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Abstract—One of the strategies employed to deal with resource
inefficiency in data centres is dynamic virtual machine/container
consolidation. The idea behind is, by populating physical servers
with an optimal number of virtual machines, all the server’s
resources (CPU, memory, network bandwidth, etc.) can be
utilised effectively. This approach requires (1) the free migration
of virtual machine at runtime and (2) the identification of virtual
machines which exhibit complementary features. Most existing
or proposed approaches are based on elaborate and complex
multi-variate optimisation and do not easily lend themselves to
fast and intuitive solutions. In this paper, we investigate the
scope and usefulness of dimensionality reduction techniques,
ideas borrowed from unsupervised machine learning, to analyse
the existence of contentious and complementary features in
the resource consumption characteristics of co-located virtual
machines. Initial results suggest that fast and tractable scheduling
can be achieved using these techniques.

Index Terms—Energy-efficient computing, principal compo-
nent analysis, PCA, scheduling, virtual machine consolidation

I. INTRODUCTION

The introduction of virtualization and cloud computing has
enabled the relative efficient use of computing resources in
data centres [1], [2]. At present, a large amount of virtual
machines/containers1 belonging to different owners can be
hosted by a single physical machine. Moreover, the VMs can
be seamlessly migrated at runtime from idle or underutilised
servers to other host servers, so that the formers can be
switched-off to save power [3]. However, aggregating VMs
onto a few number of servers may lead to overloading the
target servers resulting in a disproportional amount of power
consumption and the violation of service level agreements on
account of performance degradation.

Managing computing resources at runtime is often an NP-
hard optimisation problem [4], as the task should take into
consideration many factors, including, the resource consump-
tion characteristics of the VMs being managed, the available
network bandwidth for migration as well as the data centre
topology. The resource consumption characteristic itself is a
multi-dimensional aspect [5]. Consequently, fully utilising all
the resources (CPU, cache, memory, network bandwidth, etc.)
of a physical server is a difficult objective to achieve even for
elaborate and complex approaches.

1Henceforth we collectively call them VMs for convenience.

Fig. 1: The normalised workload of YouTube for April 10 and
11 2018. The normalised workload is computed as the ratio
of the incoming requests of YouTube Germany to the requests
placed at the same time to all YouTube servers worldwide2.

Ideally, a consolidation strategy should co-locate VMs hav-
ing complementary resource utilisation characteristics, com-
plementary both in terms of the resources they utilise at any
given time (for example, CPU-intensive and IO-intensive) and
in time (having non-overlapping executing time). Different
experimental studies suggest that even though the short-term
workloads of typical Internet applications should be regarded
as random processes, their long-term resource consumption
characteristics, nevertheless, have predictable patters [6], [7].
This can be illustrated by examining the workload pattern of
YouTube Germany (ref. to Fig. 1). As can be seen, the short-
term workload fluctuated considerably between April 10 and
11, 2018, but when we regard the day-to-day workload, the
pattern remained more or less unchanged. Our examination of
16 different Google applications enables us to conclude that
this characteristic ubiquitous among typical Internet applica-
tions.

A significant portion of a consolidation assignment can be
carried out offline, taking into account the long-term resource
consumption statistics of hosted VMs. In this paper, we anal-
yse the resource consumption statistics of 36 real-world VMs
which are currently running on our Chair’s main server at the
Faculty of Computer Science. Our objective is to examine the
existence of multidimensional contentious and complementary
aspects and how this knowledge can be exploited to efficiently
consolidate the VMs.

The remaining part of the paper is organized as follows:
In section II we briefly summarise how we acquired the

2https://transparencyreport.google.com/traffic/overview



measurements sets for our analysis. In section III, we give
an overview of dimensionality reduction techniques with the
focus on Principal Component Analysis (PCA) and analyse
the existence of contention and complementary features in re-
source utilisation when multiple virtual machines are executed
on one and the same physical server. Finally, in section IV,
we provide concluding remarks and outline future work.

II. BACKGROUND

For the analysis we present in this paper, we rely on
statistics obtained from the main server of the Chair of
Computer Networks at the TU Dresden. The server currently
hosts 36 active virtual machines belonging to different owners.
We do not have knowledge of the specific purpose of the
VMs but were able to synchronously sample their resource
utilisation. Our analysis is based on the three-hour statistics
we gathered this way. Even though our measurement sets
are extensive, we limit our analysis to the utilisation of the
three most important resources, namely, the CPU, the memory
(MEM), and the IO (NET), in order to make our analysis
visually tractable. The server is a PRIMERGY RX300 S6,
Fujitsu rack server, optimised for virtualization purposes. It
has two physical sockets housing two 2.4GHz Intel Xeon E5-
620 quad-core processors. When in a Hyper-Threading mode,
the server provides 16 logical cores altogether. In addition, it
has 48GB DDR3 RAM memory and runs VMware vSphere
Hypervisor 5.5.03.

Fig. 2 displays the standardised CPU and MEM utilisation
of two of the virtual machines. As can be seen, the two
VMs are markedly different in their MEM utilisation whereas
their CPU utilisation pattern is more or less the same. The
figure highlights the difficulty of achieving complementary
consolidation. For example, if we co-locate these VMs, we
can achieve complementarity in terms of memory utilisation,
but not in terms of CPU utilisation. This clearly highlights the
limitation of single dimensional VM consolidation strategies
[8].

III. PRINCIPAL COMPONENT ANALYSIS

Considering the large amount of data one has to pro-
cess during multidimensional optimisation, most statistical
approaches are intractable even for offline consolidation. This
is particularly true when there is a strong statistical dependence
between the resources consumed by a single virtual machine
as well as between multiple virtual machines4. For example,
we have observed a strong correlation between the memory
utilisation and the network bandwidth utilisation in some of
our virtual machines, as these two resources coordinated when
dealing with Internet traffic.

3https://www.vmware.com/de.html.
4Suppose we decide to co-locate two virtual machines based on their CPU

utilisation statistics. The overall CPU utilisation is determined by convolving
the pdfs of the CPU utilisation of the two VMs. If the VMs are statistically
independent, the convolution operation yields a relatively tractable solution,
because the joint pdf can be expressed as the multiplication of the individual
pdfs. If, however, the VMs are not statistically independent, the convolution
operation is in general difficult to solve.
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Fig. 2: The standardised time series of the CPU and MEM
utlisation of two different virtual machines.

TABLE I: A snapshot of the standardised resource consump-
tion of VM1.

Sample CPU MEM NET
1 0.7597341 -0.562566 1.4366341
2 1.6617245 3.237548 -0.7995181

3
...

...
...

Dimensionality reduction techniques, such as Principal com-
ponent analysis (PCA) [9], [10] and tensor decomposition [11],
are ideal complements to pdf based multidimensional optimi-
sations when statistical independence between the VMs as well
as their resource consumption cannot be guaranteed. These
approaches, by identifying statistical dependencies, transform
a high-dimensional dataset into a tractable, low-dimensional
form without losing much information. We employed PCA to
investigate statistical dependencies between VMs. One of the
advantages of using a PCA is the flexibility of organising and
interpreting the measurement sets.

A. Dependency within a Single VM

When analysing the resource consumption characteristics
of a single VM, the measurement sets can be represented by
a matrix. Depending on which parameters are regarded as
the rows and which as the columns of the matrix, different
objectives can be achieved.



TABLE II: The resource consumption of VM1 expressed by
two principal components.

Samples PC1 PC2
1 0.4454399 -0.4395777
2 -1.5205869 3.3893544

3
...

...
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Fig. 3: The resource consumption of four of the most active
VMs expressed by two principal components.

• When the resources are arranged as the columns of the
matrix and the samples as the rows (ref. to Tab. I), PCA
reduces the dimensionality of the matrix by exploiting
dependency between the resources consumed but leaves
the sample size of the matrix (the rows) intact (ref.
to Tab. II). In other words, the temporal characteristic
of the resource consumption is preserved but explicit
understanding, whether or not a VM is compute-intensive,
data-intensive, or communication intensive, cannot be
made.

• When, on the other hand, the samples make up the
columns of the matrix and the resources make up the
rows, PCA can be employed to exploit periodic features
in order to significantly reduce the dimension of the
dataset. However, the number of resources considered
in the investigation remains intact. The advantage of
this approach is that now the VMs can be classified
as compute-intensive, data-intensive, or communication
intensive VMs.

Fig. 3 displays the bi-plots of the resource utilisation (CPU,
MEM, NET) of four virtual machines explained by two
principal components with 99% accuracy. The measurement

TABLE III: A snapshot of the standardised CPU utilisation of
all the VMs.

1 2 3 4 5 6 · · · · · ·
V1 0.76 1.67 -0.97 -0.63 -1.0 1.11 · · · · · ·
V2 -0.67 0.066 0.98 -0.69 -0.70 1.99 · · · · · ·

V3
...

...
...

...
...

...
...

...

sets were initially organised and preprocessed (centred and
scaled) as in Tab. I. The significance of the four axes in each
plot is explained as follows: the horizontal (bottom) and the
vertical (left) axes depict the first and the second principal
components, respectively. The horizontal (top) and the vertical
(right) axes depict the scores of the samples and the loadings of
the original variables5, respectively. The red arrows indicate
in which direction and with what magnitude each resource
utilisation varies with respect to the principal components.

If we compare the virtual machines in terms of the relative
direction of the resources, we can identify complementary and
contentious features. For example, the first virtual machine
(the plot in the second quadrant) and the second (the plot
in the first quadrant) have almost orthogonal relationships.
The memory utilisation of the first virtual machine contributes
almost nothing to the first principal component whereas its
contribution to the second principal component is relatively
large and positive. Whereas for the second virtual machine,
the contribution of the memory utilisation to the first principal
component is large and negative. A similar comparison can
be made in terms of the network bandwidth utilisation. This
implies that scheduling these two virtual machines to execute
on the same physical server will result in an efficient resource
utilisation. The same can be said of the second and the third
(third quadrant) virtual machines.

By comparison, consolidating the first and the fourth (fourth
quadrant) virtual machines will result in a significant resource
contention. As can be seen, the magnitude and direction of
the contributions of the three resources to the principal com-
ponents are similar suggesting that the two virtual machines
have similar resource consumption characteristics.

The 2-dimensional VM-by-VM analysis is comprehensible
as long as the number of hosted VMs is small. When the
number becomes sizable, however, making an objective com-
parison becomes difficult.

B. Dependency Between All VMS

A more comprehensible clustering can be achieved by
analysing the utilisation of each resource by all the VMs. For
instance, Fig. 4 displays the CPU utilisation of all the VMs
explained by three principal components. For this analysis,
we formed a 36× 10800 matrix by putting together the CPU

5Formally, the PCA is based on a decomposition of the data matrix A into
two matrices V and U: A = UVᵀ. V and U are orthogonal matrices. The
former is called the loading matrix whereas the latter is called the scores
matrix. The loadings can be understood as the weights for each original
variable (for our case, CPU, MEM, and NET) when calculating the principal
components. The matrix U contains the original data in a rotated coordinate
system.



TABLE IV: The CPU utilisation of all VMs represented by
three principal components.

PC1 PC2 PC3
VM1 -4.733735 1.21015794 -0.3178977
VM2 7.116493 -3.56787504 -6.5977242
VM3 -3.063336 -0.07835434 1.0430113
...

...
...

...

Fig. 4: The CPU utilisation of all the VMs expressed by three
principal components.

utilisation of all the VMS, the rows of the matrix constituting
the VMs and the columns of the matrix constituting the sample
instances.

Fig. 4 displays the relative CPU usage of all the VMs using
three principal components. Each dot in the plot represents
a VM. Most of the VMS are clustered towards the origin,
indicating that their CPU utilisation does not exhibit a re-
markable variation throughout. These VMs can be scheduled
together provided that their mean CPU utilisation is small.
Alternatively, it can be said that the CPU utilisation of these
VMs can be regarded, by and large, as deterministic and easily
lends itself to deterministic scheduling. On the other hand, the
dots displayed towards the top and the bottom of the box as
well as away from the origin indicate the VMs whose CPU
utilisation shows high variability, implying that these VMs,
when scheduled together, may result in great fluctuations of
resource consumption leading to either considerable underutil-
isation or overloading of the server. By contrast, scheduling
VMs on the opposite sides of the box results in appreciable
complementarity.

IV. DISCUSSION

In this paper we established the groundwork for a scalable,
multi-dimensional virtual machine consolidation in large-scale
data centres. We investigated the existence of correlation and
anti-correlation between co-located virtual machines using
principal component analysis (PCA), a dimensionality reduc-
tion technique which has a wide range of applications in big

data analytics. In addition to its capacity to significantly reduce
the dimension of an observation (measurement sets), PCA
also enables to cluster virtual machines, so that contentious
and complementary features can be identified and variability
analysis can be carried out. Our analysis was focused on the
CPU, MEM, and network bandwidth utilisation of 36 real-
world virtual machines.

Initial results suggest that using only 10 principal com-
ponents, the existence of complementarity and contention
amongst co-located virtual machines can easily be determined
with 70% accuracy for CPU-intensive virtual machines. This
amounts to reducing a 36×10800 measurement set to 36×10
measurement sets. Likewise, the analysis on the memory utili-
sation required just 100 principal components to achieve more
than 90% accuracy to identify contention, thereby reducing the
complexity of the analysis task by nearly 99%.

In future we plan to extend our work to tensor decomposi-
tion, so that the resources consumption of all the virtual ma-
chines can be represented as a three dimensional array and can
be analysed in a single step. This way a more comprehensive
insight can be gained pertaining to the statistical dependence
between the hosted virtual machines.
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