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Abstract—Organising nodes into efficient clusters in wireless
sensor networks facilitates data aggregation and command
dissemination. But clustering is a complex and costly process,
since it has to be carried out in a distributed and periodic
manner. In this paper we propose a simple clustering strategy
employing an adjacency matrix which encodes nodes’ neigh-
bourhood and connectivity in a network. Our approach enables
the assignment of cluster heads for multiple rounds in a single
step thereby limiting the cost of cluster head election and child
node association.

Index Terms—Adjacency matrix, clustering, node, wireless sensor
network, Katz Index, topology

I. INTRODUCTION

Recent advances in low-power wireless communications, mobile
robotics, wireless sensor networks, and Unmanned Aerial Vehicles
(drones) promise the deployment of Cyber-Physical Systems (CPS)
in remote and inaccessible areas for various operations. Examples
include toxic gas detection, assessment of damage following a natural
or man-made disaster, and pandemics, such as the COVID-19 [1].
The mobile robots and drones can be used to deploy the sensor nodes
and, once the nodes establish a network, to interface the network
with a remote base or control station.

In this respect, the way the sensor nodes organise themselves to
establish a network and the efficiency of the network in fulfilling its
purpose are critical aspects. This is because:

1) One’s knowledge of the area of interest depends on the quality
of information that can be extracted from the environment,
which in turn depends on how quick and efficient the nodes
are in delivering this information.

2) The mobile robots and drones operate with exhaustible batteries.
This necessitates highly efficient interactions and movements.

Broadly speaking, a wireless sensor network may have either a
flat or a hierarchical topology [2]. In a flat topology network, all
nodes play the same roles, namely, sensing, data processing, and
packet forwarding. Flat topology networks are relatively easy to set
up and robust to node failure, but they can also be highly inefficient
since routes are usually defined by first flooding the network with
discovery packets [3].

In a hierarchical topology there are two types of nodes: child nodes
and cluster heads. The child nodes are grouped into different clusters
and in each cluster a single node is designated as a cluster head. The
responsibility of a cluster head is to (1) define a communication and
sleeping schedule for each node, (2) aggregate the data from its child
nodes (for example, by applying MIN, MAX, MEAN operations),
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Fig. 1: A spontaneously deployed WSN.

and transfer the data to a remote base station, either directly or in
collaboration with other cluster heads [4]. Apparently, the assignment
of cluster heads is more intensive than the child nodes’ as a result of
which they are likely to exhaust their energy more quickly than the
child nodes, potentially causing the entire network to prematurely
fragment [5]. In order to prevent this from happening, the underlying
protocol assigns this role to other nodes on a regular interval [6].

Hence, in a hierarchical-topology network, the nodes can be found
either in a cluster formation or in a steady state. The first phase
is communication and computation intensive whereas the second is
resource efficient [7]. A hierarchical topology makes sense if the
energy saved in the steady state far outweighs the energy cost of
the first state. In general, which topology is more suitable for a
particular application depends on many factors, including the size of
the network, the expected lifetime of the network, the availability of
global knowledge such as the number of clusters needed to maintain
a fully connected network.

In this paper we propose an algorithm which drastically cuts the
cost of cluster formation. It is based on the computation of a binary
adjacency matrix signifying node neighbourhood. For stationary nodes
our approach deterministically identifies the cluster heads and the
associated child nodes for each round thus avoiding the need (as
well as the associated cost) for nodes to advertise their candidacy to
be cluster heads and, once the cluster heads are elected, to express
their membership.

II. NODE RELEVANCE

In a self-organising network, cluster heads are selected in several
steps dealing with advertisement of candidacy, election (voting), and
node association (cluster formation) [7], [8]. These steps must be
repeated at the beginning of a new epoch (round). Our clustering
algorithm determines cluster heads for multiple rounds in one go
relying only on the Relevance Index of nodes. The Relevance Index
of the nodes is computed from the adjacency matrix describing the
physical topology of the network.

In [10], we propose a model to measure the relevance of nodes in a
wireless sensor network. Accordingly, node relevance is defined as a
measure of how well-connected nodes are in a network. This aspect
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takes into consideration not only the direct links nodes establish
with their immediate neighbours but also how well-connected their
neighbours and the neighbours of those neighbours are, and so on.
To illustrate this, consider the network displayed in Fig. 1. We can
use a binary adjacency matrix C to express its topology (ref. to
Equation 1). The element 28 9 = 0 if there is no direct link between
nodes 8 and 9 , otherwise, 28 9 = 1. Moreover, if the wireless channel
is taken as symmetric, then 28 9 = 2 98 , otherwise, 28 9 ≠ 2 98 . For our
case, we assume a symmetrical channel. Notice that the column sums
of C give the degree of each node (i.e., the number of single-hop
links the nodes establish with their peers).

C =



#1 #2 #3 #4 #5 #6 #7 ···

#1 0 1 0 1 0 0 0 · · ·
#2 1 0 1 0 1 0 0 · · ·
#3 0 1 0 0 0 0 0 · · ·
#4 1 0 0 0 0 1 0 · · ·
#5 0 1 0 0 0 0 1 · · ·
#6 0 0 0 1 0 0 0 · · ·
#7 0 0 0 0 1 0 0 · · ·
#8 0 0 0 0 1 0 0 · · ·
.
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(1)

Squaring C yields the number of two-hop links the nodes establish
with their peers. Likewise, the :-th power of C yields the number
of k-hop links which can be established between any two nodes in
the network. If we normalise the number of sing-hop links a node
establishes with its neighbours by (= − 1), where = is the number of
nodes in the network, then we have:

H =
C

(= − 1) (2)

For a fully meshed network, the column sums of H yields 1. Similarly:

H: =
C:

(= − 1):
(3)

Furthermore, if we assume that the wireless channel is lossy with a
probability ? of successfully transmitting a packet, then the normalised
number of single as well as all multi-hop links the nodes can establish
with their peers can be expressed as:

T ≈
∞∑
:=1

(?H): = ?H (I − ?H)−1 (4)

T is a measure of the network’s connectedness. The relative
connectedness of the individual nodes can be determined by summing
the columns of T:

r = uᵀT (5)

where u is a column vector consisting of = unit elements. The <-th
element of r refers to the Relevance Index of the <-th node.

III. CLUSTERING

Designating well-connected nodes as cluster heads ensures fast
data collection and command dissemination. However, in case the
network is deployed spontaneously or the actual placement of nodes
is influenced by physical conditions, the nodes which are well-
connected may also be very close to each other. Let us consider the
topology of Fig. 1. Table 1 lists the nodes according to their R-Index

Table 1: Nodes ordered according to their R-Index

Rank Node Rank Node Rank Node Rank Node
1 18 11 29 21 32 31 11
2 33 12 17 22 34 32 4
3 25 13 10 23 37 33 21
4 27 14 9 24 20 34 23
5 24 15 31 25 30 35 28
6 19 16 13 26 14 36 40
7 26 17 5 27 8 37 36
8 16 18 39 28 7 38 3
9 15 19 35 29 12 39 6
10 38 20 2 30 1 40 22
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Fig. 2: Designating densely interconnected nodes as cluster heads

in descending order. If we decide to designate the top five nodes
(12.5 % of the nodes) as cluster heads (i.e„ nodes 18, 33, 25, 27, 24),
the distribution of cluster heads in the network looks like the one
displayed in Fig. 2. This assignment is straightforward, but as can be
seen, it makes the association of the remaining nodes as child nodes
problematic. Some of the cluster heads, such as nodes 25 and 27,
will have a small number of child nodes while others, such as nodes
18 and 24, will potentially have a disproportionally large number of
nodes as their child nodes. Similarly, the child nodes will experience
different end-to-end latency during command dissemination and data
collection. If, for instance, node 1 is associated with node 18, a packet
from its parent node will reach it passing 6 intermediate nodes. On
the other hand, if node 17 is associated with node 27, packet from
its parent node reaches it passing only a single intermediate node.

In order to ensure that cluster heads are well distributed in the
network, one can introduce different constraints to the application of
the R-Index. For example, one can introduce a minimum of 2-hop
distance between any of the cluster heads. This enables cluster heads
to associate those nodes within their immediate proximity (1-hop
away) as their child nodes, as can be seen in Fig. 3. The decision
automatically disqualifies the nodes which are a single-hop away
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Fig. 3: Associating single-hop neighbours with cluster heads.
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Fig. 4: Assignment of cluster heads based on R-Index and a minimum
of two-hop distance between cluster heads.
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Fig. 5: Associating 2-hop neighbours with cluster heads.

from being cluster heads even if they have a high R-Index. For
example, node 25 is the third most connected node in the network
but it is one-hop away from node 18, which is the most connected
node in the network. Once node 18 is identified as a cluster head, the
same decision automatically disqualifies node 25 from being eligible
for the role of a cluster head. The second node eligible for the role
is node 33, the third, 24, and so on.

Fig. 4 displays the cluster head assignment and the association
of child nodes based on this constraint. Looking at the figure, one
can notice that there are nodes which are more than one-hop away
from the nearest cluster heads (the blue nodes, constituting 45 %
of the nodes). These nodes experience a slightly longer delay in
communication compared to the orange nodes. Furthermore, the
cluster heads associating them as their child nodes will have a
heavier computation load compared to the other cluster heads. To
deal with this problem, we can designate more cluster heads. For
example, if we increase the number of cluster heads to 8 (20 % of
the nodes), we can reduce the number of leaf nodes which are more
than 1-hop away from a nearest cluster head to 27.5 %.

Alternatively, we can define the minimum distance between two
cluster nodes to be at least 3-hop. This disqualifies the nodes which
are within two-hop away from a cluster head from being eligible
for the role of a cluster head even though their R-Index is high. The
assignment begins with the node whose R-Index is the highest in
the network (node 18) and by associating all nodes within two-hops
distance as its child nodes (ref. to Fig. 5). The next candidate cluster
head is node 33 because it fulfils both criteria, namely, it (1) has
the next top R-Index and (2) it is three-hops away from node 18.
However, nodes 25, 27, and 24 do not qualify to be cluster heads even
though they are ranked third, fourth, and fifth in Tab. 1 according
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Fig. 6: Assignment of cluster heads based on R-Index and a minimum
of three-hop distance between candidates.

INPUT: H, minimum hop distance between cluster heads

ADJ, adjacency matrix

N, number of cluster heads

OUTPUT: CH, list of cluster heads

1. r compute the relevance index of ADJ

2. CANDIDATES sort r in descending order

3. Designate all nodes as unattached

4. For n = 1 : N

5. CH n  CANDIDATES n

6. Designate all nodes in ADJ which are H hops away from Node n 
AND unattached as the child nodes of CH n

7. Designate CH n and its child nodes as attached

8. Remove all child nodes of CH n from CANDIDATES

9. END

10. Associate all unattached nodes with the nearest cluster heads

Fig. 7: A partial overview of the clustering algorithm.

to their R-Index1. Therefore, the next candidate node for a cluster
head is node 9 and so on. Fig. 6 shows the cluster head distribution
based on this criteria. Fig. 7 summarises our clustering algorithm.

In the introduction we highlighted that cluster heads are more
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Fig. 8: Second round assignment of cluster heads based on R-Index
and a minimum of three-hop distance between candidates.

1Indeed all the nodes ranked between third and thirteen are not eligible
to be cluster heads because they are already associated with nodes 18 and
33 as their child nodes.



Fig. 9: The distribution of the degree of nodes (in percent) for the
simulated networks.
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Fig. 10: The portion of child nodes as a function of cluster heads.

likely to exhaust their energy more quickly than child nodes. This
necessitates the rotation of the role, so that all nodes exhaust their
energy evenly. Our algorithm supports this feature. Thus, in the
selection of cluster heads for round =, all nodes which were cluster
heads up to round =− 1 will be regarded as ineligible. For the other
nodes, however, the procedure in Fig. 7 will apply. Fig. 8 displays
the clustering assignment for the second round. Notice that all the
leaf nodes are associated with the nearest cluster heads even though
they were farther than 2-hops away from them.

IV. EVALUATION

In order to evaluate the efficiency of our approach we simulated ten
different wireless sensor networks, each time the size of the network
was 100 nodes. Fig. 9 displays the aggregate node distribution
normalised by the network size. Cluster-based protocols require
global knowledge about the size and density of the network in order
to determine the number of cluster heads. Moreover, at a local level,
the nodes exchange information to advertise their candidacy and to
evaluate their proximity with respect to the newly elected cluster
heads. The latter is necessary for child nodes to choose their parent
nodes. For our case, all this information can be directly obtained
from the adjacency matrix alone. So, the only cost associated with
our approach is the establishment of the adjacency matrix and its
evaluation to determine the R-Index.

This said, the efficiency of our approach is influenced by the
minimum distance between cluster heads – the shorter the distance,
the more cluster nodes are needed to cover the whole network and
the less uniform is the distribution of cluster heads in the network.

The longer the distance, the fewer cluster heads are needed and the
more uniform is their distribution. In both cases, as more and more
cluster heads are added, less and less child nodes are associated with
them. Fig. 10 exhibits this ratio when the minimum distance between
cluster heads is set to 2-hop and 3-hop, respectively. In the first case
(black), 15 cluster heads are required to associate about 50 % of the
child nodes. In the second case (red), approximately 6 cluster heads
are sufficient to associate more than 70 % of the child nodes, but
a further addition of cluster heads does not bring any appreciable
association.

Our approach complements the approaches proposed by Qing et
al. [5] and Neamatollahi et al. [7]. In the former cluster heads are
determined in a distributed manner, each node comparing its own
energy with the average energy of the network to candidate itself as
a cluster head. In the latter, the size of a cluster and the timing of
clustering is partly determined by local events (tasks), in a distributed
manner.

V. CONCLUSION

In this paper we proposed a simple clustering algorithm based on the
evaluation of the adjacency matrix and the introduction of a minimum
distance between cluster heads. Our strategy enables the assignment
of cluster nodes for multiple rounds in a single step, assuming that
the physical placement of nodes remains unchanged. Even in the
presence of nodes failure, our strategy requires the recalculation
of the adjacency matrix which requires local knowledge only. Our
approach contributes to the deployment of wireless sensor networks
in remote and inaccessible places. The assignment of cluster heads
based on knowledge of their degree of connectivity enables to send
mobile robots and drones specifically to these nodes for fast data
aggregation and transfer as well as command dissemination.
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