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Characterization of Link Quality Fluctuation in Mobile

Wireless Sensor Networks
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Wireless sensor networks accommodating the mobility of nodes will play important roles in the future. In

residential, rehabilitation, and clinical settings, sensor nodes can be attached to the body of a patient for

long-term and uninterrupted monitoring of vital biomedical signals. Likewise, in industrial settings, workers

as well as mobile robots can carry sensor nodes to augment their perception and to seamlessly interact with

their environments. Nevertheless, such applications require reliable communications as well as high through-

put. Considering the primary design goals of the sensing platforms (low-power, affordable cost, large-scale

deployment, longevity, operating in the ISM band), maintaining reliable links is a formidable challenge. This

challenge can partially be alleviated if the nature of link quality fluctuation can be known or estimated on

time. Indeed, higher-level protocols such as handover and routing protocols rely on knowledge of link quality

fluctuation to seamlessly transfer communication to alternative routes when the quality of existing routes

deteriorates. In this article, we present the result of extensive experimental study to characterise link qual-

ity fluctuation in mobile environments. The study focuses on slow movements (<5 km h−1) signifying the

movement of people and robots and transceivers complying to the IEEE 802.15.4 specification. Hence, we

deployed mobile robots that interact with strategically placed stationary relay nodes. Our study considered

different types of link quality characterisation metrics that provide complementary and useful insights. To

demonstrate the usefulness of our experiments and observations, we implemented a link quality estimation

technique using a Kalman Filter. To set up the model, we employed two link quality metrics along with the

statistics we established during our experiments. The article will compare the performance of four proposed

approaches with ours.
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1 INTRODUCTION

Emerging wireless sensing platforms promise to play important roles in our everyday life. Integrat-
ing sensing, processing, and wireless communication capabilities, these platforms enable remote,
affordable, flexible, and long-term monitoring. For example, they can be implanted in or carried
by patients who can freely move and carry out everyday activities whilst vital biomedical data
are being gathered from them [36, 41]. In addition, the platforms can establish a wireless sensor
network enabling the bidirectional flow of data and commands, thus allowing doctors and health
assistants to monitor and assist their patients at any time [5, 14, 20].

The success of these platforms chiefly depends on their capacity to establish reliable commu-
nication links when they are mobile [40, 49]. This is because the quality of the radio link affects
almost all higher-level protocols and services [29, 48]. Due to the low-cost, low-power features, the
radio transceivers are often prone to background noise, interference, multi-path fading, shadowing
and additional environmental dynamics such as the movement of surrounding people and objects.
Furthermore, imperfections and slight variations in hardware design and production (such as the
placement of antennae in sensor nodes) introduce unforeseeable irregularities in the radio propa-
gation in different directions. Additional factors such as the effect of human body and undesirable
vibrations further exacerbate link quality fluctuation.

Over the past decade, a large number of experimental studies have been conducted to investigate
and characterise the link quality of low-power radios and how they affect the performance of
communication protocols [1, 17, 42, 43]. Most of these studies, however, focus on static scenarios
where the nodes are, by and large, stationary once they are deployed. By contrast, little has been
done to characterise the impact of mobility on link quality fluctuation and what factors have to be
taken into account when designing mobility-aware Medium Access Control (MAC) and routing
protocols. In this article, we present the results of extensive experiments pertaining to link quality
fluctuation in mobile environments, both indoors and outdoors, focusing on low-speed movements
signifying the movement of people in residential and work environments as well as of robots in
industrial settings.

The contributions of this article are summarised as follows:

• Reliable and reproducible data collection strategy in different indoor and outdoor settings
(foyer, corridor, pathway, lawn).

• Characterisation of link quality fluctuations using different metrics, namely, Received

Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), Packet Delivery

Ratio (PDR), Continuous Success, and Continuous Failure (CF) pertaining to packet
transmission.

• Employment of empirical probability density functions to make the analysis and interpre-
tation of statistics comprehensible.

• Design and implementation of a seamless handover mechanism to demonstrate the signif-
icance of link quality characterisation.

The remaining part of this article is organised as follows: In Section 2, we explain our experi-
mental setting. In Section 3, we explain our methodology. In Section 4, we compare link quality
fluctuations in static and mobile deployments. In Section 5, we characterise link fluctuation in mo-
bile environments using different link quality metrics and probability density functions. In Sec-
tion 6, we employ two link quality estimation metrics and the statistics we gathered to estimate
link quality fluctuation in a mobile setting. The purpose is to support a seamless handover. This
section also compares the performance of our approach with four proposed approaches. Finally,
in Section 8, we make concluding remarks.
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2 BACKGROUND

Existing empirical studies on the characteristics of low-power wireless links suggest that they
are dynamic and affected by temporal and spacial factors, such as temperature and surrounding
environments, among others. The differences in experimental environments, devices and param-
eter settings often result in different observations and conclusions [23, 25, 29, 38, 43]. Some of the
metrics these studies use to quantify and characterize link quality fluctuation are the following:

• RSSI: It is a measure of the received signal power in dBm. It is estimated over eight symbols
period of time (128 μs) in the CC2420 radio chip [21], which is the widely used radio chip
in the wireless sensor networks community. The RSSI can be read directly from an 8-bit,
signed 2’s complement register.

• Signal to Noise Ratio (SNR): It is an enhanced metric used to measure the link quality by
taking the background noise into consideration. It is defined as the ratio of the received sig-
nal strength to the background noise. When there is no incoming signal, the value read from
the RSSI register represents the background noise. Hence, SNR can be simply calculated as:

SNR[dB] = RSSI − Noise . (1)

• LQI: It is a link quality metric defined in the IEEE-802.15.4 specification [7, 17, 50] and is
a characterization of the strength and quality of the received packet. Radio vendors imple-
ment it slightly differently. For example, in CC2420, the LQI is an averaged correlation value
that is determined from the first eight symbols of each incoming packet and ranges from 50
to 110 [21].

• Count of Acknowledgement Packets (ACK): It is a link layer metric indicating that the
transmitted packet has been successfully received by the receiver. This metric can be ex-
tracted at the sender side when the corresponding acknowledgement packet is successfully
received within a specific time following each data transmission.

• Packet Reception Ratio: It is a receiver side metric and can be calculated as the ratio of
the number of successfully received packets to the number of packets that can be ideally
transmitted within a specific time window for a set Inter Packet Interval (IPI). This metric
is equivalent to the Acknowledgement Reception Ratio (ARR), a link layer metric at
the sender side if one disregards link asymmetry. ARR is sometimes referred to as PDR or
Packet Success Rate (PSR). In this article we prefer the term PDR.

Existing studies broadly classify low-power, wireless link into connected, transitional, and dis-

connected regions [3, 43]. In a connected region, the PDR is usually above 90% and communication is
regarded as highly reliable and symmetric. Thus, packet losses occur occasionally. In a transitional

region, the link is bursty (with PDR varying from 10% to 90%) and asymmetric. In a disconnected

region, the PDR is below 10% and packet loss high. Most practical links in wireless sensor networks
supporting mobile nodes are characterised by the transitional region.

Miluzzo et al. [30] studied the impact of human body on mobile low-power wireless sensor
networks. They conducted experiments in three different environments: large open area, urban,
and office environment. The mobile node as transmitter was carried by a human being moving at
walking speed and the receiver was deployed statically. Their results showed that the body factor
has a significant impact on link quality of low power radios.

Ahmed et al. [2] conducted a series of experiments to study the link characteristics for aerial
wireless sensor networks. In their experiments, the TelosB nodes were attached on two UAVs that
are flying at the same height and one node was placed on the ground as base station. The commu-
nication patterns were bi-directional, which can be classified as ground-to-aerial, aerial-to-ground,
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Fig. 1. Experiment environments for empirical studies on link quality in mobile wireless sensor networks:

(a) an example of static and mobile nodes. Indoor: (b) foyer and (c) corridor. Outdoor: (d) pathway and (e)

lawn.

and aerial-to-aerial. After analysing RSSI variations with respect to distance and packet loss rate,
they concluded that A-A links perform best.

Xiong et al. [48] presented experimental studies on link characteristics of IEEE802.15.4-
compliant radio in vehicular communications. In their experiments, one node was attached to
a moving car as the transmitter and the other was deployed at the roadside as the receiver. They
analysed the link characteristics in terms of RSSI, packet error rate and packet loss distribution
with respect to antenna hight, vehicle velocity (30 to 130 km/h), and distance (0 to 600 m) in both
line-of-sight and non line-of-sight scenario. The experiment results reveal that the link quality is
asymmetric and affected by antenna hight and Doppler effect. Furthermore, the authors remark
that the conventional size of the ACK packet is too short to guarantee successful acknowledge-
ment. As a result, the ACK mechanism may consume about 38% of the channel resources in non-
line of sight scenarios to achieve reliable communication.

3 METHODOLOGY

We conducted a variety of experiments in different environments and settings to study the impact
of mobility on the link quality of wireless sensor networks. We gathered and evaluated most of
the link quality metrics we listed in the previous section.

3.1 Platforms

We employed the TelosB [37] and the Imote2 [32] sensor platforms for our experiments. De-
spite the difference in their hardware architecture, the platforms are widely used by the com-
munity and both integrate a Chipcon CC2420 radio chip, which implements the IEEE 802.15.4
specification. The CC2420 has 16 non-overlapping channels in the 2.4-GHz unlicensed ISM band,
each channel occupying a 2-MHz bandwidth and has 5-MHz channel spacing [21]. It shares the
same wireless spectrum with other wireless technologies like WiFi and Bluetooth. Despite having
the same transceiver, the two platforms have different RF engineering designs: the TelosB plat-
form has an on-board printed inverted F-style antenna, whereas the Imote2 platform integrates a
2.4-GHz surface mounted antenna. Unless explicitly specified, the findings presented in this study
are generated from both platforms. To avoid inconsistency arising from hardware discrepancy,
each experiment was repeated at least 10 times for each hardware platform.

3.2 Testbed and Environments

We employed the MobiLab testbed [45] to control all the experiments. The testbed integrates
and controls 16 wireless sensor nodes and 3 mobile robots. Figure 1(a) shows snapshots of our
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experiment settings. MobiLab is a scalable, mobility-enabled wireless sensor network testbed
that can be easily deployed in different environments. It is suitable for conducting consistent and
reproducible experiments using control scripts. The backbone channel of the testbed consists of
a WiFi ad-hoc network and remotely controls the experiment, collecting link quality metrics. We
employed robots to make sure that experiments could be repeated in a consistent manner and
results could be compared objectively.

The experiments were conducted in both indoor and outdoor environments. The indoor envi-
ronments consist of our faculty’s foyer and corridors (refer to Figure 1(b) and (c)). In the outdoor
environments, the nodes were deployed on a pathway next to our faculty and on a lawn in a gar-
den (see Figure 1(d) and (e)). During all the experiments, people (mostly students) were moving
about and carrying out everyday activities unhindered (in other words, we incurred no special
conditions to conduct the experiments).

3.3 System Configuration and Data Collection

The link quality evaluation protocol we developed inherited the default radio stack of CC2420
in the TinyOS environment [27]. For each packet transmission, background noise (before and
after each transmission as well as after each reception), RSSI, LQI, ACK, timestamps, and packet
sequence numbers were recorded (for more information on how these metrics were stored and
transferred during the experiments, refer to Reference [45]). To avoid packet collision, a Time
Division Multiple Access protocol was implemented, so that only a single pair of transmitter and
receiver was active at any given time. Unless stated otherwise, the wireless sensor nodes attached
to the mobile robots were the transmitters and all other nodes in the network were receivers.

In most of the experiments, the transmission power was set to −25 dBm that achieves a ra-
dio communication range of up to 30 m in both indoor and outdoor environments, provided that
the communication partners maintained a line of sight communication. The reason that this low
transmission power was chosen is twofold:

(1) The speed of the mobile platform was approximately 0.13 m/s, so it would take a signifi-
cantly longer time of travel to experience link disconnection than if a larger transmission
power were used, e.g., 0 dBm. By using −25 dBm, the communication range was limited
to 30 m. Thus, all the link characteristics (perfect, transitional, disconnected regions [43])
could be observed in a small area.

(2) The maximum coverage of the backbone channel of the MobiLab testbed in outdoor envi-
ronment was approximately 50 m. We could not use a more powerful WiFi access point,
because it would require an AC power supply and additional access points.

In all our experiments, Cross Technology Interference (CTI) was not taken into considera-
tion. Nevertheless, to minimize the impact of CTI, the transmission channel was set to 26, which
is orthogonal to most widely used WiFi channels1 (channel 1, 6, 11) [28, 31, 43]. Figure 2 shows
the average background noise with error bars in different environments when the experiments
were conducted. The background noise is almost consistent (around −95 to −92 dBm) with a little
variation, indicating that the impact of CTI is negligible. Thus, in the subsequent analysis, we use
RSSI instead of SNR as one of our link quality metrics.

4 STATIC VS. MOBILE LINKS

Existing empirical studies on the characteristics of low power links in wireless sensor networks
mostly focus on stationary scenarios [3, 12, 39, 43]. These observations provide useful insights

1WiFi channel 1 is used as the testbed backbone channel and in our office building the WiFi channel 6 and 11 are used.
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Fig. 2. Background noise in different environments.

Fig. 3. Comparison of temporal characteristics for static and mobile links. (a) Link fluctuation in the con-

nected region. (b) Link fluctuation in the transitional region.

as to how higher-layer protocols, particularly, MAC and routing protocols, can be optimised for
static networks. Nevertheless, their usefulness is limited for designing protocols that support mo-
bile nodes, since the characteristics of mobile links are conspicuously different from their static
counterparts, as this study will show.

4.1 Temporal Characteristics

Experiment set-up. In this scenario, a mobile node carried by a robot continuously sends packets
to a stationary node with a 50-ms IPI. Initially, the robot was located at a distance of 3 m away
from the static receiver and sends packets in burst for about 10 s. After some time, it moved a
distance of 2 m in a straight line while sending packets in burst. Then it stopped but continued
transmitting packets for another ca. 15 s. The second scenario is similar, however, in this setting,
the mobile node began at a different initial location (10 m) and had a longer travelling distance
away from the receiver node (5 m). The experiments were conducted in an indoor environment
where there was no significant interference.

Observations. Figure 3 compares the temporal characteristics of the static and mobile scenarios.
The real-time RSSI fluctuations are presented along with the mean and variance of the RSSI
fluctuations that are calculated section by section. Figure 3(a) shows the RSSI fluctuation in a
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predominantly connected region where links were stable and the PDR was above 90%. When the
transmitter was static (at the locations 3 m and 5 m), the links were stable, so that the PDR was
approximately 100% and the RSSI variation was insignificant (having a standard deviation of less
than 1 dBm). When the transmitter was mobile (moving from 3 to 5 m), the RSSI fluctuated, such
that the standard deviation reached around 4 dBm and the PDR dropped to 89%. Figure 3(b) shows
the temporal behaviour of link variations in a predominantly transitional region. As can be seen,
it has similar variation patterns as in the previous case. From the above observations, it can be
concluded that:

• The RSSI fluctuated appreciably when the transmitter was mobile, regardless of its relative
distance to the stationary receiver.

• The fluctuation results in significant packet loss, even when the link is characterised as
predominantly connected.

This said, a closer look into the raw RSSI fluctuations in both figures may suggest that on average,
the RSSI values of the mobile regions are better than the static regions, which is not the case.
We plotted the RSSI values based on received packets. In the mobile cases, we received very few
packets whose RSSI values happened to be relatively good. But we have lost many packets whose
RSSI values could not be determined. This is one of the reasons why the analysis and interpretation
of RSSI values should be made carefully.

4.2 Spatial Characteristics

Experiment set-up. To investigate the spatial characteristics of static and mobile links, we con-
ducted two experiments in an outdoor environment (the lawn). For the static scenario, transmitter
nodes were deployed in radial topology, with the receiver node at the centre. For the mobile sce-
nario, the transmitter nodes were carried by robots and moved away from the stationary receiver
in eight different directions along radial paths. Figure 5(a) and (b) show our deployment topologies.

Observations. Figure 5(c) and (d) shows the contour plots of RSSI distributions for the static and
mobile links, respectively. As can be seen, the RSSI distributions are spatially irregular, regardless
of whether the links were static or mobile, suggesting that signal propagation was anisotropic.
The radio irregularity phenomenon is confirmed by previous empirical studies on static wireless
links [3, 52]. There are three potential causes for this phenomenon:

(a) The omnidirectional antennae did not have the same gain in different directions (due to
imperfection in design and manufacturing).

(b) The environment did not have a similar effect in different directions, leading to different
path loss patterns.

(c) The signal propagation (transmission power) itself varied over time.

With this in mind, we believe that for the static deployment, the direction-dependent antenna gain
was the primary cause of radio irregularity. This is because the experiment was conducted on a
lawn where there was no obvious obstacles nearby and the sensor nodes were deployed in a small
circular area (5-m radius). To confirm our claim, we deployed two nodes with a spacing of 1 m.
One of the nodes was fixed whilst the robot carrying the other node spun at a slow speed (360◦ in
20 s). Figure 4 shows the plot of the RSSI variation in relation to different antenna directions.

From Figure 5(c) and (d), we observe that the radio irregularity becomes worse when the links
were mobile. The RSSI variations are more dynamic compared to the static links, which is also
mentioned in the earlier discussion. Although the signal propagation is more irregular, the mea-
sured RSSI values are relatively high in all directions in the mobile links. This can be observed in
Figure 3, in which the average RSSI in the mobile links is higher than that of in the static links.
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Fig. 4. Radio propagation irregularity. Two nodes are deployed along a line of 1-m spacing. One of them is

fixed and the other spins at a speed of 0.05 round per second. Degree 0 is the position that the two antennae

face one another.

Fig. 5. Comparison of spatial characteristics of static and mobile links. (a) Static deployment topology: The

node at the centre is the receiver and the others are transmitters. (b) Trajectory of the mobile transmitter.

The mobile sender moves away from the centre and toward the outer circle along a radial line. (c) Contour

of the RSSI distribution for the static links. (d) Contour of the RSSI distribution for the mobile links.
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Fig. 6. The relationship between RSSI and PDR. The empirical density functions of the PDR are generated

for the RSSI of 5-dBm width.

4.3 Relationship between PDR and RSSI

Experiment set-up. The data used for this section are taken from all the experiments we con-
ducted for the comparison of static and mobile links. The PDR is calculated for every 100 succes-
sive packets transmitted and the RSSI values shown in the figures are averaged over successful
packets.

Observations. Figure 6(a) and (d) show the PDR distributions plotted against the RSSI values for
the static and mobile links, respectively. As can be seen, the PDR is above 90% when the average
RSSI is greater than −85 dBm in static links. In mobile links, the threshold is −75 dBm. When
the average RSSI value is below this threshold, the PDR varies significantly (from 100% to nearly
0%), setting the communication region into a transitional region. This empirical threshold is envi-
ronment dependent. For example, for the same radio chips we used in our experiments, different
values have been reported in the past: −75 dBm in Reference [18], −87 dBm in Reference [26], or
−80 dBm in Reference [44] to achieve a 90% PDR. In addition to the different RSSI thresholds to
separate connected from transitional regions in static and mobile links, the width of transitional

region is different. In static links, this width is approximately 10 dBm, while in mobile links it is 5
dBm, much narrower than that of static links.

To further investigate the relationship between PDR and RSSI in the transitional region (where
the PDR varies from 90% to 10%), we plotted the distribution functions of the PDR for specific RSSI
ranges. For the static links, the PDR is almost uniformly distributed when the RSSI is between −95
and −90 dBm whereas for the mobile links, the distribution is more like normal. These features
are depicted in Figure 6(b) and (e), respectively. Figure 6(c) and (f) depicts the distributions of
PDR for different ranges, each range having a width of 5 dBm. From Figure 6(c), we can observe
that when the RSSI was between −90 and −85 dBm in the static links, the PDR was above 90%
with a probability of 0.85. In the mobile links, however, the PDR varied between 30% and 100% for
relatively larger RSSI values (i.e., −85 dBm < RSSI ≤ −80 dBm). This is shown in Figure 6(f).
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Fig. 7. Characterisation of link quality fluctuation in indoor and outdoor environments.

5 CHARACTERISTICS OF MOBILE LINKS

In Section 4, we compared the difference in link quality fluctuations between static and mobile
links. Although they have similar characteristics, such as non-uniform radio propagation and
RSSI variations, the similarities, nevertheless, should not be overstated. In general, links in mo-
bile environments are more dynamic than their static counterparts. In this section, we explore the
characteristics of mobile links more closely, taking different perspectives.

5.1 Spatial Characteristics

Experiment set-up. To investigate the spatial characteristics of link quality fluctuation in mobile
scenarios, we conducted experiments in indoor (foyer) and outdoor (pathway) environments. For
each experiment, one stationary node was deployed as a receiver and a mobile node moved away
from the receiver along a straight line to cover a distance of 20 m long. The mobile transmitter
sends packets at an IPI of 50 ms. For each scenario, the experiments were repeated 10 times.

Observations. Figure 7 highlights the spatial characteristics in terms of RSSI, LQI, and PDR. All
link quality metrics were collected at the sender side. The three figures on top are for the indoor
environment and the figures at the bottom are for the outdoor environment. The RSSI and LQI
points depicted in the figures are averaged values of 80 successive packets, whereas the PDR was
generated by accumulating ACK packets. Figure 7(a) and (d) show RSSI variations along the dis-
tance axis. As expected, RSSI decreased while the relative distance between the sender and the
receiver increased, following the log-normal path loss model [13] (refer also to Reference [34]):

RSSI (d ) = RSSI (d0) − 10 · loд10

(
d

d0

)
+ N (0,σ 2), (2)

where RSSI (d ) is the path loss at distance d , RSSI (d0) is the path loss measured at a reference
distance d0, n represents the path loss exponent and N (0,σ 2) is a white-Gaussian noise. The path
loss exponent is different for different environments. By applying curve fitting, we can estimate
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Table 1. The Correlation Coefficients of PDR and RSSI

as Well as PDR and LQI

ρ (RSSI , PDR) ρ (LQI , PDR)
slot size mean variance mean variance
10 0.56 0.002 0.73 0.002
50 0.67 0.003 0.80 0.005
100 0.73 0.005 0.85 0.011

the path loss exponent for our case, which is 0.89 for the indoor environment and 1.12 for the
outdoor environment.

From Figure 7(c) and (f), we observe that link quality in terms of PDR is not strictly correlated
with distance, although PDR generally decreases with distance increasing. In Figure 7(c), the PDR
in the range of 10 to 14 m is higher than that in the range of 5 to 10 m. In the range of 14 to 15 m,
the PDR decreases, then after 16 m it increases slightly. In Figure 7(f), we observe the same phe-
nomenon (that farther locations have an improved PDR). Additionally, in the outdoor experiment,
the links are almost disconnected after 7 m, whereas in the indoor environment, even after 20 m,
the packet success rate was relatively high.2 Because of the space limitation in our foyer, we could
not observe link behaviour beyond 25 m.

By observing the plot shape of the PDR, RSSI, and LQI, we find that PDR is highly correlated
with RSSI and LQI. They almost have the same variation tendency. To confirm this argument,
we calculated the correlation coefficient of PDR and RSSI, PDR, and LQI by using the following
equation:

ρx,y =
cov (x ,y)

σxσy
, (3)

where ρx,y is the correlation coefficient of x and y; cov (x ,y) represents the covariance between
x and y; and ρx , ρy denote standard deviations, respectively. Table 1 shows the correlation coeffi-
cients using different slot sizes to calculate the PDR. When using a larger slot size to calculate the
PDR, the correlation coefficient increased. In other words, the PDR is significantly correlated with
RSSI and LQI. Another conclusion one can draw from the experiments is that, in mobile links, the
transitional region is much more broader than the connected region. As shown in Figure 7(c), the
connected region (PDR > 0.9) in the indoor environment is only 3 m long, whereas the transitional

region is more than 17 m long.3

5.2 Packet Consecutive Failure

In Section 5.1, we observed that the correlation for PDR depends on the slot size. In Reference [43],
the authors observed that when using a smaller slot size to calculate the PDR, it resulted either
in a large number of good or in a large number of poor links. When using a larger slot size, the
number of links in the transitional region increases and the number of links in the connected
and disconnected regions decreases. To mitigate the bias caused by slot size, we analysed the
correlation of CF and RSSI variation. It must be noted that a high CF implies a bad link; and in a
bad link, the average RSSI value of the received packets is consistently low (which is reflected by
a small variance or a narrow density function).

2Our observation appears to contradict the notion that signal propagation is poorer in indoor environments than in outdoor

environments due to many factors affecting the signal in indoor environments, such as multi-path effect.
3Due to space limitations, the disconnected region could not be observed in the experiment.
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Fig. 8. The density function of consecutive packet failures.

Fig. 9. The RSSI distribution for specific CF in indoor and outdoor environments.

Experiment set-up. The data analysed in this section are the same as in the previous section.
CF is accounted through ACK sequences and RSSI is estimated by averaging the RSSI values of
successfully transmitted packets before and after the failure(s).

Observations. Figure 8 shows the density function of consecutive failure in indoor and outdoor
environments. We observe that single packet failure occurs more often than multiple consecutive
failures. In 95% of the cases, the number of consecutive failures is less than 10. It is most likely that
single packet failure is caused by link fluctuations due to mobility. To further analyse the impact
of RSSI variations on transmission failures, we plotted the conditional density functions of the
RSSI, as shown in Figure 9. Figure 9(a) and (e) show the RSSI distributions when a single packet
failure occurs in indoor and outdoor environments, respectively. In the indoor environment, a
single packet failure can be observed in a wide range of RSSI, which means that it is difficult to
predict CF using RSSI values. In the outdoor environment, the result is almost the same, but within
a narrow RSSI range, which is 5 dBm less. From the figures, it should be noted that the probability
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of observing a single packet failure increases as RSSI decreases. This observation is applicable for
the case where the consecutive failure is larger than 2 (as shown in Figure 9(b) to (f)). From these
figures it can be observed that when the link quality is consistently poor (a narrow distribution
function), the consecutive failure of packets increases.

6 LINK QUALITY ESTIMATION TO SUPPORT A SEAMLESS HANDOVER

In this section, we shall give account of how we employed some of the experimental results to de-
velop a link quality estimation model for supporting a seamless handover. A seamless handover is
useful for applications requiring continuous and highly reliable communication. Typical examples
are telemedicine applications such as those monitoring patients with epileptic seizure [6], Parkin-
son’s disease [10], or gastroparesis [19, 22]. The tasks of the handover protocol or algorithm are
to (1) continuously evaluate the quality of a wireless link established between a mobile node (typ-
ically, worn by a patient) and a nearby stationary relay node and (2) transfer communication in
time when the quality deteriorates below an acceptable threshold. The transfer of communication
should take place before an existing link breaks completely.

In cellular networks, the task of managing mobility is assigned to resource-rich base stations,
which are always powered on and active. In wireless sensor networks, the relay nodes alone cannot
assume this responsibility, because, like the mobile nodes, they, too, are resource constrained.
Therefore, our goal is to enable a mobile node to continuously assess the quality of an existing link
and search for alternative relay nodes in its vicinity. For the complete description of the handover
protocol, we refer readers to References [46, 47].

Existing or proposed approaches use different metrics for supporting a seamless handover,
the simplest metric being evaluating the RSSI values of received packets (Smart-Hop [16], Mo-
biSense [18], and MX-MAC [51]). This approach implements the least complex mechanism to de-
termine link quality fluctuation but it is also unreliable. In Reference [54], the authors combine
two metrics, namely, burst loss (consecutive transmission failure) and packet failure rate. If one of
the criteria is fulfilled, then a handover is initiated. In Reference [15], the authors employ Fuzzy
Logic to estimate link quality [4]. It takes packet success rate, link asymmetry, link stability, and
SNR into consideration and combines additional three metrics (energy, traffic load, and depth level)
to support a handover. By carefully studying the characteristics of link quality fluctuation in an
industrial environment, Zinonos et al. [53] also propose a handover triggering algorithm that em-
ploys a Fuzzy Logic. This approach takes the RSSI values of incoming packets and packet loss rate
as its inputs. The output of the algorithm is a trigger decision probability, which, if it falls below a
predefined threshold, is used to initiate a handover.

6.1 Kalman Filter as a Link Quality Prediction Model

Whereas combining multiple and complementary metrics is the right approach to estimate link
quality fluctuation, we assert, nevertheless, that a much better model than a Fuzzy Logic can be
adopted for this task. Link quality fluctuation is inherently stochastic and, therefore, the model
dealing with its estimation should also be stochastic. Moreover, the model should be able to up-
date the statistics of its parameters whenever fresh evidence becomes available. In this regard, the
Kalman Filter (KMF) is a more suitable model. Table 2 lists the main parameters we used to
describe the Kalman Filter.

To facilitate the prediction process, we divide time into slots and frames. A frame consists of
multiple slots. A link quality prediction is made for a frame, based on the statistics of k freshly
received ACK packets and n past frames. In each estimation step, the link quality is expressed
as a column vector consisting of an RSSI value and a PDR. To explain our approach, we refer to
Figure 10. Suppose the parameters we wish to estimate for the time frame τ can be represented
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Table 2. The Main Parameters Used to Describe a

Kalman Filter at Time τ

symbol description

xp[τ ] predicted state vector
xm[τ ] measured state vector
x̂[τ ] updated (estimated) state vector
k[τ ] Kalman gain
w[τ ] process error vector
v[τ ] measurement error vector
R[τ ] measurement error covariance
Cp[τ ] prediction error covariance
Q[τ ] process error covariance

Fig. 10. Connecting the past, present, and future statistics of incoming ACK packets to dynamically update

the model parameters of a Kalman Filter.

by the generic random variable x[τ ]. The reason we describe it as a random variable is that we
will never be able to obtain its real value at any given time. Suppose, based on the statistics we
have gathered up to frame τ − 1 we predict the value of x for the frame τ and label it as xp[τ ].
The index p stands for prediction. In the time frame τ , however, we measure the parameters of x

and label this as xm[τ ]. The index m stands for measurement. Both xp[τ ] and xm[τ ] contain the
actual value of x for that frame, but each contains a different kind of error, namely, process and
measurement error, respectively. Using the Kalman formalism, we can estimate x[τ ] by properly
combining xp[τ ] and xm[τ ]:

x̂ [τ ] = xp[τ ] + k[τ ]
(
xp[τ ] − xm[τ ]

)
. (4)

Note that if the link quality fluctuates slowly over time, then we should trust xp[τ ] more. If, how-
ever, the link quality fluctuates significantly over time, then we should trust xm[τ ] more. How
much we should trust either of them at any give τ depends on k[τ ], which should be determined
in a dynamic fashion. Moreover, note that:

xm[τ ] = x[τ ] + v[τ ], (5)

where v[τ ] is the measurement error modelled as a random variable. Similarly,

x[τ ] = xp [τ ] +w[τ ], (6)

where w[τ ] is the processor error modelled as a random variable. Hence, our goal should be finding
the optimal k[τ ] such that the difference between the actual x[τ ] and its estimated value, x̂[τ ], is
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minimum. One way to achieve this goal is minimising the mean square error:

e
2 [τ ] = E

{
(x[τ ] − x̂[τ ])2

}
. (7)

If we insert Equation (4) into Equation (7), differentiate the equation with respect to k[τ ], and set
the result to 0, then we shall find the optimal k[τ ] that minimises the mean square estimation error
[9]:

k [τ ] = Cp[τ ]
(
Cp[τ ] + R[τ ]

)−1
, (8)

where R[τ ] = E
{
v

2
}

is the measurement error covariance andCp[τ ] is the prediction error covari-

ance, i.e.,

Cp [τ ] = E
{(

x[τ ] − xp[τ ]
) (

x[τ ] − xp[τ ]
)}
, (9)

which can be expressed as:

Cp [τ ] = C[τ − 1] +Q[τ ], (10)

whereC[τ − 1] is the error covariance for τ − 1 and Q[τ ] = E{w2} is the process error covariance.
It is assumed that v and w are column vectors consisting of zero mean and normally distributed
random variables.

6.2 Defining Model Parameters

Let x[τ ] be a column vector:

x[τ ] =
[
r[τ ], p[τ ]

]T
, (11)

where r[τ ] is the RSSI value and p[τ ] the PDR of the τ ’s frame. Suppose the application wishes to
transmits packets continuously, with an IPI of 20 ms. If we fix the size of one packet to 28 B, the
transmission rate of the underlying radio chip (CC2420) to 250 kbit s−1, and the maximum speed
of the mobile node to 5 km h−1 or 1.4 m s−1, the node transmits approximately 47 packets in 1 s
(i.e., before it moves a distance of 1.5 m). Furthermore, if we define a slot to be the time we need
to receive a single packet and a frame as 10 slots, then we have at least four frames in a second,
which we assume are statistically correlated. With this specification, we can express the average
RSSI value of the τ ’s frame in terms of the average RSSI value of the (τ − 1)’s frame:

r[τ ] = r[τ − 1] + a. (12)

Compared to the fluctuation in RSSI values, the change in the PDR between consecutive frames is
small, so that we can assume that:

p[τ ] = p[τ − 1]. (13)

Putting together these two expressions yields:

⎡⎢⎢⎢⎢⎣
r[τ ]

p[τ ]

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
r[τ − 1]

p[τ − 1]

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
a

0

⎤⎥⎥⎥⎥⎦
, (14)

where a is a parameter that can be determined by a linear regression [33] and is associated with
the variance in RSSI. The error associated with our assumption as regards r[τ ] and p[τ ] can be
described as the process error, Q[τ ] and, as such, can be expressed in terms of the variances of r

and p of the past n frames:

σ 2
r,p[τ ] =

1

n − 1

τ−1∑
j=(τ−n−1)

(r[j] − r )2 , (15)
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where r is average RSSI of the past n × k slots. Likewise, the process error as regards p is expressed
as:

σ 2
p,p (τ ) =

1

n − 1

τ−1∑
j=(τ−n−1)

(
p[j] − p)2

, (16)

where p is the average PDR of the past n frames. The process error of x[τ ] expressed as a matrix is

Q (τ ) =
⎡⎢⎢⎢⎢⎣
σ 2

r,p[τ ] 0

0 σ 2
p,p[τ ]

⎤⎥⎥⎥⎥⎦
. (17)

In a single frame, the node transmits k packets (10 to be exact), some of which can be lost. We
shall never know the RSSI values of the lost packets. Therefore, in computing the average RSSI
value for that specific frame, we have to take into consideration the RSSI values of the received
packets only. The error arising from this approximation we can model as a measurement error.
This error can be approximated by the variance of the received packets. The smaller the variance,
the more similar are the RSSI values of the received packets, in which case, it is plausible to assume
that the RSSI values of the lost packets resemble the RSSI values of the received packets. The larger
the variance, the more dissimilar the RSSI values of the received packets, and, as a result, the more
dissimilar the lost packets can be from the received packets. Consequently:

σ 2
r,m[τ ] =

1

k − 1

k∑
i=1

(ri − rτ )2 , (18)

where rτ is the mean RSSI value of frame τ . In a single frame, we have only a single value for p, as
PDR is a ratio term. To compute the associated measurement error, we can take into account the
fact that r and p are correlated in each frame, since the statistics of the latter are directly determined
by the statistics of the former. This relationship is encoded by the correlation coefficient, as we
already highlighted in Equation (3) and experimentally determined (refer to Figure 6 and Table 1).
We can make use of the correlation coefficient to think as if the PDR in the τ ’s frame has a variance:

σp =
E
{
(r − μr ) (p − μp )

}
ρprσp

, (19)

where ρrp is the correlation coefficient. In a single frame, we have the statistics of r. So, it
is possible to express Equation (19), in terms of conditional expected values. Distributing the
numerator of the right term yields: E

{
rp

} − μr μp . Moreover, E
{
rp

}
=

∑
r ∈r

∑
p∈p (rp) P (r ,p) =∑

r ∈r r
(∑

p∈p pP (p |r )
)
P (r ). The bracket term:

(∑
p∈p pP (p |r )

)
is the conditional expected value

of p given r = r . In summary:

σ 2
p,m[τ ] =

(∑
r ∈r[τ ] E

{
p|r[τ ] = r

}
rP (r ) − rτ E{p|rτ }

)2

σ 2
r,m[τ ]ρrp

, (20)

where E
{
p|r[τ ] = r

}
is the conditional expected value of p given r = r ; P (r ) and E{p|rτ } are the

probability of r and the conditional expected value of p, respectively. All the terms on the right
side of Equation (20) can be determined from Figure 6. Finally, the measurement covariance error
is expressed as:

R [τ ] =

⎡⎢⎢⎢⎢⎣
σ 2

r,m[τ ] cov (r ,p)

cov (r ,p) σ 2
p,m (τ )

⎤⎥⎥⎥⎥⎦
, (21)
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Table 3. The Memory Footprint and Computational

Complexity of the Different Algorithms

LL RSSI MXMAC KMF

ROM (bytes) 122 158 5,498 4,876
RAM (bytes) 8 12 118 98
execution time (ms) — — 16 ± 0.03 26 ± 0.05

where cov (r, p) is the covariance between r and p. With Q[τ ] and R[τ ] in place, it is now possible
to compute the Kalman coefficient for τ , and with it, to predict the RSSI and the PDR of the future
(τ + 1) frame.

7 EVALUATION

We implemented our handover-triggering algorithm (KMF) and integrated it with the MXMAC
protocol [11]. It runs in a TinyOS runtime environment on the TelosB platform. We also imple-
mented four additional proposed handover-triggering algorithms to make an objective compari-
son. We summarise these algorithms as follows:

• Single Packet Failure (SPF) [35] [24]: Triggers a handover upon a single packet failure.
• Link Loss (LL) [54]: Combines consecutive failure and packet failure rate to trigger a han-

dover. Thus, if n packets continuously failed or the packet failure rate falls below a set
threshold f within a specified duration, then it triggers a handover.

• RSSI threshold based algorithm (or simply, RSSI): Triggers a handover if the average RSSI
value of successively received ACK packets drops below a set threshold [16].

• MXMAC [11]: Employs a normalized LMS filter for predicting link quality fluctuation using
the mean RSSI values of received ACK packets.

To evaluate the performance of our algorithm, we conducted a series of experiments using the
MobiLab testbed [45]. In our setup, the testbed consisted of 5 static TelosB nodes deployed in a
straight line with a 5 m separating distance between them and a mobile node carried by a robot. We
deployed the testbed in a lobby, a corridor, and outdoors. The decision to transfer a communication
is made by the node carried by the robot. To draw a comparable conclusion for the other handover
triggering algorithms, we first launched a large number of preliminary experiments and carried
out an in-depth analysis of the received packets. Our aim was to calibrate the parameters for
each algorithm.4 Afterwards, we executed and repeated each experiment ten times. During each
experiment, the robot was moving from one end of the deployment area to the other in a straight
line, at a constant speed (approximately 0.13 m s−1), whilst the transmitter carried by the robot
transmitted packets in burst. The IPI is set to 10 ms, which is the minimum interval between two
outgoing packets that is currently supported by the TinyOS implementation. The transmission
power is set to −25 dBm.

7.1 Memory Footprint and Computational Complexity

Table 3 shows the memory footprint and computational complexity in terms of execution time
for all algorithms we implemented. The additional memory overhead is mainly due to the imple-
mentation of the handover trigger algorithms and the link quality metrics cached in RAM. SPF

4For example, the RSSI threshold and the LMS algorithm require a predefined threshold to achieve 90% packet success rate.

This threshold value is environment dependent (−75 dBm in Reference [18], −87 dBm in Reference [26], and −80 dBm in

Reference [44]). For more details, refer to our previous work [46].
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Fig. 11. Evaluation of the five algorithms in terms of: (a) Number of handover events. (b) Goodput. (c) PSR.

introduces almost no additional memory cost when integrated with MX-MAC. So, it can be taken
as a baseline. For the current implementation of KMF, it utilizes 4,876 more bytes in ROM and
98 more bytes in RAM. However, KMF consumes slightly less memory than the original design
of MX-MAC. Moreover, compared to the overall available memory in the TelosB platform (48 KB
flash and 10 KB RAM), the additional memory overhead is not appreciable.

The computational overhead is mainly due to the execution of the link quality estimation and
the prediction algorithm. Therefore, we programmed the TelosB platform to execute each han-
dover trigger algorithm 10,000 times in a single test and then we repeated 100 tests. Additionally,
the execution time of link quality estimation depends on the window size, so we fixed this pa-
rameter to 10. Then we calculated the average value as the execution time. The link quality esti-
mator in KMF is executed for each packet transmission and the Kalman Filter prediction is made
after the transmission of 10. Totally these two computations take ca. 26 ms. Considering the min-
imum IPI 10 ms, the computation can be completed without introducing a significant latency. As
far as energy consumption is concerned, the computation consumes much less energy compared
to the cost of transmitting 10 packets. For example, the CC2420 radio consumes 17.4 mA at 0 dBm
when in transmission mode [21], while the MCU (MSP430) consumes 1.8 mA in busy mode [8].
To transmit one packet (which is typically 45 bytes in the TinyOS environment), it consumes 0.08
mJ. To transmit 10 packets, this would amount to 0.8 mJ. And to do one round of Kalman filter
computation (which is carried out after the transmission of 10 packets), it takes 0.14 mJ.

7.2 Handover Trigger Event

A handover trigger event is generated when a handover triggering algorithm initiates a handover
as a result of a “belief” by the former that a deterioration in the link quality leads to a disconnec-
tion or that the packet loss rate is below a specified threshold. It is a measure of the sensitivity
of the triggering algorithm. A highly sensitive algorithm leads to a frequent attempt to transfer a
communication to an alternative relay node, and may cause a high handover cost. As most com-
mercially available transceivers are low-powered and low-cost, the RSSI values of received ACK
packets may fluctuate for a brief period of time despite the low speed of the robot. In other words,
a fluctuation in the RSSI values of received ACK packets may not necessarily indicate the potential
disconnection of an established link. Thus, the handover triggering algorithm should be tolerant to
such transient variations of link quality, otherwise it may lead to a ping-pong handover problem,
unnecessarily increasing packet transmission latency and power consumption. Moreover, a mobile
transmitter may not be successful in finding a new relay node whenever a handover is initiated, in
which case it may waste resources in searching for relay nodes. Figure 11(a) suggests that our algo-
rithms (KMF) generated a significantly less number of trigger events than all the other algorithms,
because it was able to filter transient link fluctuations more efficiently than the other solutions,

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 28. Publication date: April 2021.



Characterization of Link Quality Fluctuation in Mobile Wireless Sensor Networks 28:19

Fig. 12. Comparison of the resulting handover oscillations of different link quality estimation approaches.

The maxima of the coloured signals indicate that the robot was approximately at the same position as the

relay nodes. H indicates that a request for a handover was made by the mobile node and N indicates that

no request was made.

particularly, in the indoor environments (lobby and corridor). The SPF algorithm performed worst
due to its reliance on a single packet failure to trigger a handover.

7.3 Goodput and Packet Success Rate

We define the goodput as the ratio of the number of successfully transmitted data packets to the
maximum data packets that can be transmitted in an ideal link during the same transmission
period:

Goodput =
Nsuccess

Nideal
.

As shown in Figure 11(b), KMF gains the highest goodput overall in different environments. The
reason is its high data packet transmission efficiency. Furthermore, KMF is the only algorithm
the average goodput of which is above 80%. It can be seen in Figure 11(c) that, compared to the
other algorithms, the performance of KMF degraded a little bit in terms of packet success rate. It
achieved 93.2%, 96.5%, and 97.7% for lobby, corridor, and outdoor, respectively. The reason for the
relatively low performance in this respect is its higher tolerance of transient packet failures.

7.4 Simulation

To compare the performance of all the handover algorithms under an identical condition, we let
the robot move from one end of the deployment environment to another while communicating
with the relay nodes (without any handover). During this time, all the link quality metrics were
recorded. After the experiment, we fed the link quality metrics to the algorithms to observe how
they would react to the link quality fluctuations and recorded the time points at which they trig-
gered a handover.
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Fig. 13. Handover oscillations for different Kalman Filter parameters. H indicates the firing of a handover

request by the mobile node, and N the absence of such a request.

Figure 12 compares the handover oscillations arising from implementing the different link qual-
ity estimation techniques. The coloured lines illustrate how the transmitter carried by the robot
maintained a steady communication link by employing the handover-triggering algorithms. The
vertical bars display the frequency of the attempts to transfer a communication as a result of a
perceived change in the link quality.

Triggering a handover request at the appropriate time is essential to avoid unnecessary oscilla-
tions. If the handover trigger algorithm is too sensitive to link quality variations, then a high num-
ber of handover events are experienced and, consequently, the handover cost (signalling overhead,
latency, etc.) is correspondingly high. On the contrary, if the algorithm is too tolerant to the link
dynamics and fails to trigger a handover on time, then the node may suffer from a considerable
packet loss. As can be seen in the figure, our approach (KMF) reduced the number of handover
triggers considerably (by about 23% compared to SPF and by 12% compared to MXMAC).

7.5 Analysis of Model Parameter Selection

The Kalman Filter we apply for estimating handover triggering events relies on two essential
parameters, namely, the frame length for establishing the system state and the past history for
predicting the system state. Apparently, a large amount of data is useful for establishing reliable
statistics in both cases, but the time and resources needed to collect, process, and store the data
are correspondingly high. The aim of this subsection is to closely examine this tradeoff.

7.5.1 Frame Length. The frame length (FL) is the number of packets used to calculate the
system state, [r [τ ],p[τ ]]T . A long FL signifies, on the one hand, to a reliable statistics for a fine-
grained estimation, and, on the other, to a correspondingly long time to reach at a decision to
trigger a handover event. The effect of this may be manifested in terms of a significant packet
loss if the link quality fluctuates considerably. If we fix the Frame History (FH) (FH = 10) and
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Fig. 14. The performance of different values of the Kalman Filter parameters: (a) The number of handover

events. (b) Goodput. (c) PSR.

choose different FL (namely, FL = {10, 50, 100}), then we can observe that (refer to Figure 13) the
time elapses for the first trigger event to occur increases correspondingly: 25 s, 55 s, and 60 s.
In other words, the number of handover trigger events decreases as FL increases. As might be
expected, the goodput and packet success rate drop also when FL becomes large.

7.5.2 Frame History. The FH is the number of past frames used to predict the future system
state (the parameter a in Equation (12)). One may assume that the larger the value of FH, the
slower will be the update rate of a. However, the simulation result in Figure 14 suggests that the
impact of FH is inappreciable. We suspect that the optimal frame history depends on the speed
of the mobile node and the inter-packet interval of the transmission. This will be one of the open
issues we shall investigate in future.

8 CONCLUSION

Understanding the characteristics of link quality fluctuation is critical for deploying wireless
sensor networks for practical applications. Previous studies have already shown how decisions
pertaining to deployment density and placement of sensor nodes, topology, transmission power
control, and protocol design can be influenced by and benefit from knowledge of link quality
fluctuations. Most existing studies, however, focus on static deployments where the sensor nodes
remain stationary once deployed or move only slowly over time.

In our study, we complemented existing work by characterising link quality fluctuation in mo-
bile scenarios, focusing on slow movements and employing different link quality metrics to pro-
vide different perspectives. The results of our experiments clearly indicate that wireless links are
highly sensitive to mobility and predicting the existence and duration of connected and transitional

regions is more difficult. Having said this, our study also shows that by combining the different
link quality metrics, a more reliable estimation can be possible. As a demonstration of this, we
combined the RSSI values of incoming (ACK) packets with PDR using a Kalman Filter to estimate
link quality fluctuation and to trigger a seamless handover. Compared to the state of the art, our
approach could improve link quality prediction by up to 12%.
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