

A SERVICE-ORIENTED ARCHITECTURE FOR TELEWORKING
APPLICATIONS

Iris Braun, Alexander Schill
Chair for Computer Networks

Department of Computer Science
Dresden University of Technology

D-01062 Dresden (Germany)
Email: {braun,schill}@rn.inf.tu-dresden.de

Tel: +49 351 463 38261
Fax: +49 351 463 38251

ABSTRACT

The working life is changing rapidly since the technical
conditions to work anywhere and anytime were
developed. New employment models like telework
emerged. Telework is the key to a more flexible design of
working time and places of work.

But telework is not yet as widely spread as it seems to be.
What are the barriers of an all-round implementation? In
ongoing research projects we find out, that the different
working environments in the office and at home are the
main problems in the daily practice of teleworkers. That’s
why our intention is to develop an easy-to-use
environment for teleworkers bundling several applications
and services for communication, collaboration and
cooperation.

KEY WORDS
Telework, service-oriented architecture, web services,
portal, semantics

1. Introduction

In the last years there were many changes in our working
life which were driven by the rapid development of
electronic networking systems like the Internet and the
penetration of web-based applications and cooperative
software. This development offers the opportunity for
workers to have more choice in terms of where and when
they work. [1] As the teleworking trend emerges and
evolves, it will ultimately change the current definition of
"the workplace". The flexibility of telework can offer
wide-ranging, powerful business solutions.

In section 2 of this paper a short overview of the
application field telework will be given and usage
scenarios for teleworking applications will be presented.
Derived from this we have defined requirements for an
effective and flexible collaborative environment
supporting teleworkers at their daily work.

The main part of this paper in sections 3 and 4 describes
the development of a service-oriented architecture for
teleworking applications and the technologies to
implement such applications. Finally the realization of a
workflow for the flexible integration of various services
in the teleworking environment will be presented.

2. Application field: Telework

First of all Jack Nilles introduced the concept of telework
and initiated the first documented pilot telecommuting
project in Southern California in the early 1970s. [2]
Since Alvin Toffler popularized his idea 1980 within the
book „The Third Wave“ [3] all over the world, telework
developed rapidly and in various directions.

Telework is an umbrella term for a wide range of
alternative office arrangements with variable working
time and places of work. The employment models
diversify from permanent workplaces at home in the
homeworking scenario to all-over mobile workplaces in
the mobile teleworking scenario. The common element
across all aspects of telework is the use of computers and
telecommunications to change the accepted geography of
work. [4] Fields of using teleworking solutions can be all
businesses using information and communication
technologies for performing working tasks such as writing
services, data recording, software design and
programming, financial transactions, computer aided
design etc.

As with most innovative solutions telework represents
both - opportunities and risks. A very frequently cited
disadvantage of homeworking, as one form of
teleworking, is that it is reducing or even eliminating the
daily contact of the worker to colleagues and managers
[5]. The homeworkers may be barred from internal
communication and may find it difficult to reach the
manager or chief, when they have problems. That’s why
an important feature of an environment for teleworkers

should be the support of synchronous collaboration with
audio/videoconferencing and data and application sharing
between distributed teleworkers.

Teleworking applications are mainly characterized by
distribution of their components: one workplace at home
or anywhere else and one in the office, connected via
telecommunication services.[6] There are many different
software solutions on the market to support distributed
work using telecommunication and information
technologies. But the problem is to bundle all these
inhomogeneous applications to one uniform environment.
To reach the flexibility for working anywhere and
anytime a virtual working environment is needed which
can be accessed from any place having a browser and
internet access, at home, on the road or in the office. [7]
The goal of our activities is to develop a set of
technologies fitting in the service-oriented architecture in
order to bring teleworking applications to their full
potential.

3. Service-oriented architecture for
teleworking applications

3.1 What’s a SOA?

„SOA is an architectural style whose goal is to achieve
loose coupling among interacting software agents. A
service is a unit of work done by a service provider to
achieve desired end results for a service consumer.“ [8]
Service-oriented architectures represent a framework in
which self-contained, modular applications can be
described, published, located and dynamically invoked in
a programming language and system independent way.
Service-oriented architectures (SOA) enable dynamic,
flexible applications, which always change rapidly. A
SOA provides the ability to more easily integrate new
services and old legacy systems and to automate business
processes. [9]

In contrast, earlier approaches to building IT systems
tended to directly use specific implementation
environments such as object orientation, procedure
orientation and message orientation. So applications were
created which were often tied to the features and
functions of a particular execution environment such as
CORBA, J2EE and DCOM. The traditional
implementations might have better performance, but in
many cases the performance issue is less important than
the ability to more easily achieve interoperability and
flexibility.

3.2 Realizing a SOA with web services

The web service platform contains the basic and extended
features necessary to support a SOA such as the described
one. Web service technology makes services available
independent of proper implementation of the particular
application behind. The programming language and

operating system used to implement the application
behind the web service is completely irrelevant for the
service requestor. A service consumer has no need to
know if an object oriented or procedural programming
model is chosen to realize the web service. It doesn’t
matter whether it is based on a monolithic application or
whether it is realized as a distributed application based on
many different components.

The basic web services architecture consists of 3
mechanisms that support the interaction between a service
requester and a service provider by sending SOAP
messages, the description of the interfaces of the services
with WSDL and the potential discovery of the web
services with UDDI. [10]

SOAP provides a standardized way to encode different
protocols and interaction mechanisms into XML
documents that can be easily exchanged across the
internet. A big advantage of web services is that SOAP
can use the HTTP protocol to pass the mostly used
firewalls. WSDL acts as an advanced form of IDL for
describing the interfaces of a web service. The UDDI
registry is used by providers to publish and advertise
available services and by the clients to query and search
for concrete services. [11] Because of using standardized
XML based protocols, web services can be used in an
interoperable way in heterogeneous environments.

3.3 Creating a SOA for teleworking applications

For realizing flexible, interoperable teleworking
applications we choose a four-tier architecture, shown in
fig. 1.

Teleworking Portaluser-oriented
integration

Web
Service

Web
Service

Web
Service

Web
Service

application
layer

Teleworking
Service

process-oriented
integration

data layer

Teleworking
Service

Figure 1: Four-tier architecture for teleworking

applications

Unlike common three-tier-architectures of web
applications we add a fourth layer for the process-oriented
integration between the application layer and the
presentation layer. So it is possible to realize complex
business processes by combining several web services
from different service providers. The main components of
our solution are the data and application layer at the

service provider’s site, a central teleworking service
integrator for the process-oriented integration and a
teleworking portal for the user-oriented integration. The
specific tasks and requirements of the different layers are
described below:

Data and application layer - Service provider:
• Map real processes and workflows from daily office

work to generic services realized by a service
provider;

• Dissipate complex processes into small basic services
and implement as web services;

• Create web services as interfaces to old legacy
applications;

• Sample services: calendar service, email service,
crypto service.

Process-oriented integration - Teleworking service
integrator:
• Make the teleworking services available for access

through the portal;
• Orchestrate basic web services to complex

teleworking services and business processes;
• Search for suitable basic services over the Intranet or

Internet;
• Provide the teleworking services as building blocks

of a universal working environment.

User-oriented integration - Teleworking portal:
• Provide a user friendly interface for all working

tasks;
• Allow access to all needed applications and data –

realize a single-sign-on for all services;
• Provide a framework for describing demanded

services and for flexible integration into the portal;
• Personalization according to the individual

teleworkers:
o Adapt the interface to the special requirements of

each teleworkers,
o Individual choice of integrated teleworking

services.

The teleworking portal provides an integrated access to all
applications and data the teleworker needs for his work.
Portals are frameworks that render and aggregate
information from different sources and provide it in a
compact and easily consumable form to an end-user. In
addition to pure information, many portals also include
applications like email, calendar, organizers etc. [12]

With the personalization functions of the portal the
teleworker can build his own working environment
dependent on his preferences and capabilities. Especially
for people with handicaps special services for speech
input and output can be integrated. So telework could be a
new chance for them to take part in the common working
life.

Another scenario for useful application of our solution is
mobile telework, where the worker changes his working
place dynamically and uses different devices. That’s why
an additional scope of our work is the question how can
the portal be adapted dynamically to different devices and
how the context and the profile of the worker can be
distributed among the different working places. We want
to point out the special requirements to the portal solution
to support this dynamic switch of working places and
devices.

We can distinguish 3 different roles in our scenario:
• The service provider makes a web service available

by publishing its WSDL to a UDDI-Registry.
• The portal admin arranges a basic set of needed

services in the portal. Therefore he creates UDDI
queries and uses the portal engine to integrate the
service invocation. He is familiar with WSDL, UDDI
and the portal engine.

• The teleworkers mostly don’t know enough about
web services integration and portal implementation.
But they want to integrate new services in their
individual working environment. That’s why a
framework for describing search criteria for new
services is needed.

4. Flexible service integration

4.1 Automated discovery of services

On-site or mobile teleworkers need more than a static set
of provided services. They need to adapt their working
environment to the current working situation and partners.
For instance they want to use a service of the customer
they are currently working for. To reach the required
flexibility a central teleworking service integrator
searches and combines the different web services
dynamically.

Thereby it should integrate not only well-known web
services from the intranet of the enterprise but also
services from external providers. That’s why problems
like QoS and security of web services as well as
automatic search and composition of web services are
addressed in our current work.

In the portal we want to provide a framework for an easy-
to-use description of web services the teleworker wants to
integrate in his working environment. The goal of this
framework is to enable a teleworker to pick from a rich
choice of compliant remote services, and integrate them
with just a few mouse clicks and no programming effort.

For the flexible service integration we developed a
workflow shown in figure 2. First the teleworker
describes the search criteria for a needed service. The
teleworking service integrator receives the request and
peals off the declarative description of the service
required and sends a search query to a UDDI registry.

After that a list of available services is shown to the user.
The teleworker can select a service from the list. If he
didn’t find one that matches all his requirements he can
change the search criteria. Finally the teleworking service
integrator will bind the service selected to integrate it into
the portal.

Search criteria

Search in
UDDI registry

Create UDDI
search query

List all available web
services

Integrate service
in portal

Teleworker Teleworking Service
Integrator

Selection of a
web service

Figure 2: workflow of service integration

If all qualified services are equivalent in their
functionality they offer the selection can be automated.
The workflow can be changed in this manner that the
teleworking service integrator decides itself which web
service will be chosen. This decision can be based on
overall environmental properties like actual workload at
the service provider side, average response time or other
Quality of Service parameters. In order to get a complete
automation of such interactions, standardized user
interfaces of web services are necessary.

4.2 Semantic description of search criteria

To enable the dynamic discovery of services a mechanism
is required to describe behavioural aspects of the searched
services, e.g. the provided functionalities of a service. A
semantic description of a service should include the
capabilities it can provide, under what circumstances
these capabilities can be provided, what input the service
requires to work and what results can be delivered.

With semantic markup languages, the information
necessary for web service discovery could be specified as
computer-interpretable semantic markup at the service
web sites, and a service registry or ontology-enhanced
search engine could be used to locate the services
automatically. There exist many description languages
and ontology methods to add semantic information to web
services, e.g.
• SWSL (Semantic Web Service Language)
• WSMF (Web Service Modeling Framework)
• RDF-S (Resource Description Framework - Schema)
• OWL (Web Ontology Language)
• Topic Maps

We developed a domain specific ontology based on RDF
to describe specific teleworking service characteristics to
improve the search process. Part of this ontology is a
teleworking service taxonomy based on a detailed
analysis of suitable Web Services in the teleworking field.
The teleworking service integrator matches the domain
ontology to OWL-S or a UDDI search query.

4.3 Integration of the teleworking services in the
portal

Traditional data-oriented or RPC-oriented web services
require aggregating applications to provide specific
presentation logic for each web service. Furthermore,
each aggregating application communicates with each
web service via its unique interface. Common portals
require different rendering and selection mechanisms for
different kinds of applications, but all of them rely on the
portal’s infrastructure and operate data or resources
owned by the portal, like user profile information,
persistent storage or access to content. Consequently,
most of today’s portal implementations provide a
component model that allows plugging components
referred to as portlets into the portal infrastructure.
Portlets are user-facing, interactive web application
components rendering markup fragments to be aggregated
and displayed by the portal. [13]

Typically, portal users have to write special adapters to
enable communication with applications and content
providers using a variety of different interfaces and
protocols. The process of making new portlets available is
tedious and expensive. This approach is not well suited to
dynamic integration of business applications and services
as a plug-and-play solution.

That’s why we developed a portlet container for
integrating various web services in the portal. For
describing a user interface for the web services we use the
WSGUI-Standard which was developed as part of the FX-
Agents research project at Stanford University [14]. The
WSGUI standard allows a GUI Deployment Descriptor
(GUIDD) to be placed side by side with a WSDL file to
make the internal operations visually accessible to the
user, independent of the environment like desktop toolkit
or web browser. We improved this WSGUI protocol
within our project work. For testing and evaluating the
presented architecture a prototype using the Apache
Jetspeed portal engine is implemented.

WSGUI provides additional information for building up
the input and result output dialogs. Both web forms and
rich-client GUIs allow for many standard and custom
widgets and form elements to be used in dialogs. For
WSGUI however, it suffices to concentrate on a selection
of them, as long as they support all required properties.
These elements are borrowed from the XForms standard
to allow reusable GUI definitions.

In all the GUI elements which present particular strings to
the user (as do label and help), multiple tags can occur as
long as they are distinguishable by means of their lang
attribute, which specifies texts for different languages. To
provide a fallback solution for missing translation, a
variant without any lang tag should always be present in
such a case. Each GUI element is contained in a
formComponent tag, which provides an XPath locator
(xpath) to find out which elements to apply to. In figure 3
a sample GUIDD for an email web service is given.

<?xml version="1.0" encoding="UTF-8" ?>
<wsgui:deployment
 xmlns:wsgui="http://fxagents.stanford.edu/
 2002/10/wsgui"
 xmlns:targetns="urn:email"
 xmlns:xsl="http://www.w3.org/1999/XSL/
 Transform">
 <wsgui:wsdl href="email.wsdl" />
 <wsgui:formComponents>
 <wsgui:formComponent
 xpath="//xsd:element[@name='from']">
 <wsgui:input>
 <wsgui:label>Von</wsgui:label>
 <wsgui:help>Ihre E-Mail Adresse.
 </wsgui:help>
 </wsgui:input>
 </wsgui:formComponent>
 <wsgui:formComponent
 xpath="//xsd:element[@name='to']">
 <wsgui:input>
 <wsgui:label>An</wsgui:label>
 <wsgui:help>Die E-Mail-Adresse, an die
 gesendet werden soll.</wsgui:help>
 </wsgui:input>
 </wsgui:formComponent>
 <wsgui:formComponent
 xpath="//xsd:element[@name='subject']">
 <wsgui:input>
 <wsgui:label>Betreff</wsgui:label>
 <wsgui:help>Betreffzeile der E-Mail.
 </wsgui:help>
 </wsgui:input>
 </wsgui:formComponent>
 <!-- basetype: GUIDD extension -->
 <wsgui:formComponent
 xpath="//xsd:element[@name='message']">
 <wsgui:input basetype="multiline">
 <wsgui:label>Nachricht</wsgui:label>
 <wsgui:help>Der Text der Nachricht.
 </wsgui:help>
 </wsgui:input>
 </wsgui:formComponent>
 </wsgui:formComponents>
</wsgui:deployment>

Figure 3: GUIDD-description of an Email Web Service

Another specification which can solve the problem of the
integration of external services in a portal is the WSRP
(Web Services for Remote Portlets) specification [15]. It
solves this problem by introducing a presentation-oriented
web service interface that allows the inclusion of and
interaction with content from a web service. Such a
presentation-oriented web service provides both
application logic and presentation logic. WSRP defines
how to plug remote web services into the pages of online
portals and other user-facing applications. This allows

portal or application owners to easily embed a web
service from a third party into a section of a portal page.

How can a reasonable application scenario of the flexible
service integration look like? An on-site teleworker works
for a software project in the office of the customer
enterprise for 6 month. For a better coordination with the
other employees involved in the project he wants to use
the group calendar of the project team. Figure 4 illustrates
the integration of such a calendar service as WSRP-
Service in the teleworking portal.

Portals

Web
Clients

Web
Clients

Web
Clients

Registry

Portal

PublishFind

WSRP
ServicesPortalsPortalsBind WSRP

Services

e.g. calendar service

Figure 4: Integration of a WSRP-Service in a portal

The interfaces of a WSRP Service are described in
WSDL. Such a WSDL document includes common
technical information about the bindings between the
service requestor and the service provider and the used
infrastructure. The WSRP services are integrated as
remote portlets which work like local JSR-168 portlets
independently of the implementation at the provider’s
side. The following XML document (Figure 5) is used for
providing a JSR-168 standardized portlet as WSRP
service.

<?xml version="1.0" encoding="UTF-8" ?>
<request type="update"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance"
 xsi:noNamespaceSchemaLocation="PortalConfig
 _1.2.1.xsd">
 <portal action="locate">
 <web-app action="locate" active="true"
 uid="stdTestsuite.war.webmod">
 <portlet-app action="update"
 uid="stdTestsuite.war">
 <portlet action="update"
 name="TestPortlet1" provided="true"/>
 </portlet-app>
 </web-app>
 </portal>
</request>

Figure 5: providing a JSR 168 portlet as WSRP service

In order to get the WSRP service description, the
requestor must first send a getServiceDescription request

to the provider. To this request, the provider responds
with a getServiceDescriptionResponse document. The
requestor can now use this response to aggregate this
portlet, and offer that service to its users.

4. Conclusion

The presented teleworking environment offers the
teleworkers an integrated individual access to all needed
applications. The teleworking portal can be accessed from
clients only having a web browser installed. This
principle of thin clients minimizes the effort for
maintenance and support. Using the same environment at
the office and at home for accessing various applications
also decreases the need for training the employees.

The developed solution facilitates a flexible integration of
different services of various service providers. Two
different approaches for the dynamic integration of web
services into portals were described. Thereby the users
will be supported by an easy-to-use framework for
searching and combining several web services. The search
will base on semantic descriptions using a domain
specific ontology for teleworking services we developed.
The task of service composers and portal administrators
will be much easier because services can be added
dynamically to the environment, and users benefit by
having more services made available to them in a timely
manner.

The working environment can also be used within
ordinary employment models. The implementation of the
presented solution in the whole enterprise gives the
chance to reorganize the workflows and structures
fundamentally. The developed service-oriented
architecture can also be implemented in B2B and B2C
scenarios.

Using a SOA increases reuse, lowers overall costs, and
improves the ability to rapidly change and evolve
distributed applications, whether old or new. A SOA
realized with web services is the ideal combination of
architecture and technology for consistently delivering
robust, reusable services that support today’s business
needs und that can be easily adapted to changing user
requirements.

Web services combine the ease of use of a document
markup language with distributed computing concepts
and apply the result to solve IT integration problems
easily and cheaply. The major advantages of
implementing the presented architecture with web
services are that they are pervasive, simple and platform-
neutral. The broad adoption of web services standards
makes it easy to imagine that all applications will have
service interfaces in the future and that they can be
combined with each other to individual adapted working
environments.

References:

[1] K. Gareis, W.B. Korte, Telework in Europe: Status
Quo and Potential, Good Practices and Bad Practices. In:
BAuA (Eds.): Telearbeit: Arbeits- und Gesundheitsschutz
aus internationaler Sicht, Dortmund/ Berlin 2002, 43-74.

[2] J. M. Nilles, The Telecommunications-transportation
tradeoff: options for tomorrow (New York, Wiley, 1976).

[3] A. Toffler, The third wave (New York, Morrow,
1980).

[4] European Telework Online: Telework and
Telecommuting: Common Terms and Definitions.
http://www.eto.org.uk/faq/faq02.htm, 2004.

[5] I. Braun, U. Zschuckelt, Designing a collaboration
environment for teleworkers; Proc. of the WebNet2001,
Orlando, 2001.

[6] I. Braun, K. Borcea, A. Schill, Working and learning
at home - Designing a virtual working and learning
environment for teleworkers ; Proc. of the 16th IFIP
WCC2000, Beijing, China, 2000.

[7] I. Braun, A. Schill, Building a universal Teleworking
Environment using Web Services; Proc. of the IASTED
IKS 2002, St. Thomas / USA, 2002.

[8] E. Cerami, Web services (Tokyo: O'Reilly, 2002).

[9] E. Newcomer, G. Lomow, Understanding SOA with
Web Services (Boston [u.a.]: Addison-Wesley, 2002).

[10] W3C Technical report: Web Services Architecture
Requirements - Working Draft 11 October 2002,
http://www.w3.org/TR/2002/WD-wsa-reqs-20021011
(W3C, 2002).

[11] G. Alonso, Web Services: Concepts, Architectures
and Applications (Berlin: Springer, 2004).

[12] C. Eberhardt, T. Gurzki, and H. Hinderer,
Marktübersicht Portal-Software für Business-,
Enterprise-Portale und E-Collaboration (Stuttgart:
Fraunhofer-IRB-Verlag, 2002).

[13] T. Schaeck , R. Thompson, Web Services for Remote
Portlets (WSRP). Whitepaper, OASIS WSRP TC,
http://www.oasis-open.org/ (OASIS, 2003).

[14] M. Kassoff, D. Kato, W. Mohsin, Creating GUIs for
Web Services. Proc. of IEEE Internet Computing 2003,
Vol. 7, No. 4, 66-73.

[15] OASIS Standard: Web Services for Remote Portlets,
Specification Version 1.0, http://www.oasis-open.org/
committees/wsrp (OASIS, 2003).

	ABSTRACT
	KEY WORDS

