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Abstract—Wireless electrocardiograms facilitate long-term and
affordable monitoring of patients in their residential and work
environments. However, the measurements are often affected
by motion artifacts whose statistical properties are difficult to
model or estimate. In this paper we employ tensor decomposition
to model motion artifacts. Our approach is based on two
steps. Firstly, we transform the ECG measurements into time-
frequency space using the continuous wavelet transform and
construct a three-dimensional array (the wireless ECG provides
three different channels and the wavelet transform of each
channel generates a two-dimensional matrix encoding spectral
and temporal aspects). Secondly, we employ tensor decomposition
to factorize the data and extract motion patterns. We consider
different types of movements associated with everyday activities
and validate our method by comparing the correlation between
the motion artifacts we establish with inertial measurements
which are taken in sync with the ECG measurements.

Index Terms—Tensor decomposition, motion artifact, artifact
extraction, wireless electrocardiogram, telemedicine, inertial sen-
sor, bio-medical signal processing

I. INTRODUCTION

According to the latest statistics revealed by the World
Health Organization (WHO), cardiovascular diseases (CVD)
accounted for 17.9 million deaths worldwide in 2016 [1]. With
a share of 31% in all global deaths, CVD are the leading causes
of death. Within the European Region, CVD cause more than
half of all deaths.

People with cardiovascular diseases need early detection and
management to reduce mortality risk. The electrocardiogram
(ECG) measures the hearts’ electrical activities on the surface
of the body and reveals potential pathological conditions.
In this respect, the availability of affordable and reliable
electrocardiograms is crucial for the early diagnosis of CVD.
Various wireless electrocardiograms have been developed by
several companies and the research community [2]–[6]. One
of the challenges of employing these devices in real life is that
the free movement of patients generates a significant amount
of motion artifacts which can hinder the accurate interpretation
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of the ECG signals. Existing or proposed approaches deal
with artifacts mainly in two ways: (1) Discarding segments
which are subject to noise or (2) filtering out the useful ECG
measurement. As to the former, the discarded segments may
contain useful pathological symptoms. As to the second, a
method to extract the vital signal component needs to be
available. Since motion artifacts and cardiac activities show
significant overlap in frequency spectrum [7], conventional
frequency filters, such as butterworth bandpass filters, fail to
separate them.

In the past, advanced filtering techniques have been pro-
posed, including independent component analysis [8], [9],
adaptive filters [10], [11], wavelet transformation [12], [13], as
well as a combination of some of these [14], [15]. In this paper,
we propose a dimensionality reduction technique to model and
reason about motion artifacts. Thus, using a wireless ECG, we
measure cardiac action potentials while a subject undertakes
different types of physical activities. These activities generate
and superimpose motion artifacts. Simultaneously, we deploy
inertial sensors to measure the rectilinear and curvilinear
accelerations produced by the physical activities. Finally, we
set up a tensor and apply tensor decomposition in order to
uncover hidden motion patterns which can be regarded as
motion artifacts.

The remaining part of this paper is organized as follows:
In Section II we review related work. In Section III we
give a brief overview of matrix factorization methods and an
introduction to tensor decomposition. In Section IV we de-
scribe our experimental setup, including the ECG and inertial
measurements, and our concept for tensor decomposition. In
Section V we discuss the results of our signal decomposition
approach. Closing with Section VI, we conclude our work and
state open issues that we wish to target in future research.

II. RELATED WORK

Our review of related work focuses on the application of
advanced processing techniques, including tensor decomposi-
tion, on bio-medical signals.



Romero et al. [14] applied independent component analysis
(ICA) and principal component analysis (PCA) in order to
reduce motion artifacts in ECG. They collected clean ECG
signals from subjects at rest. By placing electrodes on the sub-
jects back, they tried to record motion artifacts with negligible
influence of cardiac action potentials. These artifacts were
superimposed on the clean ECG to obtain noisy segments.
Each motion artifact signal was multiplied by a gain factor
in order to achieve a specific signal-to-noise ratio (SNR)
between 10 dB and −10 dB. Performance evaluation of the
method was carried out by comparing the results of a beat
detection algorithm from unfiltered vs. filtered signals. The
results indicate that both PCA and ICA increase the beat
detection accuracy for all SNR values compared to unfiltered
signals. Disadvantages of this method are the local offset
between the location where the artifacts were recorded and
the ECG and generating artificial artifacts.

Kline et al. [16] investigated an experimental method to
isolate motion artifacts in electroencephalogram (EEG). By
insulating subjects’ scalps with swimming caps, they blocked
all electrophysiological signals. A wig coated with conductive
gel was used to simulate an electrically conductive scalp on the
swimming cap. To investigate the correlation between motion
artifacts recorded and motion patterns performed they mounted
an accelerometer on the head. Nine subjects were walking on
a treadmill at different speeds to induce motion artifacts of
varying degree. They report that motion artifacts were recorded
by the EEG electrodes but show substantial variation across
speed, subject, and electrode location. Thus, the researchers
were unable to establish a correlation between accelerometer
measurements and motion artifacts present in EEG data.

Acar et al. [17] employed tensor decomposition to dif-
ferentiate between artifacts and epileptic seizures in EEG
recordings. Their study included ictal EEG from seven patients
subject to ten seizures in total. The researchers constructed an
epilepsy tensor by applying time-frequency analysis (Continu-
ous Wavelet Transform, CWT) on multichannel EEG, resulting
in a multi-way array of dimensions time×scale×electrode.
Their objective was to identify spatial artifact sources (e.g. eye
blink artifact or muscle artifact) and an epileptic activity
generating a seizure. They implemented a tensor decompo-
sition model (canonical polyadic decomposition, CPD) which
was used to identify patterns indicative of artifacts. By this
means, the model was able to localize a seizure origin
making use of the spatial dimension of the tensor (EEG
electrodes). Moreover, they were able to extract artifacts from
EEG recordings using CPD, matching time and location of
visually identified artifacts by neurologists. By this means
spectral properties of an artifact were analyzed emphasizing
that most artifacts feature low-frequency content. Lastly, they
used higher order tensor decomposition to remove artifacts
such as eye movements from the EEG data, in cases where
artifacts account for most of the variation during an ictal period
and seizures cannot be decomposed by CPD. They employ
Tucker tensor decomposition to decompose the data, remove
artifacts and construct a new, artifact reduced, dataset.

Dargie [18] established the motion artifact statistics for a
wireless electrocardiogram by employing linear least mean
square estimation. ECG and 3D accelerometer measurements
were taken from a healthy subject performing a series of
activities. The author established a correlation between the
measurements of the inertial sensor and the motion artifacts
by considering the interval between T-wave and the P-wave
as reference. He constructed the motion artifact statistics from
these segments and correlated them with the inertial data.

Billiet et al. [19] utilized tensors to recognize physical ac-
tivities. They employed a single accelerometer attached to the
arm to capture patients’ movements. Their approach is based
on two parts. Firstly, activities are segmented and matched to
similar patterns. Secondly, they construct a tensor by utilizing
the two-channel accelerometer data, and the corresponding
activity pattern. The resulting tensor spans the dimensions
time× channel× activity. Data features, distinct for certain
activities, are extracted by applying higher order discriminant
analysis - involving tucker decomposition. Finally, a random
forest algorithm serves as a classifier to assign the data to one
of the provided activity classes.

To our knowledge, tensor decomposition has rarely been ap-
plied to ECG data. Existing approaches focus on characterizing
heartbeats. The application on EEG data is more prevalent and
artifact extraction has already been conducted successfully.

III. BACKGROUND

Since tensor decomposition methods are often a general-
ization of matrix decomposition, first we will briefly explain
decomposition concepts for the two-dimensional case and then
introduce tensor decomposition approaches.

A. Matrix Factorization

A matrix factorization refers to the factorization of a matrix
into a product of smaller matrices. Their implementations
are often used to extract latent information inherent in the
data or as a tool for dimensionality reduction. For example,
the singular value decomposition (SVD) decomposes a given
matrix X with dimensions m × n into the product of three
matrices U, Σ and V.

X = UΣVT (1)

where U is the left singular matrix of dimension m×r, Σ is an
r×r non-negative diagonal matrix and V is the corresponding
right singular matrix of dimensions r× n. The columns of U
and V are orthonormal. One of the essential properties of SVD
is the structure of Σ. The diagonal entries of this matrix are
arranged in descending order of the singular values σii (refer
to Equation 2). The singular values encode how many basis
factors (features) are hidden in the original matrix X.

σ11 ≥ σ22 ≥ ... ≥ σmin(mn) (2)

By analyzing the singular values in Σ a low-rank approxi-
mation of X can be identified. Also, the singular values are
related to the matrix rank – this is particularly notable when
we consider the rank of a tensor decomposition later on. The



rank of the decomposed matrix X can be determined by the
number of singular values in Σ which are zero.

X ≈
R∑

r=1

σrr ur ◦ vr (3)

The decomposition of X can also be considered as the outer
product of the left and right singular vectors. In other words,
SVD decomposes the original matrix X into a summation of
R rank-one matrices, as can be seen in Figure 1.

Fig. 1. The principle of Singular Value Decomposition.

The application of singular value decomposition is limited
to the two-dimensional data. As we deal with multi-channel
ECG, these dimensions are time and channel. However, this
would restrain us on the temporal analysis and might hinder
the detection of hidden features in the frequency space. As
we wish to preserve both – time and frequency aspects –
advanced processing techniques are inevitable to handle three-
dimensional data.

B. Canonical Polyadic Decomposition

In the following, we will provide a brief introduction into
multi-dimensional decomposition methods. In particular, we
will explain the canonical polyadic decomposition (CPD),
which is considered to be a natural extension of SVD for
high-order tensor spaces. For a more exhaustive discussion,
we refer the reader to an excellent review in [20].

Multidimensional decomposition techniques are used to
extract underlying or latent features from a multidimensional
array (an N-way tensor) X . It should be recalled that a vector
is said to be a tensor of mode one whereas a matrix is a tensor
of mode two. A three-way tensor is a three-dimensional array
having I × J ×K elements:

X ∈ RI×J×K (4)

X = a ◦ b ◦ c (5)

The tensor rank decomposition decomposes a given ten-
sor into a linear combination of rank-one tensors. A three-
dimensional tensor is of rank-one, if it can decomposed into
the outer product of three vectors (refer to Equation 5). By
analyzing each component of the rank-one tensor, it is possible
to uncover hidden features in the original data. Therefore, these
models are likewise utilized as a tool for blind source sepa-
ration. One of the key advantages of a tensor decomposition
is the uniqueness of its solution even under mild conditions.
Other factorization methods require additional constraints such
as statistical independence (independent component analysis)
or orthogonality (singular value decomposition).

Fig. 2. The principle of canonical polyadic decomposition for a three-way
tensor.

The canonical polyadic decomposition (CPD) is a tensor
decomposition which was independently proposed by Carroll
and Chang (known as CANDECOMP for canonical decompo-
sition) [21] and Harshman (known as PARAFAC for parallel
factors) [22]. Because of the similarity of the underlying
principles, these approaches are known in the literature as
CANDECOMP/PARAFAC or simply as canonical polyadic
decomposition [20]. Their fundamental concept is to express a
tensor as a sum of factorized rank-one tensors. For the three-
way case this model results in the following representation:

X ≈
R∑

r=1

ar ◦ br ◦ cr (6)

where R is a positive integer representing the number of
rank-one components employed for the decomposition, also
referred to as the decomposition rank. Figure 2 illustrates the
principle of CPD. The tensor X is decomposed into a sum
of rank-one tensors. The resulting three-dimensional rank-one
tensors consist of three loading vectors (ai, bi and ci) – each
corresponding to one dimension of the decomposed tensor.
These components can subsequently be used to extract latent
information from X . Similarly to SVD, each of the factors
can then be the foundation for an exhaustive analysis of the
data. Since we aim to extract motion artifacts from the ECG,
our premise is to use tensor decomposition for blind source
separation. We aim to separate noise and useful signal to
different rank-one tensor in Eq. 6.

IV. APPLICATION OF TENSOR DECOMPOSITION

A. Data acquisition

In order to measure the electrocardiogram and physical exer-
tions, we employed the Shimmer3 platform [23]. The platform
integrates, among others, a 3D accelerometer, a 3D gyroscope,
and a 3D magnetometer as well as a 5-lead wireless ECG.
Furthermore, the platform offers the possibility of sampling
all the sensors synchronously. The ECG itself provides three
bipolar leads through four input channels resulting in:

• Lead I (LA-RA): Left Arm - Right Arm
• Lead II (LL-RA): Left Leg - Right Arm
• Lead III (LL-LA): Left Leg - Left Arm

Shimmer provides two different accelerometer chips: a wide
range (WR) accelerometer and a low noise (LN) accelerom-
eter. While the LN accelerometer is capable of measuring
fine-grained acceleration up to ±2G, the wide range ac-
celerometer can be calibrated to measure accelerations in the



range of ±8G. This range is sufficient for all the activities
we considered in our experiments. We placed the platform
on the chest of a healthy adult subject, approximately three
centimeters left of the sternum, central in the triangle formed
by ECG leads I to III. From this position, the ECG elec-
trodes extend in designated directions to measure cardiac
action potentials whereas the inertial sensors dwell inside
the platform. Hence, there is a displacement between the
location where the electrodes measure the cardiac activity and
the sensors recording the subject’s motion. Consequently, the
inertial measurements can be taken only as an approximation
of the motion affecting the electrode.

To investigate the influence of motion on the electrocar-
diogram signal, we recorded a series of measurements at
a rate of 512 samples per second while a healthy subject
performed different types of physical exercises, namely, Push-
Ups, Skipping, High-Knees, Single Jump, Running, Climbing
up or down a flight of stairs at a normal pace, Climbing up
or down a flight of stairs at a high speed, and biking. We
analyzed the measurements to (1) examine the influence of
motion on the ECG signal in general and (2) to compare the
intensity of motion artifacts caused by the different activities.
We observed that the ECG channels are affected by motion
artifacts to a varying degree. While lead II is the least sensitive
to motion, particularly lead I shows a high sensitivity to motion
and similar interferences. In all the subsequent investigations
we leave out the ECG measurements associated with lead II
in order not to bias our observation.

B. Preprocessing

Figure 3 displays the raw data associated with a 120 s
duration of skipping. The acceleration perpendicular to the
ground (y-axis) shows the periodic motion performed, consist-
ing of 10 s locomotion and 10 s resting. In addition to localized
distortions, the ECG signal is also subject to a gradual drift in
the baseline. This drift is caused by the motion as well as a
gradual change in the electrical characteristics of the medium
interfacing the electrodes with the skin. Since our main focus
is on localized distortions, we first removed high-frequency
noise and baseline wander using digital filters.
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Fig. 3. Measurements taken from the y-axis of a 3D accelerometer and lead I
(LA-RA) while the subject was skipping.

All signals were preprocessed using a low-pass filter with a
cutoff frequency of fc,low = 150 Hz and a high-pass filter with
a cutoff frequency of fh,high = 0.5 Hz. The cutoff frequencies
are commonly used in clinical applications and considered
to preserve the characteristics of the ECG in adults [24].
Subsequently, the 120 s of data were segmented into episodes
of 30 s resulting in four segments for each activity. Other than
that, the data were normalized using Equation 7 in order to
avoid bias during the decomposition process:

xnorm(t) =
x(t)−min(x)

max(x)−min(x)
(7)

Data normalization is a common practice in multi-way data
analysis, since it gives equal statistical significance to mea-
surements originating from heterogeneous sources [17].

The row measurements describe the temporal aspects of
cardiac and physical activities. Additional and complementary
insights can be gained by examining their spectral aspects.
Transformation techniques (such as Fourier Transformation)
reveal spectral aspects, but in doing so, hide temporal aspects.
For example, it is possible to detect a sudden surge in the
heart rate using a Fourier Transform, but it is not possible to
determine when this surge happens. Various approaches are
conceivable to capture temporal and spectral aspects simulta-
neously, including Short-Time Fourier Transform (STFT) [25],
and Wavelet Transformations (both discrete wavelet transform
(DWT) and continuous wavelet transform (CWT) [26]).

In STFT, a time-series is segmented into multiple (and
potentially overlapping) windows. In each window a Fast-
Fourier Transform (FFT) is applied to determine the frequency
components included in that specific window. The time and
frequency resolutions depend on the size of the window.
An improvement in the resolution of one of the dimensions
inevitably results in a corresponding degradation in the resolu-
tion of the other dimension. For instance, fast-changing activ-
ities require short windows (high time resolution) to localise
frequency changes, resulting in a low frequency resolution
(because the observation period is short). By contrast, slow-
changing activities require large observation windows to mark
a change, resulting in a high frequency resolution but in a low
temporal resolution.

Wavelet transformations use a base function Ψ, which is
then stretched or compressed to capture low or high frequency
components, respectively. The advantage of a wavelet trans-
formation is the excellent time resolution for high frequencies
while maintaining a high-frequency resolution for low frequen-
cies. This make a wavelet transformation suitable for capturing
temporal and spectral aspects in our measurement sets. The
wavelet transform has been applied extensively in the recent
past for biomedical applications [16], [17]. Indeed, CWT and
CPD have been applied to EEG data to extract artifacts and to
differentiate between artifacts and seizures [17]. We employed
CWT to transform the ECG data into time-frequency space.
As a mother wavelet, we selected the Morlet wavelet [27].
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C. Tensor Construction

Each channel of the wireless ECG generates a one-
dimensional vector of size J , where J refers to the number
of samples. We applied CWT to transform each vector into a
two-dimensional frequency-time matrix of size I × J , where
I refers to the scaling factor of the mother wavelet and is
inversely proportional to the frequency. By putting together
the matrices of all the ECG channels in a multi-dimensional
array, we produced a tensor of dimensions I × J × K as
can be visualized in Figure 5. The frontal slice of the tensor
represents the wavelet transform of a single channel. It must
be remarked at this point that the tensor was constructed using
ECG signals only and no inertial measurement was included.
The inertial measurements will be used to investigate how well
the components of a decomposed tensor (the hidden features)
are correlated with the actual physical movements.

Fig. 5. Construction of the ECG tensor.

D. Tensor Decomposition

After the ECG tensor is constructed, we applied a five-
component CPD model, as described in Equation 6. Each of
the R components consists of three loading vectors, repre-
senting the three dimensions of our initial ECG tensor X .
Figure 4 displays the loading vectors for one component as a
result of a CPD of rank five for running. Vector a reveals the
spectral properties of this component. The vector b reveals
the temporal aspects and the vector c encodes how the ECG
channels are associated with the hidden features. We used the
Tensorlab 3.0 Toolbox in MATLAB [28] to compute the tensor
decomposition.

The premise for our attempt to uncover hidden features in a
decomposed tensor is that motion artifacts are pervasive in all
the ECG channels and manifest themselves more or less in a
similar manner. This results in a three-dimensional correlation
(i.e., temporal correlation, spectral correlation, and spatial
correlation). An R-component tensor decomposition can take
advantage of this correlation to highlight the underlying factors

which give rise to this correlation. By analyzing the factors, we
can reason about the spectral composition of motion artifacts,
their temporal characteristics, and their spatial distribution.

V. EVALUATION

The following section provides insight into the findings we
obtained by decomposing ECG measurements using CPD.

A. Extraction of Motion Artifact using CPD

Figure 6 shows a comparison between the row data from
the wide range accelerometer (y-axis, perpendicular to the
ground), the ECG measurement of lead I (LA-RA) and one
of the temporal CPD components (a result of the tensor
decomposition). The ECG and the accelerometer data were
collected while the subject was skipping. The accelerometer
data reveal times of activity and resting. According to the
experimental setup, the activity consists of periodic segments
of ten seconds. Analyzing the data in detail shows the number
of skips performed by counting the number of peaks in the
accelerometer data. The electrocardiogram of lead I contains
temporal episodes which are interfered by motion artifacts
and episodes which can be declared as a clean signal. The
CPD component features episodes of high magnitude (e.g.
22 s to 30 s) and episodes of low magnitude (e.g. 12 s to
22 s). These time segments coincide with the characteristics
of the accelerometer. Similar observations were made for the
activities push-ups and high-knees. This observation suggests
that the CPD is able to extract the periodic motion patterns,
which can be the causes of artifacts affecting the ECG signal.
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Fig. 6. Comparison of a wide range accelerometer, ECG lead I (LA-RA) and
one CPD component extracted from data while a person was skipping.



We further investigated the extraction of artifacts for other
modes of motion. Figure 7 displays a segment of data acquired
while the subject was running. In contrast to skipping, push-
ups and high-knees, where the subject periodically executed
the activity, running was performed consistently for two
minutes, reflecting everyday motion. As to the nature of
the continuous activity, the tensor component does not show
distinct episodes of activity. However, the tensor component
can capture the start of running at around two seconds.

C
P

D
 

co
m

po
ne

nt

−0,05

0

0,05

E
C

G
 

LA
-R

A

0

0,5

1,0

A
C

C
 

W
R

 Y

0

0,5

1,0

time in s
0 5 10 15 20 25 30

Fig. 7. Comparison of wide range accelerometer, ECG lead I (LA-RA) and
one CPD component extracted from data while a person was running.

In Figure 8 a comparison between the accelerometer data
and the CPD component, representing motion induced arti-
facts, is displayed for an arbitrarily selected interval of five
seconds of running. We investigated the correlation between
both time series. The accelerometer data contains distinct
maxima, which likely occurred immediately after the subject’s
foot touched the ground and the body accelerated to initiate
forward movement. These maxima coincide with the minima
in the CPD component. While the maxima of the accelerom-
eter data exhibit spiky characteristics with a high gradient,
the minima of the CPD component are flatter. However, the
overlapping maxima and minima respectively prove that tensor
decomposition is capable of extracting motion artifacts. Since
we only included ECG data into our decomposition, the source
of the motion patterns extracted must be the artifacts present in
the ECG signal. The temporal correlation between both signals
indicates that these artifacts were indeed caused by movement.
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Fig. 8. Comparison of a CPD component and the measurement obtained by
one of the axes of a 3D accelerometer for an arbitrarily selected five seconds
interval of running.

Using a Fast-Fourier Transformation (FFT) we analyzed
both signals regarding their frequency components. The max-
imum of both signals overlaps at a frequency of 2.7 Hz. From
that, we can calculate the cadence of the runner, which is
around 160 steps per minute. The average for moderately
trained athletes is around 160 to 180 steps per minute indicat-
ing that our results are indeed plausible.

To study the correlation between extracted artifacts and
inertial data, we employed the Pearson correlation coefficient
on all sensor combinations. Table I displays the maximum of
the absolute correlation coefficients between CPD components
and the respective inertial sensors. The ECG was segmented in
30 s intervals and for each interval, a CPD was performed. All
temporal loading vectors, resulting from CPD, were correlated
with the inertial sensors for the respective time segment. The
values within the Table represent the maximum of the absolute
correlation coefficient. In our analysis we noted that the sign
of the CPD components is not subject to a distinct set pattern.
Hence, we only considered the absolute values of correlation.

The correlation coefficients of wide range and low noise
accelerometer are almost identical, with deviations of a max-
imum of ∆R = 0.03. Since the low noise accelerometer is
limited to an acceleration of 2G and some activities exceed
this threshold by more than 4G (e.g., skipping, running), the
data shows segments of sensor saturation. Hence, we left
out the low noise accelerometer from the Table and further
considerations.

TABLE I
ABSOLUTE CORRELATION BETWEEN CPD COMPONENT AND INERTIAL

SENSORS FOR THE ACTIVTIES PERFORMED.

Gyroscope Accelerometer WR

X Y Z X Y Z
Running 0.63 0.51 0.41 0.51 0.71 0.50
High-Knees 0.22 0.18 0.40 0.08 0.50 0.33
Skipping 0.28 0.25 0.34 0.04 0.50 0.50
Stairs fast 0.19 0.19 0.27 0.25 0.51 0.14
Stairs normal 0.07 0.06 0.05 0.05 0.42 0.23
Push-Ups 0.05 0.13 0.06 0.11 0.04 0.03
Bike 0.13 0.19 0.20 0.25 0.16 0.14
Single Jump 0.06 0.07 0.07 0.04 0.18 0.09

The correlation between a tensor component and inertial
data is heavily dependent on two factors: (1) Mode of motion
and (2) Axis of inertial measurement. As regards (1), the mode
of motion strongly affects the intensity of artifacts present
in the ECG. Figure 9 displays the ECG lead I of the two
activities skipping and single jumps. It is clear that the ECG
signal obtained from single jumps is less noisy than that from
skipping. This suggests that the reason for a low correlation
between inertial measurements and CPD components can be a
low noise ECG signal. Concerning (2), the strength of corre-
lation also varies across the different inertial axes. The reason
for this might be the different intensities of the movement on
the orthogonal axes. Running contains forward, sideways and
upward components and thus induces motion artifacts which
correlate to the respective axis. Sideways motion in skipping



is however limited in its intensity, resulting in fewer artifacts
and hence the inertial data are weakly correlated.
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Fig. 9. Comparison of ECG lead I (LA-RA) for the activities single jump
and skipping.

On the other hand, low correlation values (R ≤ 0.29) are
present for significantly disturbed ECG. As shown in Figure
10, biking induces a good portion of noise in the signal.
However, the correlation between the CPD component and
inertial data is low (Rmax = 0.25). The reason might be the
origin of the motion artifacts. During earlier experiments, the
authors noticed that moving or touching the electrodes induces
artifacts, which highly distort the ECG to a point where no
QRS-Detection is possible. While running and skipping have
distinct patterns of lateral acceleration perpendicular to the
ground, the sources of artifacts for biking might be manifold
– such as clothes touching the ECG cables and adhesive
electrodes, which, due to their origin, are not correlated to
inertial measurements. In addition, the ECG signal might
be superimposed by electromyogram (EMG) contents (action
potentials generated by the contraction and relaxation of mus-
cles). In contrast to running and skipping, where most motion
is generated by leg muscles, biking also involves pectoral
muscles in order to lean on the handlebar. The ECG electrodes
placed on the thorax might capture not only cardiac activity but
also the potential change induced by pectoral muscle groups.
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Fig. 10. Measurements of lead I (LA-RA) ECG while the subject was biking
subject with presence of noise

In order to verify our findings and prove that the correlation
is not solely based on the correlation between ECG and inertial
measurements, we provide Table II. We, therefore, employed
Pearson’s correlation between the ECG channels used for CPD
and the inertial sensors for the respective time segments. As
for the CPD case, we only considered the absolute values
of correlation. Thus, Recg,inert is determined by calculating
the correlation coefficient between all ECG channels and
inertial data. Then we took the absolute values of these and

determined the maximum value for all time segments of one
activity. Rcpd,inert is the correlation coefficient between the
temporal CPD component and the respective inertial sensors,
as displayed in Table I. The difference between both is then
as follows:

Rdiff = Rcpd,inert −Recg,inert (8)

As Table II shows, CPD components have stronger or almost
equal correlation values than the ECG. Indeed, CPD is ca-
pable of establishing a stronger correlation than ECG itself,
improving Rcorr up to 0.41 for acceleration in the x-axis while
running. If the ECG has higher correlation coefficients, the
differences are within a margin of ∆R ≤ 0.11 and usually
for activities and sensors for which CPD could not establish
correlation values of R ≥ 0.29. Hence, we consider these to be
negligible. However, we can conclude, that CPD is capable of
improving the correlation for most of the activities performed
and moreover, can extract temporal patterns of motion.

TABLE II
DIFFERENCE BETWEEN ABSOLUTE CORRELATION OF CPD VS. INERTIAL

SENSORS AND ECG VS. INERTIAL SENSORS

Gyroscope Accelerometer WR

X Y Z X Y Z
Running 0.15 0.17 -0.10 0.41 0.19 0.13
High-Knees 0.15 0.10 0.24 0.03 0.30 0.19
Skipping 0.22 0.19 0.28 -0.02 0.31 0.31
Stairs fast 0.07 -0.04 0.02 0.08 0.21 0.05
Stairs normal -0.07 -0.08 -0.02 -0.07 0.22 0.05
Push-Ups -0.04 -0.04 -0.02 0.04 -0.03 -0.10
Bike -0.02 -0.11 0.02 0.04 0.03 -0.01
Single Jump -0.03 0.01 -0.04 0.01 0.04 0.02

VI. CONCLUSION AND FUTURE WORK

In this paper, we employed canonical polyadic decompo-
sition to extract motion artifacts from the measurements of
a wireless electrocardiogram. We took measurements from
a healthy subject undertaking different types of movements
associated with everyday activities. Using a the Shimmer3
platform we simultaneously acquired the data from a 3D
accelerometer, a 3D gyroscope and a five lead ECG. We
constructed a three-way tensor consisting of the dimensions
time, scale and channel and employed canonical polyadic
decomposition in order to uncover hidden features in the
original data. The extracted components were subsequently
analyzed for their correlation to the motion patterns performed
by considering the measurement sets of the inertial sensors.

Our initial results suggest that CPD is capable of extracting
motion artifacts from the ECG data without the need for any
constraints. Depending on the mode of motion, CPD extracted
temporal factors exhibiting a high correlation to inertial data.
Especially motion generated by repetitive acceleration pat-
terns, such as running, skipping and high-knees, shows high
correlation coefficients. Although biking and performing push-
ups yield to a high degree of artifacts in the ECG, the CPD
did not yield in an increase of the correlation coefficients.



The reasons might be manifold, but our evaluation suggests
that the electric muscle activity could superimpose the ECG.
Nevertheless, CPD was successful in extracting motion arti-
facts from ECG signals.

In future research, the authors intend to further investigate
the correlation between electrocardiogram and motion arti-
facts. Tensor decomposition represents a powerful tool to fuse
data collected by multiple sensor sources. Our initial approach
limits the tensor construction to ECG data exclusively. Increas-
ing the tensor dimensions by using additional data sources
(e.g. EMG, accelerometer, gyroscope) might provide insights
into the motion artifact statistics to a greater extent. Advanced
tensor decompositions such as Tucker or higher-order singular
value decomposition (refer to [20]) could furthermore enhance
the extraction of artifacts and might be used to reduce the
motion artifacts present in wireless electrocardiograms.
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