
MobiLab: A Testbed for Evaluating Mobility
Management Protocols in WSN

Jianjun Wen, Zeeshan Ansar, and Waltenegus Dargie

Technical University of Dresden, 01062 Dresden, Germany
{jianjun.wen,zeeshan.ansar,waltenegus.dargie}@tu-dresden.de

Abstract. Wireless sensor networks that support the mobility of nodes
are finding applications in different areas such as healthcare, elderly care,
and rehabilitation from total knee and hip replacement. However, these
application areas also require reliable and high throughput networks.
Considering the high fluctuation of link quality during mobility, protocols
supporting mobile wireless sensor nodes should be rigorously tested to
ensure that they produce predictable outcomes. In this paper we present
a wireless sensor network testbed for carrying out repeated and repro-
ducible experiments, independent of the application or protocol types
which should be tested. The testbed consists of, among others, a server
side control station and a client side traffic flow controller which coor-
dinate inter- and intra-experiment activities. We fully implemented the
testbed for the TinyOS and TelosB platforms. We employed Diddyborg
robots for emulating different types of movement in indoor and outdoor
environments. The paper includes also an extensive evaluation of the
testbed.

Key words: Testbed, mobility management, experiment management,
wireless sensor networks

1 Introduction

Wireless sensor networks which support the mobility of nodes are useful for
different applications. For example, in the healthcare domain, they have been
proposed to monitor patients with Parkinson Disease[9], gastroparesis [6], and
asthma [8]. As a result, there is an endeavour to integrate medical devices and
make them interact with existing wireless sensor platforms. For instance, the
wireless mobility capsule integrating pH, pressure, and temperature sensors for
the diagnosis of gastroparesis has officially been approved by the US drug and
food administration since 2006; it has produced promising results and may re-
place existing invasive and painful procedures (such as endoscopy) [4]. Similarly,
there are commercially available wireless electrocardiograms which can be inte-
grated with existing sensor platforms.

There are, however, some challenges associated with mobility, one of the
most significant challenges being the difficulty of maintaining link quality during
mobility. Independent experiments show that link quality quickly deteriorates

2 Jianjun Wen et al.

when nodes are mobile while communicating, resulting in high packet loss, drift,
and jitter. This aspect particularly affects applications which require relatively
high throughput. Devices such as wireless electrocardiograms typically generate
data at tens of kilobits per second rate. While this in itself may not be high, if
other sensors such as 3D accelerometers and gyroscopes have to be sampled at
comparatively the same rate, then the aggregate data rate from a single node
can be high. Whereas the effect of mobility on link quality fluctuation has been
extensively studied in the context of cellular communications (owing, luckily, to
the ability of collecting ample statistics from a large number of users in different
settings and locations), investigation of link quality fluctuation in mobile wireless
sensor networks is a work in progress.

In this paper we propose a testbed for evaluating the effect of mobility in
wireless sensor networks. The testbed separates the concern of application de-
velopment from the evaluation of the application in different mobile scenarios.
By doing so, complex and reproducible experiments can be carried out to en-
sure that the behaviors of applications are both reproducible and predictable.
We fully implemented the testbed for the TinyOS and TelosB platforms. Our
mobile nodes are carried by Diddyborg robots1, each of which is controlled by
6 powerful gear motors, so that the robots can be tasked to emulate different
types of movements in indoor as well as outdoor environments.

The remaining part of this paper is organized as follows: In Section 2, we
review related work and position our own work. In Section 3, we present the
system architecture of our testbed. In Section 4, the performance of MobiLab is
evaluated from different perspectives. Finally, in Section 5, we give concluding
remarks and outline future work.

2 Related work

Testbeds are intended to efficiently test wireless sensor networks before they are
actually deployed in real-world environments. Compared to the area or volume
an actual deployment occupies, testbeds are considerably compact, so that they
can be installed in labs or in areas which are easily accessible. This means, some
communication parameters are intentionally scaled and events can be deliber-
ately injected into the network to suit the test setting and to emulate actual
events. There are online testbeds which are available to the WSN research com-
munity, most of them establishing two types of networks. One of the networks is
the actual wireless link the characteristic of which is investigated and the other
network serves as a backbone, reliable network for collecting performance indi-
cator metrics. This network can be wireless (for example, a WLAN) or wired
(using USB hubs or serial interfaces). As far as the software architecture is con-
cerned, the existing testbeds also share similar aspects such as: (a) provision of
web-based infrastructure and experiment management services; and (b) function-
alities for dynamic reprogramming, specification, configuration, and execution

1 https://www.piborg.org/diddyborg

MobiLab 3

of experiments. Some of the testbeds employ robots [5, 7, 2] while others employ
toy trains [10] as mobile platforms, to which wireless sensor nodes are attached.
Besides providing mobility, the mobile platforms also serve as power suppliers
and node managers, through which new program images can be installed and
experiment procedures are controlled and managed.

Emulab [5] is perhaps the first publicly reachable mobility-enabled testbed for
WSNs experimentation. The testbed is deployed in an L-shaped area and consists
of (1) 25 Mica2 static nodes installed on the walls and ceiling of a building to
form a grid-like topology, (2) 6 mobile nodes attached to robotic platforms, which
can perform user-specific and accurate way-point walking models (according to
the authors, the position of the robots can be determined within 1 cm error, the
worst-case), (3) 6 cameras which are installed on the ceiling to track the robots,
and (4) additional 3 web-cams to provide live-monitoring. One of the limitations
of the testbed is the difficulty of influencing the movements of the robots during
experiment execution, because their movement pattern is predetermined and is
not accessible at runtime.

Kansei [3] is a testbed employing the same types of robots like Emulab to
support mobility, but it does not provide any positioning system. The testbed
uses five robots integrating TMote Sky nodes and Extreme Scale Mote (XSM).
These robots are deployed on top of a Plexiglas plane in which 210 XSMs and
TMote Sky nodes are arranged in a 15 × 14 grid bench-work. In addition to
the common functionalities the previous testbed provides, Kansei provides a
mechanism to inject events into individual nodes and gateways. Sensei-UU [7]
employs a Lego NXT robot as the mobile platform, on which a TelosB node
and a smartphone are attached. Its unique feature is employing WL-500GP
wireless access point as a control station to provide programming, experiment
monitoring, and data logging functionality via a wireless channel. While it is
relatively easy to reproduce and repeat experiments with this testbed, it has
some drawbacks: (1) the robot requires the installation of tapes on the floor,
which limits the types of movement that can be emitated by the mobile platform
(i.e., undertaking different random movements is difficult); and 2) it is difficult
to support multiple mobile nodes at the same time.

SensLAB [2] and TrainSense [10] are two recently proposed testbeds for mo-
bile platforms. Both utilize toy trains as mobile platforms. Since the trains run
on tracks, which physically limit their motion, the testbeds are difficult to ex-
tend. It is also difficult to introduce random walks into experiments. One of the
merits of these testbeds is their ability to provide better accuracy of localization
and control of mobility compared with the other mobile platforms.

3 Architecture of MobiLab

The main purpose and, therefore, contribution of our testbed is the flexible but
reproducible execution of complex experiments with wireless sensor networks in
which some of the nodes are mobile. The testbed enables users to upload their
own program image onto individual nodes and to specify experiment procedures

4 Jianjun Wen et al.

and the movement pattern of mobile robots independent of the types of appli-
cations the wireless sensor networks are supporting. To achieve these goals, our
testbed separates resource management into different concerns.

3.1 HardwareArchitecture

The hardware architecture consists of four modules: a control station, a wireless
sensor network, a node manager, and a backbone wireless channel. The control
station serves as the main interface between the user and the testbed. A group
of dedicated software services run in the control station to manage the testbed
resources and to control experiments. In the next subsection we provide a detail
description of the software architecture of the control station.

The wireless sensor network consists of three types of nodes: static relay
nodes, mobile nodes, and sniffer nodes. The sniffer nodes are special stationary
nodes used for monitoring the state of the wireless channel to obtain complemen-
tary information about experiment execution during debugging. By changing the
firmware, it can also serve as interference source. A node manager interfaces a
node with the control station. Each node manager (for our implementation we
use the raspberry Pi 2) is connected to a sensor node via a USB port. We use
a Wi-Fi ad hoc network as our backbone network because of its scalability and
flexibility.

web-based user interface

auto detection

programming

Resource Management

image manager

command line tool set

component interface internal logic

link trigger metrics

handover metrics

Data Analysis

analysis

data logging

EXP

experiment
specification

PAR

parameter
specification

Experiment Management

execution agent manager

exe agent exe agent

cmd distributor cmd interpreter

script parser

validator

virtualization

comm agent CA

virtual node VN

Data Management retrieve

start experiment

Fig. 1: The software architecture of the control station.

3.2 Software Architecture

The control station is the most important module in MobiLab. It ensures that
the testbed as a whole functions as a unified system. It is through the control
station every program image or command is propagated to the wireless sensor

MobiLab 5

MBL

mobility
specification

Robot Controller

loc tracking motion
execution

recorder

generator

Resource
Management

power
control(on/off)

firmware
update

node probe

Traffic Flow Controller

message
adapter serial comm

agent

socket comm
agent

Local Server

experiment
control

node manage

cr
ea

te
de

st
ro

y

TFCP Middleware

configuration traffic flow control

command distributor

Application

co
nfi

gu
re

st
ar

t

pa
us

e

co
nt

in
ue

te
rm

in
at

e
st

op

data report

session management

traffic flow control protocol stack

Mobility Management Protocol

link trigger mechanism

handover mechanism probe

probe

probe

data sampler

serial communication driver layer radio driver layer

se
nd

re
ce

iv
e

Node Manager Sensor Node

Fig. 2: An overview of the software architecture of the testbed from a single node
perspective: (Left) The software architecture of the node manager. (Right) The
software architecture of a sensor node.

network. Fig. 1 displays its software architecture, which consists of a user inter-
face, a resource management service, an experiment management service, a data
management service, and a data analysis service.

User Interface MobiLab provides both a web-based and a command-line-
interface through which users can access the testbed and conduct experiments
remotely. Users can browse active nodes and their status, upload program images
into the wireless sensor network, and specify and manage experiment procedures
using experiment execution primitives we defined (to be discussed below).

Rsource Management MobiLab does not require a fixed infrastructure (a
specific network size or topology) to run experiments. The resource management
service is responsible for authorizing nodes to join the network and users to access
individual nodes; for managing binary images, and for ensuring proper program
installation. Moreover, the resource management service uploads and deletes
program images to and from nodes and controls versions. In it, a synchronization
daemon runs in the background to ensure that program images in the control
station and the node managers are consistent.

Experiment Management Service The experiment management service en-
ables users to define and manage inter- and intra-experiment activities. As re-
gards management, users can initiate, interrupt, suspend, modify, and end exper-
iments at runtime by using experiment execution primitives (see Table 1). The
primitives enable users to configure interaction (transmission power, channel,
partner nodes) and to specify communication durations, among others. When
an experiment procedure is submitted to it, the experiment management service
validates the procedure to ensure that it is executable, parse the procedure to
extract experiment parameters, translates the parameters into binary, creates a

6 Jianjun Wen et al.

control flow (execution sequence), and passes the control flow to the execution
manager. The execution manager is responsible for coordinating the execution
of an experiment procedure until it terminates. A virtual node manager within
the control station’s architecture creates a virtual representation for each physi-
cal node. The aim is to hide differences in hardware architecture between nodes
from users and to provide common interfaces for accessing and interacting with
them.

Table 1: traffic flow control primitives.

primitive description

configure setup the application dependent parameters
start initiate the test round
stop notify finish of test round
pause suspend execution
continue resume execution
terminate stop execution permanently

Data Management and Analysis Data management or logging is one of the
useful features of testbed frameworks. When an experiment is launched, MobiLab
creates an instance of a data logging module which is then associated with the
communication agents of the corresponding virtual nodes. During experiment
execution, the physical nodes log the desired data locally and forward them to
their virtual node managers at the control station, which then stores the data
in a database. Alternatively performance indicators can be directly streamed to
virtual node managers as they are generated.

3.3 Node Manager

The software aspect of a node manager has three components, which are the local
server, a resource manager, and a traffic flow controller. A robot node manager
includes an extra module for managing mobility.

Local Server Its main responsibility is managing the physical node and con-
trolling the proper execution of experiments. The server is logically connected
with the resource management service at the control station, thus it is able
to provide the functionalities for probing the sensor node, updating firmware;
it is also responsible for coordinating experiment control flows and commands
pertaining to the motion of a robot.

Traffic Flow Controller The procedure of an experiment is first encoded
using the traffic primitives we specified in Table 1. By the time it reaches the
traffic flow controller at the node manager, it is translated into a sequence of
commands and parameters. The traffic flow controller is responsible for creating

MobiLab 7

a channel between the node manager and the physical node and for transmitting
the commands and parameters in their sequence and appropriate delay to the
physical node. It also channels the logged data from the physical node to the node
manager. The node managers are time synchronized with the control station at
the beginning of each run of an experiment. For a detailed description of the
Traffic Control Flow protocol, we refer the reader to [11].

Robot Controller Different mobility models can be implemented and inte-
grated into the node manager a priori and an instance of a model can be loaded
when the robot controller is first instantiated. The parameters of this model can
be modified at runtime by using the experiment primitives in Table 1. Currently,
we are experimenting with straight line walking and the random waypoint model
[1].

Fig. 3: MobiLab deployment: A MobiLab robot carrying a wireless sensor node.

3.4 Sensor Node

Fig. 2 (right side) illustrates the software architecture of a wireless sensor node.
Most relevant to this paper is the traffic flow control protocol middleware
(TFCP). The TFCP middleware is an application independent layer for man-
aging inter and intra-experiment activities. It is loosely coupled with the OS
layer, interacting with communication drivers by send and receive interfaces
and exposing six interfaces to the higher layers (MAC, network and application
layers), so that users can setup experiment and application specific parameters
and control the execution steps of experiments. The data sampler and report
module locally collects and aggregates performance indicator metrics from rel-
evant layers and communicates them with the control station via the TFCP
middleware. The TFCP middleware running on each sensor node is built on top
of TinyOS and has a footprint of 1058 bytes of ROM and 84 bytes of RAM.

The mobility management protocol does not belong to the MobilLab testbed.
We integrated it to investigate the performance of different mobility management
protocols under the same setting.

8 Jianjun Wen et al.

0 100 200 300 400 500
number of nodes (#)

0.00

0.05

0.10

0.15

0.20

0.25

ti
m

e
 v

a
ri

a
n
ce

 (
s)

(a) (b)

tx-power=-25 dBm

tx-power=-10 dBm

tx-power=0 dBm

(c)

-25 dBm -10 dBm 0 dBm
repeated experiment

0

20

40

60

80

100

p
a
ck

e
t

su
cc

e
ss

 r
a
te

 (
%

)

repeat 1
repeat 2
repeat 3

(d)

Fig. 4: Performance analysis of MobiLab as an experiment management tool:
(a) The time variance of synchronized starting time for networks of different
sizes; (b) The deviation in the duration of arbitrary control commands in a
single experiment. (c) cdf of RSSI fluctuation of repeated experiments; (d) packet
success rate of repeated experiments

0 50 100 150 200
timestamp (s)

70

60

50

40

30

20

R
S
S
I
(d

B
m

)

N

H

h
a
n
d
o
v
e
r

st
a
te

(a)

handover phase

normal transmission phase

(b)

0 50 100 150 200
timestamp (s)

70

60

50

40

30

20

R
S
S
I
(d

B
m

)

N

H

h
a
n
d
o
v
e
r

st
a
te

(c)

Fig. 5: RSSI fluctuation of incoming acknowledgement packets and handover
oscillation. (a) Single threshold scheme. (b) Dual threshold scheme. (c) LMS.

4 Evaluation

One of the features of MobiLab is the simplicity with which it can be deployed
in different places, since it does not relay on any fixed infrastructure. It takes

MobiLab 9

less than 10 minutes to setup the environment and start to perform the experi-
ment. In order to carry out repeatable experiments, the detail of the experiment
procedures are scripted, i.e., the beginning, end, and duration of every activity
is specified. When the control station dispatches experiment procedures, they
may not be executed by the individual nodes at precisely the same time. Conse-
quently, nodes may not begin and end the execution of experiments at the same
time. This phenomenon is an aspect of both the size of the network and the
complexity of the experiments. To investigate this phenomenon, we launched a
set of simple experiments with variable number of physical nodes (from 5 to 20)
and emulated nodes (up to 500). We recorded the starting time of each node and
calculated the maximum variance (time difference between the earliest starting
node and the latest staring node). We observed that the maximum variance of
experiment beginning time was 200 ms. Secondly, we inserted arbitrary number
of control commands (pause and continue commands) in the experiments lasting
up to 600 seconds, and varied the number of nodes from 1 to 10. We did not
observe significant increments of experiment completion times when the num-
ber of commands increased (shown in Fig. 4 (b)). To show the repeatability of
an experiment using MobiLab, we evaluated the RSSI fluctuation and packet
reception rate under different configurations. We conducted a series of experi-
ments and repeated each one three times. As Fig. 4 (c) and (d) shown, the CDF
of RSSI values are almost the same for the experiment with the same configu-
ration (transmission power, motion pattern, walking path etc.) and the packet
reception rates are consistent for each repetition.

Fig. 5 shows how we evaluated the performance of three handover supporting
MAC protocols using our testbed. The protocols evaluated the RSSI fluctuation
of incoming ACK packets and determined the appropriate time to change a relay
node with which a mobile robot (refer to Fig. 3) should communicate.

5 Conclusion

In this paper we introduced MobiLab, a testbed we developed to experiment
with wireless sensor networks supporting mobile nodes. MobiLab separates the
concerns of application and protocol developments from their testing phase. Our
main motivation was performing repeated and reproducible experiments inde-
pendent of the types of network topology, communication protocols, communica-
tion parameters involved in the experiments. From the software perspective, be-
sides sharing the same design principles with existing testbeds, MobiLab provides
several novel contributions such as supporting both inter- and intra-experiment
management, TFCP middleware in a sensor node, and a robot motion manage-
ment. Except for the sensor node architecture, which is implemented in C for
the TelosB platform, all the remaining software components are implemented in
python, which is relatively easy to port to other platforms.

10 Jianjun Wen et al.

Acknowledgment

This work is funded by the DFG under project agreement: DA 1211/5-2.

References

1. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless communications and mobile computing 2(5), 483–502 (2002)

2. Des Rosiers, C.B., Chelius, G., Fleury, E., Fraboulet, A., Gallais, A., Mitton, N.,
Noël, T.: Senslab very large scale open wireless sensor network testbed. In: Proc.
7th International ICST Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities (TridentCOM) (2011)

3. Ertin, E., Arora, A., Ramnath, R., Naik, V., Bapat, S., Kulathumani, V., Sridha-
ran, M., Zhang, H., Cao, H., Nesterenko, M.: Kansei: a testbed for sensing at scale.
In: Proceedings of the 5th international conference on Information processing in
sensor networks. pp. 399–406. ACM (2006)

4. Farmer, A.D., Scott, S.M., Hobson, A.R.: Gastrointestinal motility revisited:
the wireless motility capsule. United European gastroenterology journal p.
2050640613510161 (2013)

5. Fish, R., Flickinger, M., Lepreau, J.: Mobile emulab: A robotic wireless and sensor
network testbed. In: IEEE INFOCOM (2006)

6. Grimes, C.A., Ong, K.G., Varghese, O.K., Yang, X., Mor, G., Paulose, M., Dickey,
E.C., Ruan, C., Pishko, M.V., Kendig, J.W., et al.: A sentinel sensor network for
hydrogen sensing. Sensors 3(3), 69–82 (2003)

7. Rensfelt, O., Hermans, F., Larzon, L.Å., Gunningberg, P.: Sensei-uu: A relocatable
sensor network testbed. In: Proceedings of the fifth ACM international workshop
on Wireless network testbeds, experimental evaluation and characterization. pp.
63–70. ACM (2010)

8. Seto, E.Y., Giani, A., Shia, V., Wang, C., Yan, P., Yang, A.Y., Jerrett, M., Bajcsy,
R.: A wireless body sensor network for the prevention and management of asthma.
In: Industrial Embedded Systems, 2009. SIES’09. IEEE International Symposium
on. pp. 120–123. IEEE (2009)

9. Sha, D.L., Xie, W.C., Fan, X.L., Li, Y.: Based on wireless sensor network (nwk) of
non-contact tremor monitoring equipment improvement for parkinson’s disease. In:
Applied Mechanics and Materials. vol. 713, pp. 491–494. Trans Tech Publ (2015)

10. Smeets, H., Shih, C.Y., Zuniga, M., Hagemeier, T., Marrón, P.J.: Trainsense: a
novel infrastructure to support mobility in wireless sensor networks. In: Wireless
Sensor Networks, pp. 18–33. Springer (2013)

11. Wen, J., Ansar, Z., Dargie, W.: A system architecture for managing complex exper-
iments in wireless sensor networks. In: The 25th International Conference on Com-
puter Communication and Networks (ICCCN 2016), August 1-4, 2016, Waikoloa,
Hawaii, USA (2016)

