneous.

General Terms
Algorithms, Design, Theory

Keywords
Automatic service composition, Service dependency.

1. INTRODUCTION
Service Oriented Architecture (SOA) is an emerging

application development architecture. It uses individual software
services to build composite applications. This is possible because
smaller and simpler applications can be developed and availed in
the form of Web Services (WS). These individual applications can
be published, located, and invoked across the web. The ability to
invoke and compose services using multiple individual services
allows meeting larger & single user requirements that could not
otherwise be met with any of the available smaller services. Thus,
complex service based applications can be created in an SOA
environment by composing individual services. This newly
emerging application development architecture (SOA) has

increased the demand for web services. And it has called for
researches in the area of WS composition.

The service composition process comprises of three major
activities: 1) Process model creation: Process model is a model
that simplifies the representation of activities and their enactment.
It is used to specify task control-flow and data-flow among
different subtask activities. It can be done manually (by developer
at design time), semi-automatically (with the help of template) or
automatically (via software). 2) Concrete service discovery and
binding: this activity involves finding and binding smaller
individual services that accomplish sub-tasks of a composite
service. It can be done either at design time or run time. 3)
Availing composite service: this refers to availing the composite
service to clients and its management.

Service composition can be done either statically, or
(semi/fully) dynamically. These different levels of automation are
determined by how (and who) the process model is created as
well as by when the service discovery and binding is done (i.e. at
design versus run time). In static composition the process model
is created manually and service binding is done at design time. In
contrast, dynamic composition process model is created
automatically and service binding is done at runtime. All methods
between these two extremes are categorized as semi-dynamic [3].

Static service composition has shortcomings in automatically
adapting to unpredictable changes in a dynamic run time
environment. Unpredictable changes happen, for example,
because new services could become available and old services
could be made inaccessible on a daily basis. Due to such
adaptability shortcomings of static composition methods,
nowadays, there is a growing tendency for shifting to dynamic
service composition methods. The process of implementing
dynamic service composition or tackling problems with static
composition mechanisms are not only limited to runtime service
binding but it also demands ability for doing process model
automatically. Consequently, automation of process model
creation is one of the core problems hindering the transition
towards automatic service composition and it needs to be solved.

Investigation of activities in process model creation shows
that, while trying to create composite services, all methods
attempt to extract dependencies (relationships). For example, in
graph-based and chaining mechanisms of service composition,
algorithms mainly search for direct explicit input/output
relationships between services [11, 10]]. In workflow-based
techniques of service composition the programmer identifies sub-
task dependencies manually.

The concept of dependency is explored initially for the
purpose of managing component-based systems [7]. The work by

[2] looks for service dependencies from composite service
management point of view. In their approach, it was demonstrated
that dependencies could be tracked from log files, which normally
are available in SOA audit files. [14] discusses the possibility of
using service dependency for deploying and reusing composite
services. [1],[4]&[13]used service dependency to create
composite service. However they created the composition plan
using design time (pre-computed) generated dependency. [6] has
proposed that service composition method that utilizes Casual
Link Matrix to store semantic I/O link between candidate
services.

In this paper, we introduce a simplified I/O dependency
based automatic process model creation. In order to extract I/O
dependency our approach uses the concept of finding the semantic
similarity between service input and outputs. Then it utilizes the
dependency information for the purpose of automatic process
model creation. In our approach process model (execution plan) is
generated using sorting algorithms.

This paper is organized as follows: following this introduction,
section 2 presents a case study which will be used throughout the
paper; in section 3 the process of identifying, representing,
analyzing I/O dependency and its application is presented and
section 4 gives discussion of proposed approach. Finally in
section 5 conclusions and planned further works are presented.

2. CASE STUDY
As a case study an example of e-health scenario that is taken

from [6] is considered. This scenario assumes the existing medical
applications and devices interfaced by web services. So by
creating composition of devices (composition of wrapped web
services) one can enable online patient follow-up, to reduce time-
consuming consultation and medical checkups. For this scenario
the following web services are considered: WS1 returns the blood
pressure (BP) of a patient given his PatientID (PID) and
DeviceAddress (Add); WS2 returns the supervisor (Person) given
a medical of an organization (Org) for example: Emergency
department ; WS3 returns a Warning level (WL) given a blood
pressure; WS4 returns the Emergency department given a level of
Warning; WS5 returns the Organization given a Warning level.
Table 1 shows the input and output of each service. The shaded
column shows from where a service gets its inputs.

3. PROPOSED APPROACH
Primarily services that are created by same or different providers
are meant to be accessed and work independent to each other.
But, establishment of composite services based application
necessitates interaction, communication, cooperation and
coordination of services. This leads to emergence of different
types of dependency among services involved in composite
services such as: 1) Input/Output dependency: occurs when a

service requires/or provides data from/to another service; 2)
Constraint dependency: occurs due to user constraints; 3) Cause
and Effect dependency: occurs when a service has preconditions
to be satisfied

Table 1: Case study Input/ output description

Web
services

Inputs Source web
service

Outputs

WS1 PID;ADD User request BP
WS2 Org WS5 Person
WS3 BP WS1 WL
WS4 WL WS3 ED
WS5 WL WS3 Org

Such dependencies could occur between two services directly
which we call it direct dependency or indirectly between two
services through an intermediate service(s) which we call it
indirect dependency. Service dependency can also occur in
explicit or implicit manner. Explicit dependency can be readily
visible and extractable from service descriptions. Implicit
dependency do not directly expressed in service descriptions.

Generally, managing dependencies are considered to be the basis
for defining process (services) coordination mechanisms [5]
Sequential, alternative, iterative and concurrent coordination
mechanisms are considered as the basic coordination mechanism
in any business process or dependency management. These are
the coordination mechanisms used during process model creation
for composite services. Though the research final target is to
extract all kind of dependency and use them, in this paper we
present extraction and usage of explicit direct and indirect I/O
dependency for automatic PM creation.

In the following sub-sections first the notion of abstract service
description, service request description dependency representation
and a procedure to create PM automatically using I/O
dependencies will be presented.

3.1 Composite Service Request and abstract
service specification

Web service and user requests have to be described in a
suitable way so that dependencies among candidate services can
be extracted for composition. The proposed approach relies on a
formal description both from the user and service side. Currently
we are working on conceptual implementation of the proposed
approach and our interest is conceptual description of services and
user request. For our intention, the abstract description of web
services and request includes tuple with (I, O, P, E, G) as they are
defined on OWL [12] where I:list of inputs; O:list of output
parameters; P:precondition which describes logical expression
that must be satisfied in order to invoke composite service; and E:
effect which describes the changes to the current state resulting
from the invocation of composite service.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUPC’09, July 13–17, 2009, London, United Kingdom.
Copyright 2009 ACM 978-1-60558-647-2/09/07...$5.00.

In this approach we assume the availability of local
repository that stores abstract service description in the above
format. Such abstract description includes only a single
description for all web services with the same functionality
regardless of their quality. Thus candidate services will be
discovered from the local repository based on user requirement
goal definition. Then dependency between those abstract services

will be extracted for PM generation. The process of discovering
candidate abstract services is out of the scope of our work.

Note that the concrete service binding for the actual service
composition will be done based on abstract description and
additional non-functional property after process model creation.

3.2 Dependency representation
Dependency can be representation as graph or matrix based
model. In this approach, matrix is used to represent I/O
dependencies between services, which are also used in [7] to
represent dependencies between components. The matrix that
models the dependency will be a square matrix (nxn) where n
equals available services1 to form the composite service. Each
row and column represents candidate web services for the
composite web service (WSi). And if a service on ith column is
dependent on a service on jth row then the Cij value of the matrix
will be 1 otherwise it will be zero.

Let the composite service to be created require n web services:
WS1, WS2,…WSn. Then the dependency matrix (DM) can be
defined as follows:

DM=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

CCC

CC
CCC

..
:....:

....
...

21

221

11211

3.3 Automatic P
Here a detailed expla
provided. As it is menti
the formal user reques
system. The following
PM automatically:

1. Identify explicit di
parameters of web s

2. Identify explicit in
exploring the exp
indirect DM.

3. Merge the explicit
one I/O DM.

4. Calculate the numb
service by adding ea

5. Calculate the num
particular service by
in step 3.

6. Use simple sorting
calculated values in

This is a simplified
However, each part dep
analysis (step 4 and 5)
by different component

In the next section us
process model creation

1 We used services and

3.4 Service dependency generator
Explicit Input/Output dependencies between services occur when

a service requires/or provides data from/to another service

Figure 1. Architecture

List of Abstract service
description

Dependency
Generator

Dependency anayzerProcess generator

Dependency
repository

Abstract candidate
service discovery

Abstract service
description repository

Formal user request
description

 jwsondependentisiwsif
Where

Cij = ⎨⎧
1

M Creation
nation of the proposed architecture is
oned before a list of abstract services and
t description are the two inputs for the
steps are performed in order to create the

rect dependencies from input and output
ervices and construct dependency matrix.
direct I/O dependencies by recursively
licit direct dependencies and construct

direct and indirect dependencies and form

er of services dependent on a particular
ch row of the matrix found in step 3.
ber of other services dependent on a
 adding each column of the matrix found

 algorithm to generate a PM based on
 step 3 and step 4.
stepwise description of PM creation.
endency identification (steps 1, 2 and 3),
and PM generation (step 6)) will be done
as it is shown in figure 1.

ing the above case study the automatic
will be elaborated.

abstract services interchangeably

The approach extracts I/O dependency in two steps. First it
extracts explicit direct dependency and then extracts explicit
indirect dependency from the direct dependency. And then by
summing up the two DM’s it makes ready the full I/O
dependency.

3.4.1 Construction of explicit direct DM
An explicit direct I/O dependency between two services exists if
at least one output of a service is taken as input by the other
service. During service composition all inputs of web services are
either from user request or output of another web service. For the
purpose of explaining the proposed approach we show example
that has almost perfect match between I/O parameters. However,
in real case scenario we do not get services where their interface
shows a perfect match. Thus, the extraction of explicit direct I/O
dependency is done using semantically enabled I/O matching
techniques which is adopted from [9]. It uses the following four
semantic I/O matching functions proposed by [9],[8].

1. Exact : If the output parameter of WS1 and the input
parameter WS2 are equivalent concepts;

2. Plug in : If output of WS1 is sub-concept of input WS2;
3. Intersection: If the intersection of output of WS1 and input

WS2 is satisfiable.
4. Fail : if all the above conditions are not satisfied
The dependency matrix generator checks the intersection between
the whole set of input parameters of one service with the whole
set of output parameters of the other service. To do the
intersection operation each input parameter should be checked
with the output parameter using exact or plug in function. i.e.
In (WS1) ∩Out (WS2) ≠∅ if and only if at least one pair of
parameter set (each from Input(WS1) and Output(WS2)) has
either exact or plug in relationship. This is done because our main
aim is to find out from which services gets a particular service its

⎩ otherwise0

inputs i.e. on which services it is dependent on. Table 2 shows
explicit direct I/O DM for the E-health scenario.

Table 2: Explicit direct DM

Web service WS1 WS2 WS3 WS4 WS5
WS1 0 0 1 0 0
WS2 0 0 0 0 0
WS3 0 0 0 1 1
WS4 0 0 0 0 0
WS5 0 1 0 0 0

3.4.2 Construction of explicit indirect DM
Since dependency holds transitivity property one can extract
indirect I/O dependencies between services from explicit direct
I/O dependency. For example if service B has an explicit direct
dependency on service A and service C again has explicit direct
dependency on service B then service C will have explicit indirect
dependency on service A. Thus, one should traverse all possible
explicit direct service dependency chains to extract explicit
indirect dependencies. This dependency chain is a linked list of
services that starts from a service in focus and terminates with a
service that doesn’t have explicit direct dependency with any
service. The link between individual services in a chain represents
the explicit direct dependency between services.
For example one possible dependency chain for WS2 in a case
study is: WS2 WS5 WS3 WS1 none
Thus, an explicit indirect I/O dependency exists if and only if:
-a service has explicit direct dependency to at least one service,
-there exists service in a chain of explicit direct dependency that
does not have explicit direct dependency with a particular service
in focus. From above chain, since WS5 has explicit direct
dependency with WS2 only explicit indirect dependency with
WS3 and WS1 are counted. (While representing implicit
dependency all explicit dependencies should be excluded to
control redundant counting of dependency).
Thus, the following algorithm is developed to generate the
explicit indirect DM from explicit direct DM. It takes explicit
direct dependency as input & delivers an explicit indirect DM that
does not include any explicit direct dependency (see table 4).
n=number of services
i=1
while (i<=n){
 Function(i,i)
 i=i+1 }
//The recursive function definition
Function(k,m) {
for (j=1 to n)
{ if DM1[j][k]=1// the jth service is dependent on kth service
{ if(DM1[j][m]!=1) // there is no explicit direct dependency

 between jth and mth service
 { DM2[j][m]=1 // assign 1 on the jth row and mth column of
 indirect dependency matrix }
F(j,m) // call the function with new parameters to get the

chain of dependent matrices } }
 return 0 }

3.4.3 Explicit direct and indirect DM
By simply adding the explicit direct and indirect dependency
matrices full input/output dependencies can be found. In table 5
complete I/O dependencies are shown,

Table 3: Explicit indirect DM

Web services WS1 WS2 WS3 WS4 WS5
WS1 0 1 0 1 1
WS2 0 0 0 0 0
WS3 0 1 0 0 0
WS4 0 0 0 0 0
WS5 0 0 0 0 0

Table 4: Explicit direct and indirect DM

Web
service

WS
1

WS
2

WS3 WS4 WS5 C_A=Â
column

WS1 0 1 1 1 1 4
WS2 0 0 0 0 0 0
WS3 0 1 0 1 1 3
WS4 0 0 0 0 0 0
WS5 0 1 0 0 0 1

C_B=Ê
row

0 3 1 2 2

3.5 Dependency Matrix Analysis
The dependency matrix shows either unidirectional or
bidirectional communication between services. In unidirectional
communication one service gives its outputs and the other
receives. As a result there will be a single control flow passing
from input provider to receiver. In case of bidirectional
communication a service starts execution and gives partial output
to another service and waits for reply to finish execution. Or
service(s) may be required to be invoked and exchange data a
number of times. Such kind of communication requires iterative
control flow(1..n). Thus, the first step of DM analysis is finding
out bidirectional communication between services if it exists.
Cyclic dependency is the indicator of bidirectional
communication. It can be identified by comparing the
symmetrical elements or by checking its diagonal elements value
of the DM. Thus cyclic dependency exists:

1. When symmetrical elements of the DM are equal to 1. For
example: if DM[i][j]=DM[j][i]=1 then ith & jth element has
bidirectional communication.

2. When diagonal element of DM is 1. This implies a service is
dependent on itself. This implies a service needs to execute
more than once to accomplish the composite task so loop
control flow should be attached it.

After finding the cyclic dependency the necessary control
structures should be attached to the respective services. And then
the bi-directional communication indicators should be eliminated
from the matrix for the next step (i.e to find the sequential and
concurrent control flows).

From the DM which is free of cyclic dependency we get two
straight forward but important indicators to decide the execution
priority of services. They are described as follows:

1. The number of other services that dependent on a given service
(C_A): This number can be found by counting services the

number of taking input directly from output of a service (explicit
direct dependency) plus the number of services that has explicit
indirect I/O dependencies on it. From the full I/O DM one can get
this value by adding each row of the matrix. In Table 5
summarizes the result of full (direct DM plus indirect DM) DM.
The second column (C A) shows the number of services
dependent on ith service. For example: there are 4 services
dependent on WS1. From this indicator we can reach the partial
conclusion that the more services are dependent on a service, the
higher priority that service has. Because when m services are
dependent on that service definitely that particular service should
be executed before all services dependent on it.

2. The number of services a given service is dependent on (C_B):
In similar manner as first indicator this number can also be found
by counting services from which a service takes input directly
(direct dependency) plus the number of services a service
indirectly depends on. From the full I/O DM one can get this
value by summing up each column of the matrix. In Table 5 the
third column shows the number of services the jth service depends
on (C_B). For example, WS1 is dependent on only one service.
From this indicator we can also reach to another partial
conclusion that the more services a service depends on the lesser
priority that service has. Because when a service is dependent on
m services this indicates that these m services that service
depends on should be executed before it.

Therefore, from a straight forward analysis of input/output
dependency we got the first two indicators which could provide
valuable information to create the process model.

3.6 Application
Here, we discuss an application of our dependency analysis in
generating simple a process model with sequential and concurrent
coordination mechanisms which is the task of a PM generator
based on our architecture. Moreover the interpretation of the
results will be given.

The possible two process models are generated based on the two
numbers described in section 3 by using a simple sorting
algorithm starting from the initial random order given by Table 1.
These possible process models (sequential execution paths) will
be explained as follows:

1. Sorted based on C_A: this sorting is based on the number of
services depended on a particular service in descending order.
(See table 5 column 1 & 2) This is because a service with
higher number of services dependent on it should logically
have a higher priority.

2. Sorted based on C_B : this sorting is done based on how
many other services a particular service depends on in
ascending order.(see table 5 column 4 & 5) This is because
a service that depends on many services logically should
have lower priority compared to service dependent on a
smaller number of services.

Table 5: Sorted based C_A and C_B

Web Services C_A Web Services C_B
WS1 4 WS1 0
WS3 3 WS3 1
WS5 1 WS4 2

WS2 0 WS5 2
WS4 0 WS2 3

From observation we have seen services with equal value of C_A
or C_B can be executed concurrently. In first case WS2 and WS4

can be executed concurrently. In the second case WS4 and WS5
can be executed concurrently. As a result the output process
model is given in Fig2 and 3

WS1 WS3

WS 4

WS 5
WS2

WS1 WS3 WS5

WS2

WS4

Figure 3. PM generated using C B .

Figure 2. PM generated using C A

4. Discussion
The DM generation algorithm complexity is O (#(Input
parameters) × #(Output parameters)) in worst case scenario. The
composition plan generation algorithm complexity is equivalent
to the sorting algorithm used which is O (n*n) n being the number
of services. Consequently the overall approach complexity is
equivalent to the DM generation algorithm, which is of quadratic
time. As number of services increases the search space for DM
matrix generator will increase. To overcome this limitation in the
future we intend to provide a user query interface to receive
intermediate inputs and hints to dependency generator.

We tested the applicability of our approach using case studies
taken from [4],[6] and other related papers. In all cases our
approach gave process models that are similar to the ones in the
papers reviewed. This has been of assistance to empirically prove
the aptness of the process model generated by the proposed
method. In the future we will develop an evaluation mechanism to
guarantee the correctness and completeness of the output solution.

Unlike all other methods that construct dependency between all
services in repository we generated dependency between
candidate services automatically We believe, pre-computing all
possible semantic links (dependency) between services might lead
to extended graph that increases the complexity of plan creation.

To generate composition plan those methods often used graph
traverse algorithms, this arose O(number of vertex*number of
edge) which is fully dependent on number of edge and vertices
that in turn dependent on number of services in repository(even
services with same functionality).

Therefore, compared to the quadratic complexity of our approach
this complexity is much bigger as the number of services in
repository increases. To tackle such complexity problem in
existing approaches, our approach assumes goal based candidate
service discovery upon receival of user request. Then this

approach takes those discovered candidate services, extracts their
dependency, analyzes it and then generates composition plan .

4.1 Comparison to related work
Comparing with the method in [6] which uses CLM matrix our
approach uses a simple algorithm to generate the process
model,which we deem ,makes it more efficient especially when
the numbers of candidate services are high. CLM based technique
does not offer a means to identify concurrent and iterative control
flow. To generate the composition plan they used a regression-
based search, AI planning technique. Such an approach brings
with it scalability problems due to the inherent computational
complexity.

Contrary to other proposed approaches this method explicitly
shows which service is dependent on which service in its DM. For
example: CLM only shows the degree of similarity between Input
and output parameters, graph based composition techniques
proposed by [4] shows the dependency between services
implicitly but the dependency graph is generated at design time.

4.2 Contributions
The main contributions, among many, of the proposed approach
can be summarized as follows:

1. To the best of our knowledge this approach is the first to show
on demand process model creation based on dependency that
is extracted automatically from abstract service description. It
also shows the use indirect dependencies for composition plan
generation.

2. We propose the use of simple sorting algorithm for generating
a composition plan in one step. We trust this solves the
scalability problems that occurs in many composition plan
generation algorithms.

3. Despite most methods that use service dependency for
composition plan creation [4], [13], =[6]=[6] we do not pre-
computes unnecessary semantic link between all registered
services. We believe finding out only the semantic link
(dependency) among candidate services for the required
composition avoids the unnecessary computation required to
create all links between services in the registry. In this
approach we managed enlighten what cyclic dependency
means, how we use cyclic dependency as an indicator of loop
control flow and how to eliminate it to avoid further
complexity in further execution plan generation process.

5. Conclusions and further work
In this paper we propose an Input/Output dependency based
automated process model creation method for the purpose of
service composition. The process model is created based on
straightforward analysis of input/output dependency. The
simplified nature of the proposed methodology increases its
applicability in real world scenarios. We have tested the method
at a conceptual level making use of scenarios having from 3 to 11
web services. For these scenarios the output process model was
valid. Thus, we intend to extend this approach to be able to find
complex parameter dependencies, and for exploring other
dependencies, for instance Pre-condition/Effect dependencies, and
dependencies caused by user constraints. Moreover, further

analysis techniques are needed to incorporate alternative control
flow in process models. In addition, running extensive
experiments to further validate dependencies based process model
creation method is suggested.

6. REFERENCES
 [1] R. Aydogan and H. Zirtiloglu. A graph-based web
service composition technique using ontological information.
volume 0, pages 1154–1155, Los Alamitos, CA, USA, 2007.
IEEE Computer Society.
[2] S. Basu, F. Casati, and F. Daniel. Web service
dependency discovery tool for soa management. volume 0, pages
684–685, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.
[3] M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M.
Madeira. Challenges and techniques on the road to dynamically
compose web services. In ICWE ’06: Proceedings of the 6th
international conference on Web engineering, pages 40–47, New
York, NY, USA, 2006. ACM.
[4] S. V. Hashemian and F. Mavaddat. A graph-based
approach to web services composition. volume 0, pages 183–189,
Los Alamitos, CA, USA, 2005. IEEE Computer Society.
[5] J. W. Kim and R. Jain. Web services composition with
traceability centered on dependency. volume 3, page 89, Los
Alamitos, CA, USA, 2005. IEEE Computer Society.
[6] F. Lecue and A. Leger. Semantic web service
composition based on a closed world assumption. Web Services,
European Conference on, 0:233–242, 2006.
[7] B. Li. Managing dependencies in component-based
systems based on matrix model. In Proc. Of Net.Object.Days
2003, pages 22–25, 2003.
[8] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. In WWW ’03:
Proceedings of the 12th international conference on World Wide
Web, pages 331–339, New York, NY, USA, 2003. ACM Press.
[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. P.
Sycara. Semantic matching of web services capabilities. In
I. Horrocks, J. A. Hendler, I. Horrocks, and J. A. Hendler, editors,
International Semantic Web Conference, volume 2342 of Lecture
Notes in Computer Science, pages 333–347. Springer, 2002.
[10] S. R. Ponnekanti and A. Fox. Sword: A developer
toolkit for web service composition. In Proceedings of the 11th
International WWW Conference (WWW2002), Honolulu, HI,
USA, 2002.
[11] V. Ramasamy. Syntactical & semantical web services
discovery and composition. volume 0, page 68, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.
[12] M. K. Smith, C. Welty, and D. McGuinness. Owl web
ontology language guide, http://www.w3.org/tr/owl-guide/,
accessed, 2004.
[13] H. N. Talantikite, D. Aissani, and N. Boudjlida.
Semantic annotations for web services discovery and
composition. volume In Press, Corrected Proof, pages –, 2008.
[14] J. Zhou, D. Pakkala, J. Perälä, and E. Niemelä.
Dependency-aware service oriented architecture and service

composition. In IEEE International Conference on Web Services.,
pages 1146–1149, July 2007.

	INTRODUCTION
	CASE STUDY
	PROPOSED APPROACH
	Composite Service Request and abstract service specification
	Dependency representation
	Automatic PM Creation
	Service dependency generator
	Construction of explicit direct DM
	Construction of explicit indirect DM
	Explicit direct and indirect DM

	Dependency Matrix Analysis
	Application

	Discussion
	Comparison to related work
	Contributions

	Conclusions and further work
	REFERENCES

