
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020 1

Dynamic Topology Construction in a Joint
Deployment

Jianjun Wen and Waltenegus Dargie , Senior Member, IEEE

Abstract— Self-organizing protocols and algorithms in wireless sensor networks rely on knowledge of the topology of the
network they manage. In most practical cases, establishing the topology prior to actual deployment is not possible, as
the exact placement of nodes and the existence of a reliable link between any two individual nodes cannot be guaranteed.
Therefore, this task has to be carried out post deployment. If the network is stand-alone and certain aspects are fixed
(such as the identity and placement of the base station), then the task is achievable. If, however, the network has to
interact with other systems – such as Unmanned Aerial Vehicles (UAVs) or mobile robots – whose operation is affected by
environmental factors, self-organization becomes challenging. In this paper, we propose a dynamic topology construction
algorithm, assuming that the network is a part of a joint deployment and does not have a fixed base station. A node
carried by a UAV initiates the topology construction process and the ground nodes direct the network traffic towards the
initiator. Our approach is collision-tolerant and enables in-network processing, thus reducing the computation burden of
the initiator. We demonstrate the scope and usefulness of our approach using both lab and field deployments.

Index Terms— capture-effect, field deployment, self-organization, topology, Wireless Sensor Networks (WSN), Unmanned
Aerial Vehicles (UAV)

I. INTRODUCTION

On February 18, 2021 NASA successfully landed a rover
and an Unmanned Aerial Vehicle (UAV) on Mars, at a location
believed to have astro-biological relevance. The duo are tasked
with determining whether the planet was habitable in the past
and whether life had thrived on it. An essential component
of their assignment is the search for biosignatures within
accessible geological materials [1]. The joint deployment is
intended to fulfill complementary objectives. The rover is
equipped with several advanced instruments for extracting
and analyzing samples, but its scope is limited due to its
limited maneuverability. The UAV hovers above the rover
or nearby, thus surveying a wider region in a shorter time;
its activity, nevertheless, is limited due to its limited energy
reserve. Currently, it occasionally leaves the rover to make
short flights.

A joint deployment can achieve a higher degree of spatio-
temporal sensing if it involves an intelligent wireless sensor
network (WSN) on the ground. The sensor nodes can save the
rover from traveling long distances, and the UAV, from making
long flights. This type of deployment has several applications
here on earth as well, such as monitoring remote, dangerous,
inaccessible, or extensive areas [2]–[4]. At the Energy Lab
(TU Dresden, Germany), we investigate the practical use of
such deployments and develop the communication protocols
and algorithms they require.

In a joint deployment, a well-coordinated communication

Manuscript first submitted on 29 March 2022.
This work has been partially funded by the German Research Foun-

dation (DFG) in the context of the RoReyBan project (DA 1121/7-1).
J. Wen and W. Dargie are with the Faculty of Computer Science,

Technische Universität Dresden, 01062 Dresden, Germany (e-mail:
{jianjun.wen, waltenegus.dargie}@tu-dresden.de)

is indispensable to mitigate Cross Technology Interference
(CTI); and the impact of adverse conditions and harsh weather
[5]. However, determining the precise topology of the ground
network – essential for establishing efficient routes and gate-
ways – prior to the actual deployment may not be possible due
to the difficulty of determining the precise physical placement
of nodes. Consequently, the topology of the network and
the gateway nodes with which the UAV interacts should be
determined after deployment, in a dynamic fashion.

In this paper we propose an algorithm for dynamically con-
structing the topology of a randomly deployed network. The
algorithm enables a UAV to identify one or more ground nodes
with which it conveniently interacts. The remaining nodes on
the ground aggregate neighborhood information in the form of
a partially completed adjacency matrix and propagate packets
towards the UAV. Finally, the UAV establishes the complete
binary adjacency matrix and represents the underlying topol-
ogy of the network with it. The adjacency matrix will be the
basis for identifying cluster heads and assigning child nodes
to them. The key aspect of our algorithm – unlike competing
approaches in the literature (for example, [6], [7]; refer also
to Sec. II) – is a gradual topology construction process (in-
network processing) which reduces the computation burden
of the initiator and the communication cost of intermediate
nodes.

The rest of this paper is organized as follows: In Section III,
we establish the background of this work. In Section IV,
we present our concept. In Section V, we discuss the im-
plementation details and our evaluation based on a field
deployment. In Section II, we review state-of-the-art and,
finally, in Section VI, we give our concluding remarks and
outline future work.

https://orcid.org/0000-0002-7748-4344
https://orcid.org/0000-0002-7911-8081


2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

II. RELATED WORK

Self-organization is an essential aspect of any resilient
network [8], [9]. Often it is realized as a cross-layer feature
involving the MAC and the routing layers, but also as a sepa-
rate feature, independent of any communication protocol [10]–
[12]. Regardless of how it is implemented, it requires peer-to-
peer communication, neighbor discovery, and in-network data
aggregation [13], [14]. In this section, we review two aspects
of self-organization and how they have been addressed in the
past.

A. Concurrent Transmissions

A work closer to ours is the one proposed by Ma et al.
[7]. The approach avoids the use of any routing protocol or
a global data collection scheduling. Instead, nodes flood the
network with packets whenever they wish to update their status
or communicate some sensed data. Intermediate nodes transmit
packets with the highest transmission power possible to take
advantage of the “capture-effect” (to be explained in Sec. IV).
It is assumed that short packets (a few bytes long) are adequate
for many practical purposes. Packets are cascaded (packets are
put inside packets) as they propagate towards the UAV. The
authors claim to have achieved a superior collection efficiency
– requiring 287 ms to complete data collection from a network
of 26 ground nodes (ca. 1.8 times faster than state-of-the-
art) and 965 ms from a network of 42 ground nodes (ca. 1.1
times faster than state-of-the-art). Similarly, Mohammad and
Chan [6] propose an algorithm in which packet transmission
is decentralized and takes place in time slots, the beginning
and end of which is predetermined. In other words, nodes are
implicitly synchronized and the “capture-effect” is exploited
to recover corrupted packets. Furthermore, packet transmission
is probabilistic (a node may or may not transmit a packet in a
given time slot). Nodes spend much of the time listening. In
order to reduce the network traffic, nodes aggregate data using
network coding. Here the proposed approach is used for data
collection whereas our goal is to establish the topology of a
network (i.e., the algorithm runs only once, or occasionally,
whenever an update is required). For the approach to be effec-
tive, an advanced computing platform is required to support
network coding (for, otherwise, a simple network coding does
not take advantage of spatial and temporal data correlations).

In [15], a UAV is tasked with collecting data from a ground
wireless sensor network in a collision-tolerant manner. To
exploit the “capture-effect”, the UAV first transmits sample
signals from multiple known locations; nodes receiving these
signals respond simultaneously. The analysis of the received
signal leads to the estimation of (1) the transmission timing
and (2) the transmission power required to recover packets
upon collision. Similarly, Crystal [16] is a data-collection strat-
egy for supporting an aperiodic communication. The sink node
starts an epoch by flooding the network with a synchronization
request. When the synchronization phase is completed, nodes
begin interacting with one another in a sequence of paired
slots, one for transmission and another for acknowledgment.
If the nodes have data packets to transmit, they will flood con-
currently in a transmission slot and wait for acknowledgments

in the consecutive slot. Nodes without packets to transmit can
receive one of the data packets in the transmission slot, taking
advantage of the “capture-effect”. When a node receives a data
packet, it will broadcast an acknowledgment packet in the next
slot. An epoch is terminated in a distributed manner, if a node
does not receive packets for a number of consecutive slots.

B. Topology Construction

Topology construction is vital to structure (cluster) the
network and to optimally configure routing protocols. The
approaches closer to ours are the ones proposed by [17]
and [18]. Both rely on the existence of an adjacency matrix
describing physical connectivity. However, in both cases, a
physical connectivity does not necessarily correspond to a
logical connectivity. Instead, a logical topology is constructed
on top of the physical topology. In the first, the aim is to
prolong the network’s lifetime by achieving energy efficiency;
whereas in the second, the aim is to make the network
robust against external attacks. Thus, in [17] a particle swarm
optimization algorithm is employed to set up a cluster tree
topology. To this end, the topology construction problem is
translated into an energy consumption optimization problem.
Similarly, in [18], the physical topology of the network is
transformed into one which withstands external attacks. It is
assumed that nodes with high degree are susceptible. The
proposed approach first establishes the physical topology of
the network and computes the rank (relative significance)
of individual nodes. The topology is then fed to a genetic
algorithm which performs crossover and mutation operations.
The first refers to the process of pairing parent nodes to
produce the next generation child nodes and the second, to
the transformation of child nodes in a statistical sense, so that
the resulting topology offers diversity of communication.

In [19], the authors propose an active neighbor discov-
ery protocol to build single-hop neighbor tables at different
transmission power levels. A node first broadcasts neighbor
discovery messages (NDM) with its own neighbor list at
a specific power level and awaits neighbor reply messages
(NRM) for a period of time. The sender ID of NRM will
be added to its 1-hop neighbor list at the power level. The
exchange of NDM and NRM information takes place using
a TDMA protocol. Similarly, in [20], the authors propose
a low-latency, energy-efficient neighbor discovery protocol
which is organized in time slots. In each slot, a node is in
one of the three modes, namely, transmission, listening or
sleeping. The transition to a mode is probabilistic. If a node
is in a transmission mode in a slot, it transmits a message in
which its ID is embedded, while other nodes which are in the
listening mode in the same time slot can successfully receive
the message and add the sender’s ID to their neighbor list.
The discovery process continues until no new neighbors are
discovered.

In [21], the authors propose an expanded Borel-Cayley
graph topology construction (EBTC) algorithm to generate a
collision avoidance communication topology. In the beginning,
an initial sender broadcasts a “hello” message to its logical
neighbors. To avoid collision, each logical neighbor responds



WEN AND DARGIE: DYNAMIC TOPOLOGY CONSTRUCTION IN A JOINT DEPLOYMENT (FEB. 2022) 3

with a message containing their own neighbor lists in a fixed
order, determined by the power index in the connection.
After receiving these responses, the initial sender broadcasts
a connection request containing an updated logical neighbor
list. This process is repeated until all nodes found at least
two logical neighbors. In RPL routing protocol [22], the
topology construction process is initiated by the root node
which broadcasts a message whose hop-count increases as it
propagates upward in the network (away from the root node).
When intermediate nodes receive this message, they calculate
their rank based on their relative distance to the root node
and forward the message upward. Thus, the propagation of
the message builds upward-connections since each node learns
about its parent(s) from the message it receives. To construct
the downward connections graph, each node in the network
sends unicast advertisement messages to its parents. RPL, due
to its simplicity, is a widely used data collection strategy in
the community.

In [23] the flight route of a UAV is optimized for collecting
data from a wireless sensor network. The task is formulated
as a non-convex optimization problem. The optimal hovering
locations are those interfacing the UAV with nodes whose
residual energy is the least in the network. At each location of
the UAV a Voronoi vertex [24] is formed so that the UAV can
collect data from as many adjacent sensors as possible. Like-
wise, in [25], an optimal data collection strategy is proposed.
Accordingly, a ground wireless sensor network is clustered
into multiple clusters using an integer linear programming and
a data aggregation/compression path is defined to establish an
aggregate tree connecting child nodes with the cluster heads.
The linear programming operates on an underlying binary
matrix representing the topology of the network.

Our approach differs from existing work in three different
ways. Firstly, the decision to transmit a packet during infor-
mation exchange depends not merely on the last reception
round but on the previous receptions in a round. Secondly,
concurrent transmissions are randomized into different slots
to leverage the “capture-effect” without compromising on
packet transmission reliability. Thirdly, and, most importantly,
our approach does not rely on a global knowledge such as
knowledge about the size of the network or the topology of
the network1.

III. BACKGROUND

Cluster-based network organization facilitates data collec-
tion and command dissemination [27]. Most existing cluster-
ing algorithms require some qualification criteria to identify
potential cluster heads. In [28], we propose a model for quan-
tifying the relative significance of nodes in a wireless sensor
network. The measure of significance takes into consideration
the degree of connectivity of the nodes as well as the relative
significance of their neighbors. The input for our model is a
binary adjacency matrix encoding the physical topology of the
network, 1 signifying the existence of a direct link and 0, the

1But refer also to [26] where underwater robots with limited power self-
organize without requiring a global knowledge.

absence of a direct link. Hence, given an adjacency matrix M,
the normalized adjacency matrix H is given as:

H =
M

n− 1
(1)

where n is the number of nodes in the network. The normal-
ized number of single- as well as multi-hop links the nodes
establish with their peers can be estimated as follows:

T =

∞∑
k=1

(pH)
k
= (pH) (I− pH)

−1 (2)

p is a probability term expressing the quality of the single-
hop wireless links. Given T, the relative significance of the
individual nodes is computed as follows:

r = uT (3)

where u is a column vector of n unit elements and r[i]
encodes the relative significance of node i in the network.
Quantifying the relative significance of the nodes thus enables
the identification of strategic nodes within the network which
are critical to disseminate commands and aggregate data.

In [29], we propose a clustering algorithm which dynam-
ically identifies cluster heads based on their relative signifi-
cance and relative hop-distance. Furthermore, the algorithm
associates child nodes with the cluster heads, taking into
account their placement relative to the cluster heads. The
algorithm is useful for coordinating communication during
joint deployments, as it enables a UAV to interact with the
cluster heads. Nevertheless, both the algorithm and the metrics
it relies on (Equation 3) presuppose the existence of a binary
adjacency matrix. The purpose of this paper is to address this
concern. In Section IV, we propose an efficient and collision-
tolerant topology construction algorithm to generate a binary
adjacency matrix.

IV. CONCEPT

We assume that (1) a single UAV interacts with a wireless
sensor network and (2) the predominant traffic flow is directed
towards the UAV. Since the specific hovering spots of the UAV
and its flight route are determined by external conditions (the
weather, the physical objects present in the deployment field,
etc.), the ground network should be able to redirect the traffic
flow to suit the present context of the UAV. However, the
deployment lifetime is typically short, owing to the fact that
the UAV operates with exhaustible batteries. Consequently, we
also assume that while the UAV is flying, the topology of the
ground network remains, by and large, stable.

In order to illustrate our approach, suppose we have a joint
deployment consisting of five nodes (refer to Fig. 1). Node
A represents the UAV and the others are ground nodes. By
visually inspecting the topology of the network, it is possible
to rank the nodes according to their relative connectivity.
When the network’s size is appreciably large and the topology
is complex, however, visual inspection does not yield an
objective ranking of the nodes. The adjacency matrix in
Equation 4 expresses the physical topology of the network.
Applying Equation 3 on the adjacency matrix results in a



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

3

B

C

D

E

A

A

B

C

D

E

slot 0 slot 1 slot 2
round 0

update / discovery phase report phase

round 1 round 2
slot 0 slot 1 slot 2 slot 0 slot 1 slot 2 Finish

TX EU 2 C - - RX
Schedule

AR 0 - - -

AS 0 - - -

AS 0 - - -

AS 0 - - -

AS 0 - - - DU 1 A - -

CU 1 A - -

CU 1 A - -

CU 1 A - -

DU 1 A - -

BU 1 A C -

EU 2 C - -

BU 1 A C -

EU 2 C - -

AU 0 - - BCD

AU 0 - - BCD

AU 0 - - BCD

AU 0 - - BCD CU 1 A - E

CU 1 A - E

CU 1 A - E

CU 1 A - E

DR 1 A - A

DR 1 A - A

AR 0 - - D

AR 0 - - D

AR 0 - - D

AR 0 - - D BR 1 A - C

ER 2 C - C

BR 1 A - C

ER 2 C - C CRF 1 A E ABE:C

CRF 1 A E ABE:C

CRF 1 A E ABE:C

CRF 1 A E ABE:C

AR 0 - - BC

AR 0 - - BC

AR 0 - - BC

AR 0 - - BC

Flag: Start/Update/Forward/Report
Hop: incremented hop number src: node id

Parent: parent id Sibling list: nodes ids with the same parent
Others: other neighbours w/o siblings

src Forward list NeighborsFlag Hop Parent Forward list: list of nodes whose neighbour info are embedded 

src Sibling list OthersFlag Hop Parent
header payload

update message: 

report   message: 

Fig. 1: A sample schedule of ADJM protocol in a two hop network with 5 nodes. A schedule consists of multiple rounds and
each round contains specific number of slots. The number of slots in a round is embedded in the schedule parameter part,
in the header of the message. And the slot length is a fixed parameter and is determined according to the applications. For
simplicity, we ignore the schedule parameter in graph.

the last round; at the other hand, it synchronizes the time for
communication.
When a node received the first message from other node in

a new schedule, it learns the schedule parameters (the number
of slots in a round, the slot length ect.), the current round
and slot number, the hop counter. Then it sets its temporal
parent as the node id of the incoming packet and its own hop
counter as parent’s hop plus one. These two information will
be embedded in the following transmissions and will not be
changed in the schedule. As shown in Fig. 1, in round 0, slot
0, node B, C and D received the first message from A and set
A as their parent, in round 0, slot 1, node E received its first
message from C then it sets C as its parent and its hop counter
to 2 (C’s hop counter is 1). Once the node learned the schedule
parameters and its temporal parent and hop counter, it joins
the schedule and follows the ADJM transmission policy.
In the remaining of the schedule, when a node received a

message from any other neighboring node, it checks the sender
id if it is first learned or not. If the id is new, the node firstly
stores it in a temporal neighbor set and then set a ’update’
flag in its internal state machine. When the next transmission
slot arrived and the state machine is set to ’update’, the node
prepares the updating message and broadcasts to neighboring
nodes. As in the example, in round 0, node B learns parent
node id in slot 0 and a new neighbor in slot 1. And then in
slot 2 (a randomly selected slot for transmission), it sends its
neighborhood information with parent A and neighbor C. The
field ’parent’ in the message can help the ’parent’ to learn
other nodes indirectly, such as in round 0, node A learns three
neighbors with two receptions (the node C is inferred from
B’s message).
The update/discovery process continues until the phase

transition criteria is met, i.e. during last N slots, no new
information is got from others or receiving reporting messages.
Then the nodes start to report their neighborhood information
to the initiator, such as node D in round 1, slot 2. During report
phase, node can merge other nodes’ reporting messages with
its own. For example, in round 2, slot 2, node C forwards node

E’s reporting message with its own report (the merged message
is labeled in red). The merge operation can reduce the number
of transmissions since multiple forwarding messages and the
node own report message can be merged in one transmission.
The report message of a node can be forwarded not only by
its temporal parent, but also by the node whose hop counter
is less than that of incoming packet. When a node received a
packet with F and(or) R flag, it first checks the hop counter
to determine to forward it or not and if yes, the packet will be
stored temporally till next transmission. An ADJM schedule
is finished when all nodes reported their neighbor information
to the initiator.
During the information sharing and reporting, multiple

nodes could choose the same slot and transmit quasi-
simultaneously, for example, in round 0, slot 1, node C and D
transmit concurrently. Other neighboring nodes in receiving
mode can successfully receive one of the messages from
concurrent transmitters due to the capture effect [13], [14].
And a reception succeeds at a node only when the strongest
signal is at least 3 dB higher than the sum of others and all
transmitters must transmit their packet within 160 μs [9], [13],
[12]
In the remaining part of this section, we will discuss the

key mechanisms of ADJM in details.

C. Timing

Since receptions in ADJM rely on capture effect, concurrent
transmissions should be well synchronized. To this end, we
exploit the high resolution timer capture functionality which
can record the timestamps of the interruption of start-of-frame
delimiter (SFD) to synchronize nodes with their temporal
parent. Please note that in ADJM, nodes are not synchronized
before their first reception in a schedule. By recording the first
SFD timestamp, tsync, a node can estimate the transmission
time of the incoming packet (t

′
tx) from the temporal parent:

t
′
tx = tsync −Δ

Fig. 1: A simple network topology consisting of five nodes.

1 2 3
Node ID A, C B D, E

TABLE I: Rank of nodes

quantitative rank of the nodes (refer to Tab. I). Accordingly,
next to the UAV, the most important node in the network is
node C.

M =



A B C D E

A 0 1 1 1 0
B 1 0 1 0 0
C 1 1 0 0 1
D 1 0 0 0 0
E 0 0 1 0 0

 (4)

In most practical cases, the actual topology of the network
cannot be known prior to deployment. This is because some
of the nodes may not be placed or function as intended or
their transmission path may be blocked by nearby physical
objects. Therefore, the topology of the network should be de-
termined dynamically, through local interaction. We combine
four complementary features to achieve this goal:
• Random packet transmission.
• In-network data aggregation.
• Implicit time synchronization.
• Collision-tolerant medium access.

A. Random Packet Transmission
In the beginning, the ground nodes do not have information

about their neighbors or the size of the network. The process
of establishing the topology of the network is initiated by the
UAV (or a sensor node it carries). To complete the task as
swiftly as possible, we enable a random and collision-tolerant
interaction.

The process is carried out in two phases. In the first phase,
the discovery phase, nodes exchange discovery packets, update
a local list of neighbors, and generate a partially complete
adjacency matrix. In the second phase, the report phase,
nodes propagate packets containing information about their
neighbors towards the initiator. In order to ensure an efficient
message dissemination, we define the following flags: Start

(S), Update (U), Forward (F), and Report (R). Furthermore,
the header of a packet contains the hop count, the source ID,
and the parent ID. Its payload contains a partially completed
adjacency matrix based on the knowledge of the node up to
that point in time.

The discovery phase runs for k rounds. In each round there
are exactly N number of slots, where N is a global parameter
determined by the size of the network. In each round a node
may transmit a packet only once. Which slot it chooses to
transmit a packet is determined by a discrete random variable
x ∈W, 1 ≤ x ≤ N . If a node has multiple packets to transmit,
it has to do so in multiple rounds.

The discovery phase begins with the initiator (the UAV)
broadcasting a discovery request in slot 0. This packet is
flagged S; its hop-count is 0 and it contains no payload. This
is illustrated in Fig. 2 where node A, the initiator, broadcasts
in slot 0. All nodes receiving this packet for the first time
list this node as their parent node. Meanwhile, all neighbor
nodes randomly choose a whole number between 1 and N as
the value of x. If x = 1, this corresponds to slot 1 and they
are eligible to transmit in slot 1, otherwise, they wait until
the value of x matches the slot number. More than one nodes
may pick the same value for x, thereby transmitting packets
simultaneously and causing a collision. In the next subsection,
we will discuss how we resolve this concern.

A node eligible to transmit in slot 1 raises the flag U, sets
the hop-count to 1, fills its parent ID and broadcasts the packet,
so that both the initiator and the nodes further away from the
initiator discover it (refer to Fig. 2, slot 1). The update process
continues likewise, nodes locally updating their neighbor list
every time they receive new packets and increasing the hop
count of the packets they rebroadcast. They also keep track of
the slot sequence. The discovery phase for a given node comes
to an end when the node does not receive any new packets for
successive N slots (an entire round). Thereafter, it begins the
reporting phase during which time it broadcasts a partially
completed adjacency matrix encoding the neighbors of the
nodes and those of its neighbors. Child nodes receiving report
packets from their parents implicitly receive acknowledgment
that they are recognized by their parent nodes, other than that
they do not rebroadcast these packets.

B. In-Network Data Aggregation

The adjacency matrix can be constructed in one of the
following ways: either (1) nodes propagate lists containing
information about their neighbors towards the initiator, so that
the latter reconstructs the adjacency matrix by filtering and
aggregating these lists, or (2) the process can be carried out
gradually, the nodes constructing a partially completed adja-
cency matrix based on their local view of neighborhood and
passing this matrix to their neighbors. From a communication
point of view, the former is simpler, as intermediate nodes need
only to relay the packets they receive from their neighbors
towards the initiator. This, however, results in a significant
amount of duplicate packets being retransmitted. From a
computational point of view, the whole process overwhelms
the initiator, thereby resulting in a disproportionate amount of



WEN AND DARGIE: DYNAMIC TOPOLOGY CONSTRUCTION IN A JOINT DEPLOYMENT (FEB. 2022) 5
3

B

C

D

E

A

A

B

C

D

E

slot 0 slot 1 slot 2
round 0

update / discovery phase report phase

round 1 round 2
slot 0 slot 1 slot 2 slot 0 slot 1 slot 2 Finish

TX EU 2 C - - RX
Schedule

AR 0 - - -

AS 0 - - -

AS 0 - - -

AS 0 - - -

AS 0 - - - DU 1 A - -

CU 1 A - -

CU 1 A - -

CU 1 A - -

DU 1 A - -

BU 1 A C -

EU 2 C - -

BU 1 A C -

EU 2 C - -

AU 0 - - BCD

AU 0 - - BCD

AU 0 - - BCD

AU 0 - - BCD CU 1 A - E

CU 1 A - E

CU 1 A - E

CU 1 A - E

DR 1 A - A

DR 1 A - A

AR 0 - - D

AR 0 - - D

AR 0 - - D

AR 0 - - D BR 1 A - C

ER 2 C - C

BR 1 A - C

ER 2 C - C CRF 1 A E ABE:C

CRF 1 A E ABE:C

CRF 1 A E ABE:C

CRF 1 A E ABE:C

AR 0 - - BC

AR 0 - - BC

AR 0 - - BC

AR 0 - - BC

Flag: Start/Update/Forward/Report
Hop: incremented hop number src: node id

Parent: parent id Sibling list: nodes ids with the same parent
Others: other neighbours w/o siblings

src Forward list NeighborsFlag Hop Parent Forward list: list of nodes whose neighbour info are embedded 

src Sibling list OthersFlag Hop Parent
header payload

update message: 

report   message: 

Fig. 1: A sample schedule of ADJM protocol in a two hop network with 5 nodes. A schedule consists of multiple rounds and
each round contains specific number of slots. The number of slots in a round is embedded in the schedule parameter part,
in the header of the message. And the slot length is a fixed parameter and is determined according to the applications. For
simplicity, we ignore the schedule parameter in graph.

the last round; at the other hand, it synchronizes the time for
communication.

When a node received the first message from other node in
a new schedule, it learns the schedule parameters (the number
of slots in a round, the slot length ect.), the current round
and slot number, the hop counter. Then it sets its temporal
parent as the node id of the incoming packet and its own hop
counter as parent’s hop plus one. These two information will
be embedded in the following transmissions and will not be
changed in the schedule. As shown in Fig. 1, in round 0, slot
0, node B, C and D received the first message from A and set
A as their parent, in round 0, slot 1, node E received its first
message from C then it sets C as its parent and its hop counter
to 2 (C’s hop counter is 1). Once the node learned the schedule
parameters and its temporal parent and hop counter, it joins
the schedule and follows the ADJM transmission policy.

In the remaining of the schedule, when a node received a
message from any other neighboring node, it checks the sender
id if it is first learned or not. If the id is new, the node firstly
stores it in a temporal neighbor set and then set a ’update’
flag in its internal state machine. When the next transmission
slot arrived and the state machine is set to ’update’, the node
prepares the updating message and broadcasts to neighboring
nodes. As in the example, in round 0, node B learns parent
node id in slot 0 and a new neighbor in slot 1. And then in
slot 2 (a randomly selected slot for transmission), it sends its
neighborhood information with parent A and neighbor C. The
field ’parent’ in the message can help the ’parent’ to learn
other nodes indirectly, such as in round 0, node A learns three
neighbors with two receptions (the node C is inferred from
B’s message).

The update/discovery process continues until the phase
transition criteria is met, i.e. during last N slots, no new
information is got from others or receiving reporting messages.
Then the nodes start to report their neighborhood information
to the initiator, such as node D in round 1, slot 2. During report
phase, node can merge other nodes’ reporting messages with
its own. For example, in round 2, slot 2, node C forwards node

E’s reporting message with its own report (the merged message
is labeled in red). The merge operation can reduce the number
of transmissions since multiple forwarding messages and the
node own report message can be merged in one transmission.
The report message of a node can be forwarded not only by
its temporal parent, but also by the node whose hop counter
is less than that of incoming packet. When a node received a
packet with F and(or) R flag, it first checks the hop counter
to determine to forward it or not and if yes, the packet will be
stored temporally till next transmission. An ADJM schedule
is finished when all nodes reported their neighbor information
to the initiator.

During the information sharing and reporting, multiple
nodes could choose the same slot and transmit quasi-
simultaneously, for example, in round 0, slot 1, node C and D
transmit concurrently. Other neighboring nodes in receiving
mode can successfully receive one of the messages from
concurrent transmitters due to the capture effect [13], [14].
And a reception succeeds at a node only when the strongest
signal is at least 3 dB higher than the sum of others and all
transmitters must transmit their packet within 160 μs [9], [13],
[12]

In the remaining part of this section, we will discuss the
key mechanisms of ADJM in details.

C. Timing

Since receptions in ADJM rely on capture effect, concurrent
transmissions should be well synchronized. To this end, we
exploit the high resolution timer capture functionality which
can record the timestamps of the interruption of start-of-frame
delimiter (SFD) to synchronize nodes with their temporal
parent. Please note that in ADJM, nodes are not synchronized
before their first reception in a schedule. By recording the first
SFD timestamp, tsync, a node can estimate the transmission
time of the incoming packet (t

′
tx) from the temporal parent:

t
′
tx = tsync −Δ

Fig. 2: An illustration of a topology discovery process for the network displayed in Fig. 1. Dark boxes imply packet transmission
and light boxes imply packet reception.

energy being expended by the initiator. Our model is based
on (2). Hence, each node sets up an adjacency matrix based
on its local information and forwards this information to its
neighbors. For example, the adjacency matrix constructed by
Node E in Fig. 1 looks like:

E =

[ C E

C 0 1
E 1 0

]
(5)

Since an adjacency matrix is binary in our context, a node
encodes it with two lists. The first list contains the node’s
ID and the second list contains whole numbers indicating
the cell’s address containing 1s. For the above example, the
first list contains the IDs of Node C and Node D and the
second list contains the numbers 2 and 3 as these cells contain
1s. Any adjacency matrix can be represented by these two
lists, making the transmission and decoding of the adjacency
matrix straightforward2. Likewise, the adjacency matrix Node
C constructs resembles the following:

C =


A B C E

A 0 0 0 0
B 1 0 1 0
C 1 1 0 1
E 0 0 1 0

 (6)

Accordingly, the first list contains the IDs of Node A, B, C,
and E (so that the adjacency matrix is a 4 × 4 matrix) and
the second list contains the numbers: 5, 7, 9, 10, 12, 15. Note
that the matrix does not accurately reflect the topology yet.
Node C may know that Node A is its neighbor (assuming
it first received a discovery packet from it); this does not,
however, necessarily mean that Node A knows that Node C is
its neighbor. Node A may have to wait for the report phase
to discover this. This is why c13 = 0 even though c31 = 1.

2Note that the size of the first list implicitly reveals the dimension of the
adjacency matrix. Moreover, an adjacency matrix having n × n dimensions
can be encoded with less than n2/2 bytes. This is because we can choose to
encode either the 0s or the 1s, whichever have the smallest count.

C. Implicit Time Synchronization

The condition to minimize and manage collision is a
synchronized concurrent transmission. The nodes implicitly
synchronize time by estimating the time at which a parent
node started the current transmission. This time corresponds
to the beginning of a current time slot the length of which
is fixed. From the point in time a transmitter issues a “send”
command to the actual transmission of the packet, a minimum
of τm elapses. This time is the time the node switches from a
receiving mode to a transmission mode, for the node’s default
mode is a receiving mode. At the receiver’s side, the first sign
indicating the reception of a packet is a hardware interrupt
raised by the receiver’s microcontroller unit (MCU) following
the successful detection of a 1 byte Start of Frame Delimiter
(SFD) at the physical layer (by the radio chip). A local timer
registers this time (ts). Before the SFD can be detected, a
4 byte preamble must be transmitted to synchronize packet
transmission between the transmitter and the receiver. Hence,
the beginning of the current slot is estimated to be:

tcs = ts − (τm + τp) (7)

where τp is the time needed to transmit the preamble and
the SFD. Equation 7 neglects the propagation time of the
electromagnetic signal. Consequently, the beginning of the
next slot is simply:

tns = tcs + Ts (8)

where Ts is the duration of a single slot, which is a fixed
parameter. The transmission schedule of a particular node is
given as:

ttx = x tns (9)

In general, the transmission schedule for the round r + 1 is
given as:

tr+1
tx = trtx + Ts (N + 1− i+ x) (10)

where i is the current slot number.



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

D. Collision-Tolerant Packet Detection
The random packet transmission strategy minimizes packet

collision but does not avoid it altogether. The larger the
number of slots in a round (N ), the smaller the probability
of collision, but also the longer the time needed to establish
the topology of the network (i.e., the adjacency matrix). We
exploit a phenomenon called the “capture-effect” [30]–[32], a
well-established concept in wireless communication, to reduce
the impact of packet collision. The idea is as follows: If two
or more nodes transmit packets concurrently, a collision may
occur at a particular receiver. The receiver may, however,
be able to successfully decode one of the packets, provided
that two conditions are fulfilled. In the context of the IEEE
802.15.4 specification [33]–[35], these are:
• The time needed to transmit the preamble and the SFD

is ca. 160 µs. If, during this time another strong signal
arrives, the receiver may lock to this signal provided that:

• The signal’s power is at least 3 dB higher than the
superposition power of all the other surrounding signals
(which it considers as background noise).

Algorithm 1: Transmission Policy
Input : received message: msg
Output: transmission state machine Statetx
Phase Update:

if msg.src not in LNS3&& my_id not in
msg.neighbor_set then
Statetx = Statetx + 1;

else
if msg.src == parent_id && my_id not in
msg.neighbor_set then
Statetx = Statetx + 1;

end
if msg.parent == my_id && msg.src not in
LNS then
Statetx = Statetx + 1;

end
end

end
Phase Report:

if msg.hop < my_hop then
if I am not reported && my_id not in
msg.forward_list then
Statetx = Statetx + 1;

end
else if msg.hop > my_hop then

Statetx = Statetx + 1;
else

drop message;
end

end

The chance of two or more nodes transmitting simultane-
ously and their transmitted signals having the same power
level at a receiving node is small. These features make our
approach collision-tolerant. In Fig. 2, concurrent transmission

3LNS: Local Neighbor Set.

Fig. 3: An illustration of how the topology of a network affects
the complexity of self-organization.

is illustrated in round 0, slot 1; round 0 slot 2; and round 2
slot 1.

E. Complexity
The participation of nodes in self-organization incurs com-

munication and computational burden on intermediate nodes.
The size of the packet they receive and forward depends on
both their relative location (depth or hop-distance) and the
size of the network. The more hierarchically the nodes are
structured, the higher is the complexity of the algorithm. Fig. 3
illustrates this feature. In the left, the network is flat and the
nodes can directly send packets to the initiator (the golden
node in the middle), whereas in the right, intermediate nodes
have to be involved to forward packets from leaf nodes.

PIP [7] encloses packet in packets. Thus, the size of a packet
grows exponentially as it propagates towards the initiator. If
a node is d-hop away from the initiator, the packet, p, it
forwards will have a size of pd by the time it reaches the
initiator. For our case, the same intermediate node increases
its packet size by ca. 2(dmax − d) + 1 bytes, where dmax

is the maximum hop count in the network. The reason is
the following: A node (d + 1)-hop away from the initiator
will construct a partially completed adjacency matrix having
dimensions of ca. (dmax − d) × (dmax − d). The diagonal
elements of this matrix are all zeros and need not be included
in the coding process. In addition, the adjacency matrix will
contain a significant number of zeros (unless the network is a
fully-meshed network). Similarly, a node which is d-hop away
will have an adjacency matrix of dimensions: (dmax − (d −
1))×(dmax−(d−1)). The dimensions of the adjacency matrix
increase as the hop-count decreases. The computational burden
a node in layer (d+ 1) introduces to a node in layer d is the
difference of the two dimensions, which is 2(dmax − d) + 1.
In other words, the size of a packet increases linearly as it
propagates towards the initiator. Generally, assuming the nodes
are evenly distributed in the network, the complexity of our
algorithm is in the order of O(dmax + n/dmax).

V. EVALUATION

Our algorithm was implemented for the Contiki operating
system [36] and the Zolertia platform (RE-Motes4). The sensor
platform integrates two IEEE 802.15.4-compliant transceivers

4https://zolertia.io/product/re-mote/



WEN AND DARGIE: DYNAMIC TOPOLOGY CONSTRUCTION IN A JOINT DEPLOYMENT (FEB. 2022) 7

Fig. 4: Deployments of wireless sensor networks inside a lab and outdoors (in a field next to a modest forest).

TABLE II: Deployment parameters.

Parameters Value
Network size 8, 21
Slot length (Tslot) 10 ms
Slots in a round (nslot) 2, 4, 8
Schedule duration 30 s
Transmission power 7 dBm (field),-15 dBm (lab)

working in the 863-950 MHz and 2.4 GHz radio bands. In all
our experiments, we employed the 2.4 GHz radio. Each sensor
node was connected to a Raspberry PI board via a USB cable
to establish a wireless local area network for controlling the
experiments and for collecting performance related statistics.
The sensor nodes were deployed in our lab as well as outdoors,
in a field next to a modest forest (ref. to Fig. 4). The lab
and outdoor deployments consisted of 20 and 8 ground nodes,
respectively. The size of the outdoor deployment was limited
by the coverage of a battery-powered wireless router we used
to establish the backbone network. In both deployments, a
DJI Mavic-2 Enterprise drone5 hovered above the ground
network carrying an additional sensor node. This node, acting
as a gateway node to a remote server, initiated the topology
reconstruction process, and established the final adjacency
matrix. Hence, the network traffic was directed towards it. The
UAV was maneuvered by a remote controller which employed
a proprietary long range transmission, operating in 2.4 and 5.8
GHz radio bands (OcuSync 2.0 [37]). When operating in 2.4
GHz, it produced a considerable CTI. Because the location of
the UAV was determined by several physical factors, the node
on the UAV was able to establish connections with any of the
ground nodes nearby.

We evaluated our algorithm in terms of:
• The average time it required to establish the network’s

topology.
• The portion of packets the nodes successfully transmitted.
• The average number of concurrent transmissions in a slot.
• The impact of the number of slots in the discovery and

report phases on the job completion time.

A. Outdoor Deployment

In this deployment, the nodes on the ground established a
grid topology and the UAV hovered approximately 30 m above
the ground, approximately in the middle of the network. In

5https://www.dji.com/mavic-2-enterprise

this deployment, the aerial node was designated as Node 5.
We repeated our experiment 100 times.

1) Job Completion Time: The job completion time refers
to the time the algorithm needs to establish the topology of
a network. When it refers to an individual node (except the
initiator), it refers to the time the node requires to successfully
construct and transfer a partially completed adjacency matrix.
When it refers to the initiator, the job completion time is
the same as the time the algorithm requires to establish the
complete adjacency matrix).

Fig. 5 (a) shows the average job completion time for the
individual nodes. The error bar shows the standard deviation.
The job completion time increased as the number of slots in
a round increased. However, the increment was not linear. For
example, when the number of slots in a round increased from
2 to 4, the job completion time did not double. The reason
being that as the number of slots increased, the possibility of
experiencing concurrent transmissions decreased as well. In
other words, the probability of receiving a packet successfully
increased. At the same time, when the number of slots in a
round increased, the possibility of a node gathering neighbor
information increased, as a result of which the duration of the
update phase was shortened.

2) Packet Success Rate: The packet success rate refers to
the portion of packets a node successfully transmits to its
neighbors during the discovery and report phases. Fig. 5 (b)
displays this metric for each sensor node when the number
of time slots in a round was 2, 4, and 8, respectively. We
observed that when the number of time slots was 2, the success
ratio of three nodes (node 2, 4, 6) was below 0.8. When we
increased the slot size to 4, the success rate exceeded 0.9.
When, however, the number of slots increased to 8, there was
no appreciable increase in the packet success rate.

3) Number of Concurrent Transmission: Fig. 5 (c) shows the
distribution of concurrent transmissions in both the discovery
and report phases. When the number of slots in a round
increased, the number of concurrent transmissions decreased.
Overall, more than 70% of the slots experienced a single
transmission only. The factors which contributed to this figure
were the following:
• The random selection of a transmission slot.
• The in-network strategy and the gradual aggregation of

adjacency matrices, enabling nodes to indirectly learn
about their neighbors.

• The concurrent transmissions occurred in the early stages
of the algorithm. The probability of receiving new packets



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

1 2 3 4 5 6 7 8
node

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

du
ra

tio
n 

(s
)

nslot=2
nslot=4
nslot=8

(a) Completion time (8 nodes)

1 2 3 4 5 6 7 8
node

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

nslot=2
nslot=4
nslot=8

(b) Success rate (8 nodes)

1 2 3 4 5 6
concurrent transmitter (#)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

de
ns

ity

nslot=2
nslot=4
nslot=8

(c) Concurrent transmission in a slot (8 nodes)

0 5 10 15 20
node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

du
ra

tio
n 

(s
)

nslot=4 nslot=8

(d) Completion time (21 nodes)

0 5 10 15 20
node

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

nslot=4
nslot=8

(e) Success rate (21 nodes)

2 4 6 8 10
concurrent transmitter (#)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

de
ns

ity

nslot=4
nslot=8

(f) Concurrent transmission in a slot (21 nodes)

Fig. 5: Performance evaluation based on different schedule parameters for two different network sizes.

from unknown neighbors decreased over time (exponen-
tially, as can be seen in the figure).

B. Indoors Deployment

The deployment in our lab enabled us to increase the
network size to 21, since we could use multiple access points
for establishing the backbone WLAN. As previously, we
conducted 100 independent experiments, but this time we
limited the number of time slots in a round to 4 and 8.

As in the previous case, the job completion time increased
as we increased the number of slots in a round. Furthermore,
the increment was not linear. Whereas the network size was
nearly tripled, the job completion time increased only by
twofold in both settings (4 and 8), as shown in Fig. 5 (a)
and (d). By comparison, the packet success rate deteriorated
noticeably, as can be seen in Fig. 5 (b) and (e). Understandably,
as the network size increased, the number of concurrent
transmissions increased, and with it, the capture-effect became
less effective. When the network consisted of 8 nodes and the
number of slots in a round was 4, ca. 25% of the time packet
transmission occurred with at least 2 concurrent transmissions,
whereas the number of concurrent transmissions increased to
ca. 47% when the network size increased to 21.

C. Real-time Activity

Next we analyzed the activity of individual nodes during
self-organization. The data trace for this section was obtained
from the lab deployment, when the number of slots in a
round was 4. The result is shown in Fig. 6. The time axis is
represented in terms of the number of slots. For this particular

experiment, the complete process lasted 165 slots (i.e., 1650
ms).

In Sec. V-A.3, we observed that intensive concurrent trans-
missions occur in the early stages of the discovery phase.
This aspect can be seen in Fig. 7 (left) where significant
concurrent transmissions occurred in the first 30 slots, during
which nodes discovered new neighbors and were busy sharing
this information. As time went by, the frequency of discovering
new neighbors decreased and the nodes had little to share.

Fig. 7 (middle) shows the average duration the nodes spent
in the two phases (discovery and report). We observed that
more than half of the nodes (13 nodes, to be exact) completed
the update phase within 60 slots (600 ms). Only 4 of the nodes
required more than 100 slots for the update phase. By looking
at the activity of these nodes in Fig. 6, one can observe that
between slots 40 and 100 the four nodes rarely obtained new
information from their neighbors even though they kept on
receiving packets. As a result, the update phase was extended.

Fig. 7 (right) displays the number of slots the nodes spent
in the discovery and update phases. A considerable amount of
time was spent in a listening (discovering) state. An idle time
in this context signifies a state in which the nodes neither
received nor transmitted packets because they had no new
information to share. Idle time slots slow down the topology
construction process. We aim to minimize this duration in a
future work.

At last, by merging the partially completed adjacency ma-
trices from the ground nodes, the initiator established the
complete topology of the network as shown in Fig. 8. A shaded
block in the figure represents the existence of a direct link
between two nodes.



WEN AND DARGIE: DYNAMIC TOPOLOGY CONSTRUCTION IN A JOINT DEPLOYMENT (FEB. 2022) 9

TX RX

Fig. 6: The trace of the real-time activity of the nodes during self-organization. The network consisted of 21 nodes. Node 1
was the initiator.

0 25 50 75 100 125 150 175
slots

0

2

4

6

8

co
nc

ur
re

nt
 tr

an
sm

itt
er

s (
#)

(a) Pattern of concurrent transmission.

0 5 10 15 20
node

0

25

50

75

100

125

150

175

du
ra

tio
n 

in
 sl

ot
s

update phase
report phase

(b) Activity of nodes in discovery and report
phases.

0 5 10 15 20
node

0

25

50

75

100

125

150

175
slo

ts
 (#

)
TX RX IDLE

(c) Activity of nodes in each time slot.

Fig. 7: Performance evaluation of the indoor deployment.

D. Comparison

In [7] the authors report that their algorithm required 287 ms
to complete data collection from a network of 26 ground nodes
(according to their claim this is 1.8 times faster than state-of-
the-art). By comparison, our algorithm required approximately
1.65 s to complete data collection from a network of 21
nodes. Our algorithm appears to be slower than PIP, but
for our case, the packets are partially processed, whereas in
PIP, intermediate nodes merely cascade packets, leaving it
to the sink to unpack and process them. In this section, we
shall analytically compare the communication cost of the two
algorithms. For our analysis we adopt a deployment strategy
resembling the distribution of electrodes around the nucleus
of an atom. The UAV hovers in the middle of the deployment
field. On the ground, there are n = 2d2 nodes which are d-hop

away from the UAV (we label these nodes as layer d nodes).
For both algorithms the MAC header is 9 bytes. To simplify
our analysis, we assume that a node in layer d does not receive
duplicate messages from the nodes in layer d+ 1.

To calculate the cost of communication, we referred to the
technical specification of the RE-Mote. The node is based on
Texas Instruments CC2538 System-On-Chip microcontroller.
The 2.4 GHz radio consumes 24 mA when receiving at –100
dBm input power; and 34 mA when transmitting at 7 dBm
output power. Its supply voltage can be varied between -0.3
and 3.9 V, but during all our experiments it was set to 3.9 V.
Its nominal transmission rate is 250 Kbps.

In PIP, at each layer d we have a minimum transmission
cost of:

Tx(d) = 2d2Tx (11)



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

1 6 11 16 21
node

1

6

11

16

21

no
de

Fig. 8: An adjacency matrix generated after the completion
of a self-organization phase. The shaded area signifies the
presence of a direct link. aii in the matrix is by default set to
zero.

TABLE III: Assumption about the distribution of nodes (n) in
each layer (d) of the deployment field.

n 25 50 75 100 125 150 175 200
dmax 3 4 5 5 6 6 7 7

where Tx is the energy cost of transmitting a single packet.
Moreover, the nodes in layer d receive packets from the nodes
in layer d+1 in order to forward them towards the center. The
corresponding cost is:

Rx(d) = 2(d+ 1)2(dmax − d)Rx (12)

where dmax is the maximum hop distance from the UAV
and Rx is the cost of receiving a single packet. The cost of
forwarding the packets is:

F (d) = 2(d+ 1)2(dmax − d)Tx, d < dmax (13)

The overall communication cost of the nodes in layer d is
Tx(d) +Rx(d) + F (d).

For our case, too, the size of the adjacency matrix encoding
neighbor information increases as it advances towards the
UAV. If we assume that at least half of the partially completed
adjacency matrix consists of 0s, the cost of receiving packets
from the nodes in layer d+ 1 is:

Rx(d) = (d+ 1)2
(
(dmax − d)2ρx + 2Rxm

)
(14)

where ρx is the cost of receiving a single byte and Rxm is the
cost of receiving the MAC header. Similarly, the transmission
cost of the nodes in layer d is:

Tx(d) = d2
(
(dmax − d+ 1)2τx + 2Txm

)
(15)

where τx is the cost of transmitting a single byte and Txm
is the cost of transmitting the MAC header. The overall
communication cost of the nodes in layer d is therefore
Rx(d) + Tx(d).

25 50 75 100 125 150 175 200

Number of nodes

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

E
ne

rg
y 

in
 w

at
t-

se
co

nd
s

PIP
ours

Fig. 9: Comparison between the overall energy cost of PIP
and our algorithm.

Fig. 9 compares the communication cost of PIP and our
algorithm for eight different network sizes. Tab. III shows the
nodes’ distribution. It can be seen from the figure that PIP’s
fast job completion time comes with a high energy cost.

VI. CONCLUSION

In this paper we proposed an algorithm to dynamically
construct the topology of a wireless sensor network. Our
algorithm does not assume the existence of a dedicated base
station nor does it assume that the size of the network is known
prior to deployment.

We represent the topology of a network with a binary
adjacency matrix. This matrix is gradually completed as nodes
propagate knowledge of their neighbors towards an initiator (a
UAV). To facilitate this process, we introduced four aspects:
(1) random packet transmission, (2) implicit time synchroniza-
tion, (3) concurrent transmission and the exploitation of the
“capture-effect”, and (4) in-network processing.

We implemented the algorithm for the Contiki environment
and tested its performance with networks consisting of 8 and
21 sensor nodes. In each case 100 independent experiments
were conducted to collect adequate statistics. Our evaluation
indicates that, regardless of the network size, the number of
concurrent transmissions decreases exponentially over time,
clearly indicating that the algorithm is scalable. For the
network of 21 nodes, the algorithm was able to establish the
complete adjacency matrix in 1.65 s. However, as the network
size increased, concurrent transmission increased, and with it,
the “capture-effect” became less successful. When the network
consisted of 8 nodes and the number of slots in a round was 4,
approximately 25% of the time packet transmissions occurred
with at least 2 concurrent transmissions. When the network
consisted of 21 nodes, concurrent transmission increased to
47%. Our future plan is to enlarge the network size and carry
out more extensive field experiments.

REFERENCES

[1] K. A. Farley, K. H. Williford, K. M. Stack, R. Bhartia, A. Chen, M. de la
Torre, K. Hand, Y. Goreva, C. D. Herd, R. Hueso et al., “Mars 2020



WEN AND DARGIE: DYNAMIC TOPOLOGY CONSTRUCTION IN A JOINT DEPLOYMENT (FEB. 2022) 11

mission overview,” Space Science Reviews, vol. 216, no. 8, pp. 1–41,
2020.

[2] M. Erdelj, M. Król, and E. Natalizio, “Wireless sensor networks and
multi-uav systems for natural disaster management,” Computer Net-
works, vol. 124, pp. 72–86, 2017.

[3] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
uav enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328–331, 2017.

[4] D.-T. Ho, E. I. Grøtli, P. Sujit, T. A. Johansen, and J. B. Sousa,
“Optimization of wireless sensor network and uav data acquisition,”
Journal of Intelligent & Robotic Systems, vol. 78, no. 1, pp. 159–179,
2015.

[5] J. Wen and W. Dargie, “Evaluation of the quality of aerial links in low-
power wireless sensor networks,” IEEE Sensors Journal, vol. 21, no. 12,
pp. 13 924–13 934, 2021.

[6] M. Mohammad and M. C. Chan, “Codecast: Supporting data driven in-
network processing for low-power wireless sensor networks,” in 2018
17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), 2018, pp. 72–83.

[7] X. Ma, P. Zhang, O. Theel, and J. Wei, “Gathering data with packet-in-
packet in wireless sensor networks,” Computer Networks, vol. 170, p.
107124, 2020.

[8] S. Qu, L. Zhao, and Z. Xiong, “Cross-layer congestion control of
wireless sensor networks based on fuzzy sliding mode control,” Neural
Computing and Applications, vol. 32, no. 17, pp. 13 505–13 520, 2020.

[9] X. Fu, P. Pace, G. Aloi, L. Yang, and G. Fortino, “Topology optimization
against cascading failures on wireless sensor networks using a memetic
algorithm,” Computer Networks, vol. 177, p. 107327, 2020.

[10] S. Hu and G. Li, “Fault-tolerant clustering topology evolution mech-
anism of wireless sensor networks,” IEEE Access, vol. 6, pp. 28 085–
28 096, 2018.

[11] B. Bhushan and G. Sahoo, “Routing protocols in wireless sensor
networks,” in Computational intelligence in sensor networks. Springer,
2019, pp. 215–248.

[12] H. Oh and C. T. Ngo, “A slotted sense multiple access protocol for timely
and reliable data transmission in dynamic wireless sensor networks,”
IEEE Sensors Journal, vol. 18, no. 5, pp. 2184–2194, 2018.

[13] Y. Chang, X. Yuan, B. Li, D. Niyato, and N. Al-Dhahir, “A joint
unsupervised learning and genetic algorithm approach for topology
control in energy-efficient ultra-dense wireless sensor networks,” IEEE
Communications Letters, vol. 22, no. 11, pp. 2370–2373, 2018.

[14] T. Qiu, J. Liu, W. Si, and D. O. Wu, “Robustness optimization scheme
with multi-population co-evolution for scale-free wireless sensor net-
works,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp.
1028–1042, 2019.

[15] A. Farajzadeh, O. Ercetin, and H. Yanikomeroglu, “Mobility-assisted
over-the-air computation for backscatter sensor networks,” IEEE Wire-
less Communications Letters, vol. 9, no. 5, pp. 675–678, 2020.

[16] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza, “Data prediction +
synchronous transmissions = ultra-low power wireless sensor networks,”
in Proceedings of the 14th ACM Conference on Embedded Network
Sensor Systems CD-ROM, ser. SenSys ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 83–95. [Online].
Available: https://doi.org/10.1145/2994551.2994558

[17] Y. Yu, B. Xue, Z. Chen, and Z. Qian, “Cluster tree topology construction
method based on pso algorithm to prolong the lifetime of zigbee wireless
sensor networks,” EURASIP Journal on Wireless Communications and
Networking, vol. 2019, no. 1, pp. 1–13, 2019.

[18] T. Qiu, J. Liu, W. Si, and D. O. Wu, “Robustness optimization scheme
with multi-population co-evolution for scale-free wireless sensor net-
works,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp.
1028–1042, 2019.

[19] J. Gui and J. Deng, “A topology control approach reducing construction

cost for lossy wireless sensor networks,” Wireless Personal Communi-
cations, vol. 95, no. 3, pp. 2173–2202, 2017.

[20] S. Pandey, P. Shukla, and A. Tripathi, “An efficient group-based neighbor
discovery for wireless sensor networks,” in 2021 Third International
Conference on Intelligent Communication Technologies and Virtual
Mobile Networks (ICICV). IEEE, 2021, pp. 173–180.

[21] D. Kim, E. Noel, and K. W. Tang, “Wsn communication topology
construction with collision avoidance and energy saving,” in 2014 IEEE
11th Consumer Communications and Networking Conference (CCNC).
IEEE, 2014, pp. 398–404.

[22] O. Gaddour and A. Koubâa, “Rpl in a nutshell: A survey,” Computer
Networks, vol. 56, no. 14, pp. 3163–3178, 2012.

[23] J. Baek, S. I. Han, and Y. Han, “Energy-efficient uav routing for wireless
sensor networks,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 2, pp. 1741–1750, 2020.

[24] X. Li, A. Krishnamurthy, I. Hanniel, and S. McMains, “Edge topology
construction of voronoi diagrams of spheres in non-general position,”
Computers & Graphics, vol. 82, pp. 332–342, 2019.

[25] D. Ebrahimi, S. Sharafeddine, P.-H. Ho, and C. Assi, “Uav-aided
projection-based compressive data gathering in wireless sensor net-
works,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1893–1905,
2019.

[26] J. Kim, “Three dimensional distributed rendezvous in spherical under-
water robots considering power consumption,” Ocean Engineering, vol.
199, p. 107050, 2020.

[27] E. E. Tsiropoulou, S. T. Paruchuri, and J. S. Baras, “Interest, energy and
physical-aware coalition formation and resource allocation in smart iot
applications,” in 2017 51st Annual Conference on Information Sciences
and Systems (CISS). IEEE, 2017, pp. 1–6.

[28] W. Dargie, “A quantitative measure of reliability for wireless sensor
networks,” IEEE Sensors Letters, vol. 3, no. 8, pp. 1–4, 2019.

[29] W. Dargie and J. Wen, “A simple clustering strategy for wireless sensor
networks,” IEEE Sensors Letters, vol. 4, no. 6, pp. 1–4, 2020.

[30] W. Wang, T. Xie, X. Liu, and T. Zhu, “Ect: Exploiting cross-technology
concurrent transmission for reducing packet delivery delay in iot net-
works,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018, pp. 369–377.

[31] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi,
“An experimental study on the capture effect in 802.11 a networks,”
in Proceedings of the second ACM international workshop on Wireless
network testbeds, experimental evaluation and characterization, 2007,
pp. 19–26.

[32] D. Bankov, E. Khorov, and A. Lyakhov, “Mathematical model of
lorawan channel access with capture effect,” in 2017 IEEE 28th An-
nual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC). IEEE, 2017, pp. 1–5.

[33] A. F. Molisch, K. Balakrishnan, C.-C. Chong, S. Emami, A. Fort,
J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “Ieee
802.15. 4a channel model-final report,” IEEE P802, vol. 15, no. 04, p.
0662, 2004.

[34] C. Gezer, C. Buratti, and R. Verdone, “Capture effect in ieee 802.15.
4 networks: Modelling and experimentation,” in IEEE 5th International
Symposium on Wireless Pervasive Computing 2010. IEEE, 2010, pp.
204–209.

[35] P. Di Marco, C. Fischione, F. Santucci, and K. H. Johansson, “Modeling
ieee 802.15. 4 networks over fading channels,” IEEE Transactions on
Wireless Communications, vol. 13, no. 10, pp. 5366–5381, 2014.

[36] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, 2004, pp.
455–462.

[37] B. Kyle, “Dji ocusync vs. dji lightbridge – what’s the
difference?” 2018. [Online]. Available: https://dronedj.com/2018/07/
27/dji-ocusync-vs-lightbridge/

https://doi.org/10.1145/2994551.2994558
https://dronedj.com/2018/07/27/dji-ocusync-vs-lightbridge/
https://dronedj.com/2018/07/27/dji-ocusync-vs-lightbridge/

	introduction
	Related work
	Concurrent Transmissions
	Topology Construction

	Background
	Concept
	Random Packet Transmission
	In-Network Data Aggregation
	Implicit Time Synchronization
	Collision-Tolerant Packet Detection
	Complexity

	Evaluation
	Outdoor Deployment
	Job Completion Time
	Packet Success Rate
	Number of Concurrent Transmission

	Indoors Deployment
	Real-time Activity
	Comparison

	Conclusion
	References

