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Abstract— Wireless electrocardiograms are useful for several
practical applications in the healthcare domain. However, their
usefulness is often limited by the quality of data that can be
extracted from them. One of the main factors affecting the
quality of ECG data is the inclusion of movement induced
artefacts. In this paper we propose an adaptive filter to improve
the quality of measurements. We propose to use motion or
inertial sensors to capture the movements which affect the
electrodes of a wireless ECG. Thus, we regard measurements
from a 3D accelerometer and a 3D gyroscope as indication of
the magnitude of noise artefacts in the outputs of a wireless
ECG and use them to estimate and remove the movement
artefacts. The paper presents the design and implementation
of the filter, which we used to improve actual measurements
we took whilst different subjects carried out various everyday
activities (walking, running, riding a bicycle, and climbing up
and down a staircase).

I. INTRODUCTION

Wireless electrocardiograms (ECGs) are finding a large
number of applications in the healthcare domain, such as
monitoring patients with Parkinson Disease [1], [2], seizure
and epilepsy [3], [4], [5], [6], and ambulatory needs [7], [8].
There are several aspects which make wireless ECGs suitable
for these applications, two of them being (1) the ease with
which the sensor nodes can be deployed in settings which
are otherwise difficult or impermissible to wired deployments
and (2) the ability to monitor the actual condition of patients
while they are moving and carry out everyday activities
unhindered, so that symptoms which may not easily be
revealed in clinical settings where patients are normally
resting and relaxing while measurements are taken from them
can be revealed. Similarly, a wireless ECG can be deployed
for a long time and sufficient measurements and statistics
can be gathered.

But mobility brings with it some formidable challenges,
one of them being the inclusion of motion-induced artefacts
into the useful data. Depending on the placement of the
sensors (electrodes), motion can affect them in different
ways: (1) They can be subject to undesired vibrations; (2)
there can be loose contacts and a change in the characteristic
of the medium interfacing the sensor and the measurand
being monitored (for example, a change in the skin con-
ductance due to the contraction of muscles or sweat); (3) a
gradual, microscopic displacement of the sensors from their
original (and perhaps, preferred) position; and (4) improper
alignments between the sensors and the measurand. Even
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Fig. 1: A gradual drift in the baseline of the measurements
of a wireless electrocardiogram taken from three different
places in the chest.

Fig. 2: A closer look at the effect of movement artefacts on
the quality of ECG measurements.

though an extensive body of work exists on processing
the measurements of electrocardiograms in clinical settings,
the removal of movement-induced artefacts, nevertheless, is
an ongoing and active research area. Fig. 1 highlights the
challenges to which we refer. We employed a wireless ECG
with 5 leads (the Shimmer platform) to measure the cardiac
activities of a healthy adult person while doing a routine
warm-up (skipping, stretching, and push-ups). Even though
the measurements, which are taken from three different
places in the chest, appear to be different from each other, it
is clear that all of them underwent a gradual drift over time.
Furthermore, a closer look into the short-term evolution of
each measurement set reveals the existence of a considerable
short-term variation as a result of the inclusion of motion
artefacts into the useful data, as can be seen in Fig. 2.

In this paper, we apply an adaptive minimum mean square
error filter and employ measurements from 3D accelerometer
and 3D gyroscope to remove both the short-term effect of
movement-induced artefacts from the measurements of a



wireless ECG. Our premises is the following: The main
cause of distortion in a wireless ECG during movement
is the movement itself. The more vigorous the movement,
the most likely the distortion becomes. Consequently, by
establishing a correlation between the measurements from
ECG and an accelerometer (or a gyroscope), it is possible
to identify and correct movement produced artefacts. The
paper presents our approach as well as initial experiment
results and discusses the insight the experiment results reveal.
The remaining part of this paper is organised as follows: In
Section II, we review related work. In Section III, we present
the estimation concept we adopt to filter movement generated
noise artefacts. In Section IV we briefly discuss how the
filter parameters are obtained from actual measurements.
In Section V, we present and discuss experimental results,
and, finally, in Section VI, we give concluding remarks and
identify some open issues which we aim to address in future.

II. RELATED WORK

Most existing approaches in processing measurements
obtained from wireless ECGs focus on correcting long-term
drifts (the gradual change in the reference line of the ECG
waveform) mainly by employing digital high-pass and band-
pass filters, wavelet analysis, and polynomial fitting. Our
review of state-of-the-art in this section, however, focuses
on advanced signal processing techniques.

Poungponsri and Yu [9] combine an adaptive filter, a
wavelet transform, and a neural network to reduce the
effect of uncorrelated and non-stationary noise both on the
quality of ECG measurements and on the efficiency of the
adaptive filter. But their study relies on simulated signal.
Baraniak et al. [10] employ a least mean square (LMS)
adaptive filter to minimise the effect of noise stemming
from a power-line. Their main contribution is determining
the upper and lower bounds of the convergence factor µ
of the adaptive filter assuming that the noise has a sta-
tionary statistics. Romero et al. [11] make a comparative,
experimental study of the performance of different variants
of least mean square filters (LMS, normalised LMS, and
signed LMS). They alternatively employ the outputs of an
accelerometer and a skin conductance sensor to model noise.
For analysing the performance of the filters, they use hit rate
and accuracy of heartbeat detection. In their analysis they
first took ECG measurements while healthy subjects were
relaxing and sitting. Secondly, they obtained measurements
from accelerometers and skin-conductance sensors while the
subjects were moving. Thirdly, they mixed the measurements
from the wireless ECG with the measurements of the ac-
celerometer and supplied both the mixed measurements and
the measurements from the accelerometer to the different
filters. Lastly, they applied a heartbeat detection algorithm
on both the unmixed and the filtered ECG measurements and
compared the results. The same methodology was applied
with the measurements of the wireless ECG and the skin-
conductance sensor. The researchers observed that the signed
LMS adaptive filter produced the best performance when the
measurements from the skin conductance sensor were taken

as motion artefacts. Tong et al. [12] carry out a similar study,
but this time, real 2D accelerometers and skin conductance
sensors were embedded into ECG electrodes and all measure-
ments were taken simultaneously. The measurements from
the two heterogeneous sensors were then supplied to a least
mean square error filter to correct the actual measurements of
the ECG. The main idea was to adjust the weight of the filter
in accordance with the outputs of the skin conductance sensor
and the accelerometer. The filter, however, was given a fixed
convergence factor. As a validation, the authors compared
the L2-norm and max-min statistics of both the filtered and
unfiltered ECG measurements.

In summary, there is a shared and growing interest in
the research community to employ motion sensors in order
to model and remove movement-induced artefacts from the
measurements of a wireless ECG. Even though a significant
portion of the proposed approaches target the removal of
long-term and gradual drifts from base-lines, some of them
also target short-term distortions. The latter approaches,
however, rely on simulated measurements or on measure-
ments which were taken independently and mixed at a latter
stage for the purpose of demonstration. In contrast, we first
establish the mathematical basis for the use of an adaptive
mean-square error filter and employ inertial sensors (ac-
celerometers and gyroscopes) to simultaneously measure the
cardiac activities and the accelerations and angular velocities
to which the electrodes of the wireless ECG are subjected
during measurement.

III. ESTIMATION CONCEPT

When compared to the frequency at which the measurand
(the ECG output) is typically sampled, the speed of the
motion affecting the electrodes of a wireless ECG (or in
general, the speed of the subject) is significantly low. This
observation enables us to assume that for a specific obser-
vation window, say for a duration of 100ms, the samples
taken from a movement sensor exhibit stronger correlation
with each other than the correlation exhibited between the
samples of the wireless ECG. Furthermore, if we suppose
that the predominant noise artefacts in the measurements
of a wireless ECG are motion artefacts and that these
artefacts are correlated with the measurements taken from
a movement sensor (an accelerometer or a gyroscope), then,
the motion artefacts in the ECG measurement also exhibit
strong correlation with the samples of the motion sensors for
the specified observation period. If we fix this observation
duration as the duration between two heartbeats, then from
the above statements we can further assert that the statistics
we gather from the samples of the motion sensor during this
period can be considered adequate to estimate and remove
the motion artefacts included in the ECG measurements.

A. Establishing Model Coefficients

Hence, in order to estimate the motion artefact (from now
on we simply use the term noise as long as the context is
clear) included in each ECG sample, we propose to use an
adaptive FIR filter the weights of which can be determined
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Fig. 3: The estimation of movement artefacts from the
samples of inertia sensors. As long as there is a covariance
between the samples of the inertia sensor and the noise
included in the ECG measurements, the type of sensor (tilt,
accelerometer, gyroscope, etc.) employed to measure the
movement affecting the ECG measurement is irrelevant.

by the statistics associated with the samples of the movement
sensors belonging to a single observation period.

Suppose we model the i-th sample of the wireless ECG as
a random variable r[i] containing, among other things, the
desired (or true) measurand m[i] and the undesired motion
artefact, n[i]:

r[i] = m[i] + n[i] (1)

Both m[i] and n[i] cannot be known except in a probabilistic
sense. The estimate of n[i], n̂[i], can be expressed as:

n̂[i] =
K
X

k=1

↵i[k]s[i� k + 1] (2)

where s[i�k+1] is associated with the (i�k+1) sample of
the movement sensor and K is the total number of samples
between the peaks of two heartbeats. We can also express
Equation 2 in a matrix form as follows:

n̂[i] = (↵i)
T si (3)

where the subscript indices refer to the K coefficients and
movement samples we use for estimating the i-th noise
sample. ↵i can be determined by minimising the difference
between the actual and the estimated noise in the mean
square error sense:

E
�

e2n[i]
 

= E
n

(n[i]� n̂[i])2
o

!
= minimum (4)

If we insert Equation 2 into Equation 4 and differentiate
with respect to ↵i and set the result to zero, we shall obtain
the values of all ↵i which minimise the error. In order to
illustrate this, consider Fig. 3 where we wish to estimate
the noise corrupting the i-th ECG sample (i.e., n[i]). If we
take only two samples of an inertial sensor for this task and
linearly combine them to estimate n̂[i], we shall have:

n̂[i] = ↵i[1]s[i] + ↵i[2]s[i� 1] (5)

Hence, the mean square error can be expressed as:

E
�

e2n[i]
 

= E
n

[n[i]� (↵i[1]s[i] + ↵i[2]s[i� 1])]2
o

(6)

In order to determine the coefficients ↵i[1] and ↵i[2] which
minimise the mean square error, we differentiate Equation 6
with respect to ↵i[1] and ↵i[2] and set the result to zero,
which yields the following:

E {n[i]s[i]} = ↵i[1]E
�
s2[i]

 
+ ↵i[2]E {s[i]s[i� 1]}

E {n[i]s[i� 1]} = ↵i[1]E {s[i]s[i� 1]}+ ↵i[2]E
�
s2[i� 1]

 

(7)
If we let E {n[i]s[i� j]} = Rns[i(i � j)] and
E {s[i]s[i� j]} = Rss[i(i � j)], then we can express the
above equation in a matrix form as follows:
h

Rns[ii]
Rns[i(i� 1)]

i

=
h

Rss[ii] Rss[(i� j)i]
Rss[i(i� j)] Rss[(i� 1)(i� 1)]

i h

↵i[1]
↵i[2]

i

(8)
From Equation 8, we can determine the coefficients by taking
the inverse of the square matrix of the right term:

↵i = Rss
�1Rns (9)

The significance of the terms in Equation 9 should be clear:
Rss corresponds to the covariance between the samples of
the inertial sensor and Rns is the covariance between the
noise and the samples of the inertial sensor. In general, if we
take K samples from the inertial sensor into consideration
to estimate n̂[i], Equation 7 can be generalised as:

E {n[i]s[j]} = ↵i[1]E {s[i]s[j]}+ ↵i[2]E {s[i� 1]s[j]}+ · · ·+
↵i[j]E

�
s2[j]

 
+ · · ·+ ↵i[K]E {s[i�K + 1]s[j]}

(10)
Alternatively, E {n[i]s[j]} in Equation 10 can be ex-

pressed as:

E {n[i]s[j]} = E {r[i]s[j]}� E {m[i]s[j]} (11)

because

n[i] = r[i]�m[i] (12)

The advantage of Equation 11 is that the covariance between
the true measurand and the movement measured by the
inertia sensor – E (m[i]s[j]) – can be taken as weak since
we are concerned primarily with that type of movement
which directly affects the interface between the electrodes
of the ECG and the skin (the body may exert but the sensor
may poorly capture the exertion as a whole; the heart rate
may also increase even when the body does not exert).
The implication of this assertion is that Equation 9 can be
expressed in terms of measurable quantities only.

B. Updating Model Coefficients

As the movement affecting the electrodes of the ECG
changes, so should the filter coefficients be updated. Since
determining the covariance matrices is normally computa-
tionally intensive, the more efficient technique would be
to iteratively update the coefficients. This can be done by



propagating belief into the future and by comparing the
accuracy of our belief with the reality. The basic premises
for belief propagation is that the change in the parameters
being estimated is a gradual rather than a wild or haphazard
process. In other words, there is a correlation between the
predicted and the actual values of the parameters.

Suppose, based on the statistics we established with the
i� 1 samples of the wireless ECG and the inertia sensor we
predict the filter coefficients for the i-th noise sample and
we label the predicted vector as ↵p

i . Notice that the vector
contains the K filter coefficients. Suppose also after we
received the i-th sample from the inertia sensor, we computed
the optimal filter coefficients and label the coefficient vector
as ↵m

i . Because of our assumption about the gradual change
of the movement affecting the ECG electrodes, we expect the
difference between the predicted and the actual coefficients
to be very small. Thus,

e↵[i] = ↵m
i � ↵p

i (13)

We have now two types of errors: the first arising from the
difference between the actual noise and the estimated noise
(refer to Equation 4) and the second arising from the gradual
change in the noise artefacts and the difference between
the predicted and the “actual” filter coefficients (refers to
Equation 13). We make it our objective to minimise these
two errors with respect to the predicted filter coefficients
under the constraint:

n[i] = (↵p
i )

T
si (14)

(Equation 14 is a variant of Equation 3, but here the
relationship is ideal). Thus, the total error of our estimation
can be expressed as [13]:

J [i] = ke↵[i]k2 + �
h

(r[i]�m[i])�
�

↵P
i

�T
si
i

(15)

where � is a Lagrange multiplier. Notice that the term inside
the square bracket in Equation 15 is zero, so the significance
of � will be clear shortly. Hence, the prediction of the
coefficients to estimate n[i] should be so determined that
J [i] is minimum. This can be achieved by differentiating
Equation 15 with respect to ↵p

i and setting the result to zero:

dJ [i]

d↵p
i

= 0 (16)

From which we have:

↵m
i = ↵p

i �
1

2
�si (17)

In order to determine �, we can express n[i] in terms of
Equation 17:

n[i] =

✓

1

2
�si + ↵m

i

◆T

si (18)

=
1

2
� ksik2 + n̂[i]

This is because n̂[i] = (↵m
i )T si. Rearranging the terms in

Equation 18 yields:

� =
2 [n[i]� n̂[i]]

ksik2
(19)

Finally, the prediction error can be expressed as:

↵p
i =

1

2

en[i]

ksik2
si (20)

Figure 4 displays the architecture of the adaptive filter we
designed to remove movement artefacts from the measure-
ments of a wireless ECG. In the next section we provide an
account of how we actually determined the filter parameters.
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Fig. 4: The structure of the adaptive filter we designed to
remove movement artefacts from the measurements of a
wireless ECG. FIR: finite impulse response. NLMS: non-
linear mean square estimator.

IV. IMPLEMENTATION

Cardiac action potentials exhibit strong regularities under
normal conditions. Therefore, it is possible to predict the
entire samples of a single heartbeat from the statistics of
previous heartbeats and the samples of the movement sensor
associated with them. We employed the covariance and
autocorrelation functions to estimate the parameters given
in Equations 8 and 20.

A normal cardiac rhythm consists of P, QRS, and T waves.
The P wave corresponds to the contraction of atrial muscles
to pump blood into the right and left ventricles. The QRS
wave complex corresponds, predominantly, to the contraction
of ventricular muscles as they pump blood into the lung
and the rest of the body. The T wave corresponds to the
repolarisation of the ventricular muscles. Of these waves,
the intensity of the QRS wave is the largest, and, therefore,
the less likely wave to be affected by noise. If we remove
this wave complex by setting a threshold and regard the
remaining samples as the outcomes of a random variable, the
statistics of this random variable (for example, the variance)
can be used to characterise the “noisyness” of the samples



sind gemessenes EKG und Filterresultat übereinandergelegt, um zu zeigen, dass einerseits
auch sehr starke Spitzen ausgeglichen werden können, andererseits aber die generelle Leis-
tung des Signals nachlässt. Da die weitere Bewertung der Verbesserung ohnehin subjektiv
ist, soll sie dem Leser überlassen bleiben.

Eine Möglichkeit einer objektiven Einschätzung bestünde darin, erneut einen Pan-Tomp-
kins auf gestörtem und gefiltertem EKG-Signal laufen zu lassen. Geht man davon aus, dass
die Versuchsperson über ein gesundes Herz verfügt und innerhalb der Messung keine ab-
rupten Änderungen im Bewegungsmuster vorkommen, so kann man annehmen, dass der
Herzschlag relativ gleichmäßig ist. Würde die Herzerkennung im gestörten EKG fehlschlagen,
wäre eine Verbesserung bezüglich der Regelmäßigkeit im gefilterten Signal auszumachen.
Auch dieses Konzept krankt derzeit daran, dass der Pan-Tompkins zu wenig Potential für eine
Verbesserung lässt.

Abbildung 3.15: Test mit realen EKG-Daten, Versuch Treppe 1-2. Von oben nach unten: Ablei-
tung ECG_LA_RA, Filterinput Gyroskop, ekg und input , dynamische Step
Size, Resultat des AF

Abbildung 3.16: Test mit realen EKG-Daten, Versuch Spaziergang 2-1. Von oben nach unten:
Ableitung ECG_LL_RA, Filterinput Betrag der absoluten Beschleunigung,

ekg und input , dynamische Step Size, Resultat des AF

44

Fig. 5: The covariance between the measurements taken from a wireless ECG (top) and a 3D gyroscope attached between
two of the ECG electrodes (bottom). The subject was climbing up a staircase.
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Fig. 6: The measurements of the wireless ECG in Fig. 5 after the movement artefacts are removed by the adaptive filter.
The motion artefacts are estimated with the help of the angular velocity of the subject measured by a 3D gyroscope .
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Fig. 7: The removal of motion artefacts from the ECG
measurements of a person running. Top: The unfiltered ECG
measurement. Middle: The corresponding measurement from
one of the axes of a 3D accelerometer (the axis directed
towards the earth’s gravity). Bottom: The filtered ECG
measurements.

(a small variance around zero means the presence of a small
noise component; a large variance, on the other hand, is an
indication of the existence of a significant noise component).
Similarly, if we regard the samples coming from a movement
sensor for the same observation period, we can regard the
samples as the outcomes of a random variable pertaining to
movement. Hence, the samples collected between the peaks
of two heartbeats can be used to establish the statistics
of both the noise inside the ECG measurements and the
corresponding movement which induces the noise in the
ECG. Once these statistics are available, constructing the
covariance, variance, and autocorrelation is possible.
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Fig. 8: The removal of motion artefacts from the ECG
measurements of a person who was riding a bicycle. The
motion artefacts are estimated with the help of one of the
axes of a 3D acceleration (the axis directed towards the
earth’s gravity).

V. EXPERIMENT RESULTS AND EVALUATION

We use the Shimmer and IMote2 platforms for our exper-
iments. The first integrates a wireless ECG (with 5 leads),
3D accelerometer, and 3D gyroscope, all of which can
be sampled synchronously. The sensor platform is small
enough to be placed between two electrodes to measure
the movement which introduces artefacts into the ECG
measurements. The disadvantage of using all the sensor in
the Shimmer platform is that the platform can be placed
between any of the pair of electrodes. The use of a separate
platform (IMote2) for the inertia sensors is that multiple
platforms can be placed between multiple pairs of electrodes
at the same time. However, this option is cumbersome and
synchronising the two heterogeneous platforms during sam-



pling is difficult. The measurements representing movement
artefacts can be obtained in different ways, for example, by
fusing the measurements of accelerometers and gyroscopes.
However, this technique introduces bias. If the movement
type is known a priori, then the fusion technique can be
optimised but if the movement is random (which is usually
the case in everyday activities), then the fusion technique
may not produce comparable outcomes in all situations. In
our experiments, we decided to consider the output of each
sensor separately. To remove the components of accelerations
and rotation which have nothing to do with the movement
artefacts in the ECG readings (such as gravity) and to
translate local reference frames into a global reference frame,
we applied the filter proposed by Madgwick et al. [14].

As a sanity test for our approach, first we took ECG
measurements from a person who was at rest and relaxing,
and determined the heart rate. For a healthy adult person, the
heart rate varies between 50 and 100 beats a minute, which
corresponds to a duration of 600 to 1200 ms per beat. At a
sampling rate of 512 Hz, the wireless ECG produces between
307 to 614 samples per beat, which contains sufficient
statistics. Then we separately measured the acceleration and
rotation (with respect to the z-axis, which is parallel to the
earth’s gravity) of random movements of different intensities
and mixed the results with the resting ECG readings, and
supplied the noisy ECG readings to our adaptive filter. We
then took actual readings from all the sensors while the same
person carried out different activities (free walking, bicycle
riding, running, climbing up a staircase, and climbing down
a staircase). We discarded the measurements of the first 10
seconds to exclude the effects of undesirable activities from
our analysis. Depending on the intensity of the activities, the
duration of the useful measurements ranged from 60 to 130 s.
Figs. 5 and 6 display the raw noisy ECG measurements
taken while a subject was climbing up a staircase, the mag-
nitude of rotation taken from a 3D gyroscope, and the filtered
ECG measurements. In this case we used the integrated
gyroscope to measure rotation. Fig. 7 shows the same set
of measurements for a subject running. However, here we
employed a separate accelerometer to capture the movement
of the subject. Likewise, Fig. 8 displays the unfiltered and
filtered ECG measurements for a subject riding a bicycle.
Initial visual inspection in all cases confirms that all the heart
beats of the subject could be detected. Moreover, whereas the
P and T waves tend to vanish in the unfiltered measurements,
they could be determined using our approach.

VI. CONCLUSION AND FUTURE WORK

In this paper we employed an adaptive filter to improve
the measurements of a wireless ECG. The coefficients of
the filter were obtained by modelling measurements from
3D accelerometers and 3D gyroscopes as noise artefacts
distorting the ECG measurements. We took actual mea-
surements while a person was walking, running, riding a
bicycle, and climbing up and down a staircase and correlated
the ECG measurements with measurements associated with
acceleration and angular rotation using the Shimmer and

IMote2 platforms. One of the issues which is not sufficiently
addressed in this paper is the analysis of the filter accuracy.
We used the autocorrelation function and the duration of
the ECG measurements as the basis for estimating the actual
heart bit rate which we then compared with the heart rates we
estimated with the unfiltered and filtered ECG measurements.
A more plausible approach will be employing an external
reference. This will be left as our future work.
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