Probability Theory

Waltenegus Dargie

Chair for Computer Networks

• Deals with the study of random phenomena, which under repeated experiments yield different outcomes that have certain underlying patterns about them.

• When an experiment is performed under these conditions, certain elementary events ξ_i occur in different but completely uncertain ways.

• One can assign nonnegative number, $P_i(\xi_i)$ as the probability of the event ξ_i in various ways.
Definition

• Laplace’s Classical Definition
 – The probability of an event A is defined a-priori without actual experimentation (provided all the outcomes are equally likely)

$$P(A) = \frac{\text{Number of outcomes favorable to } A}{\text{Total number of possible outcomes}}$$

• Relative Frequency Definition

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

where n_A is the number of occurrences of A and n is the total number of trials.
Probability Sets

- The totality of all ξ_i, known \textit{a-priori}, constitutes a set Ω, the set of all experimental outcomes

$$\Omega = \{ \xi_1, \xi_2, \ldots, \xi_k, \ldots \}$$

- For any subsets A, B, C, \ldots of Ω,
 - If $\xi \in A$ then $\xi \in \Omega$
 - $A \cup B = \{ \xi | \xi \in A \text{ or } \xi \in B \}$
 - $A \cap B = \{ \xi | \xi \in A \text{ and } \xi \in B \}$
 - $\overline{A} = \{ \xi | \xi \notin A \}$
Probability Sets

\[A \cup B \]

\[A \cap B \]

\[\overline{A} \]

\[A \cap B = \phi \]

\[A_i \cap A_j = \phi, \quad \text{and} \quad \bigcup_{i=1}^{n} A_i = \Omega. \]
De-Morgan’s Laws

\[\overline{A \cup B} = \overline{A} \cap \overline{B}; \quad \overline{A \cap B} = \overline{A} \cup \overline{B} \]
• A collection of subsets of a nonempty set Ω forms a field F

(i) $\Omega \in F$

(ii) If $A \in F$, then $\bar{A} \in F$

(iii) If $A \in F$ and $B \in F$, then $A \cup B \in F$.

• Hence, the following sets, all, belong to F (the term event is used only to members of F):

$$F = \{ \Omega, A, B, \bar{A}, \bar{B}, A \cup B, A \cap B, \bar{A} \cup B, \ldots \}$$
Axioms of Probability

1. Probability is a nonnegative number
\[P(A) \geq 0 \]

2. The probability of a whole set is unity
\[P(\Omega) = 1 \]

3. The probability of mutually exclusive sets is the union of the probability of each set
If \(A \cap B = \emptyset \), then \(P(A \cup B) = P(A) + P(B). \)
Axioms of Probability

- From the axioms it follows that:

\[A \cup \overline{A} = \Omega, \quad P(A \cup \overline{A}) = P(\Omega) = 1. \]
\[A \cap \overline{A} \in \phi, \]
\[P(A \cup \overline{A}) = P(A) + P(\overline{A}) = 1 \quad \text{or} \quad P(\overline{A}) = 1 - P(A). \]
\[A \cap \{\phi\} = \{\phi\}. \]
\[P \left(A \cup \{\phi\} \right) = P(A) + P(\phi). \]
\[A \cup \{\phi\} = A, \]
\[P\{\phi\} = 0. \]
Conditional Dependencies

• In N independent trials, suppose N_A, N_B, N_{AB} denote the number of times events A, B and AB occur respectively. According to the frequency interpretation of probability, for large N

\[
P(A) \approx \frac{N_A}{N}, \quad P(B) \approx \frac{N_B}{N}, \quad P(AB) \approx \frac{N_{AB}}{N}.
\]
Conditional Dependencies

- Among the N_A occurrences of A, only N_{AB} of them are also found among the N_B occurrences of B. Thus the ratio

$$\frac{N_{AB}}{N_B} = \frac{N_{AB}}{N} = \frac{P(AB)}{P(B)}$$

- The above expression is a measure of “the event A given that B has already occurred”. Conditional dependencies are expressed using Bayes’ Theorem:

$$P(A \mid B) = \frac{P(AB)}{P(B)}, \quad P(B) \neq 0.$$
Conditional Dependencies

• We have
 \[P(A \mid B) = \frac{P(AB)}{P(B)} \geq 0, \]
 \[P(\Omega \mid B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1, \]

• Given \(A \cap C = 0 \).
 \[P(A \cup C \mid B) = \frac{P((A \cup C) \cap B)}{P(B)} = \frac{P(AB \cup CB)}{P(B)}. \]
 \[AB \cap AC = \phi \implies P(AB \cup CB) = P(AB) + P(CB). \]
 \[P(A \cup C \mid B) = \frac{P(AB)}{P(B)} + \frac{P(CB)}{P(B)} = P(A \mid B) + P(C \mid B). \]
• Properties of conditional probabilities

1. \(B \subseteq A, \ AB = B, \)
 \[
P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(B)}{P(B)} = 1
 \]

2. \(A \subseteq B, \ AB = A, \)
 \[
P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)}{P(B)} > P(A).\]
3. One can use the conditional probability to express the probability of a complicated event in terms of “simpler” related events.

- Let A_1, A_2, \ldots, A_n are pair wise disjoint sets and their union is Ω. Thus $A_i A_j = \phi$, and $\bigcup_{i=1}^{n} A_i = \Omega$.

- Thus

$$B = B(A_1 \cup A_2 \cup \cdots \cup A_n) = BA_1 \cup BA_2 \cup \cdots \cup BA_n.$$
Conditional Probability

• Since \(A_i \cap A_j = \phi \Rightarrow BA_i \cap BA_j = \phi \),

\[
P(B) = \sum_{i=1}^{n} P(BA_i) = \sum_{i=1}^{n} P(B | A_i)P(A_i).
\]

• If \(A \) and \(B \) are independent, then:

\[
P(A | B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).
\]

• Generally,

\[
P(A_i | B) = \frac{P(B | A_i)P(A_i)}{P(B)} = \frac{P(B | A_i)P(A_i)}{\sum_{i=1}^{n} P(B | A_i)P(A_i)}.
\]
Independence

• Independence: Events A and B are independent if

$$P(AB) = P(A)P(B).$$

• This also implies that the following are also independent:

$$\bar{A}, B; \quad A, \bar{B}; \quad \bar{A}, \bar{B}$$
Independence

- The event of zero probability is independent of every other event. If \(P(A) = 0 \),
 \[P(AB) \leq P(A) = 0 \Rightarrow P(AB) = 0, \quad AB \subset A \]

- Independent events cannot be mutually exclusive,
 \[P(A) > 0, \quad P(B) > 0 \quad P(AB) > 0. \]

- More generally, a family of events \(\{A_i\} \) are said to be independent, if for every finite sub collection \(A_{i_1}, A_{i_2}, \ldots, A_{i_n} \), we have
 \[P\left(\bigcap_{k=1}^{n} A_{i_k} \right) = \prod_{k=1}^{n} P(A_{i_k}). \]
Independence

Given a union of \(n \) independent events:

\[A = A_1 \cup A_2 \cup A_3 \cup \cdots \cup A_n, \]

Then by De-Morgan’s law and using their independence, the following holds:

\[\overline{A} = \overline{A_1} \overline{A_2} \cdots \overline{A_n} \]

\[
P(\overline{A}) = P(\overline{A_1} \overline{A_2} \cdots \overline{A_n}) = \prod_{i=1}^{n} P(\overline{A_i}) = \prod_{i=1}^{n} (1 - P(A_i)).
\]

\[
P(A) = 1 - P(\overline{A}) = 1 - \prod_{i=1}^{n} (1 - P(A_i)),
\]
Independence

• Example: Three switches connected in parallel operate independently. Each switch remains closed with probability p.

(a) Find the probability of receiving an input signal at the output.

(b) Find the probability that switch S_1 is open given that an input signal is received at the output.
Independence

• To answer (a), let $A_i = \text{“Switch } S_i \text{ is closed”}$ and $P(A_i) = p$, for $i = 1, 2, 3$. Since the switches operate independently, we have

$$P(A_i A_j) = P(A_i) P(A_j); \quad P(A_1 A_2 A_3) = P(A_1) P(A_2) P(A_3).$$

• Let $R = \text{“input signal is received at the output”}$. Hence,

$$R = A_1 \cup A_2 \cup A_3.$$

$$P(R) = P(A_1 \cup A_2 \cup A_3) = 1 - (1 - p)^3 = 3p - 3p^2 + p^3.$$
Independence

- Alternatively

\[P(R) = P(R \mid A_1)P(A_1) + P(R \mid \overline{A_1})P(\overline{A_1}). \]

\[P(R \mid A_1) = 1 \]

\[P(R \mid \overline{A_1}) = P(A_2 \cup A_3) = 2p - p^2 \]

\[P(R) = p + (2p - p^2)(1 - p) = 3p - 3p^2 + p^3, \]
Independence

• Note that the events A_1, A_2, A_3 do not form a partition, since they are not mutually exclusive. Obviously any two or all three switches can be closed (or open) simultaneously. Therefore,

$$P(A_1) + P(A_2) + P(A_3) \neq 1.$$
Independence

• To answer (b), we apply Bayes theorem

\[
P(\overline{A}_1 \mid R) = \frac{P(R \mid \overline{A}_1)P(\overline{A}_1)}{P(R)} = \frac{(2p - p^2)(1-p)}{3p - 3p^2 + p^3} = \frac{2 - 2p + p^2}{3p - 3p^2 + p^3}.
\]

• Because of the symmetry of the switches, we also have

\[
P(\overline{A}_1 \mid R) = P(\overline{A}_2 \mid R) = P(\overline{A}_3 \mid R).
\]
Bernoulli Trial

• Knowledge of the success or failure of an Event A in an n independent trial is fundamental for many interesting problems in communication and computer networks.

• Often our interest is to find out the probability that Event A occurs exactly k times, $k \leq n$, in n trials ($P_\omega(\omega)$), given the probability of A occurring in a single trial is p.
Bernoulli Trial

\[P_0(\omega) = P(\{\xi_{i_1}, \xi_{i_2}, \cdots, \xi_{i_k}, \cdots, \xi_{i_n} \}) = P(\{\xi_{i_1} \})P(\{\xi_{i_2} \}) \cdots P(\{\xi_{i_k} \}) \cdots P(\{\xi_{i_n} \}) \]

\[= \underbrace{P(A)P(A) \cdots P(A)}_{k} \underbrace{P(\overline{A})P(\overline{A}) \cdots P(\overline{A})}_{n-k} = p^k q^{n-k}. \]

- However the \(k \) occurrences of \(A \) can occur in any particular location inside \(\omega \).
- Let \(\omega_1, \omega_2, \cdots, \omega_N \) represent all such events in which \(A \) occurs exactly \(k \) times. Then:

"A occurs exactly \(k \) times in \(n \) trials" = \(\omega_1 \cup \omega_2 \cup \cdots \cup \omega_N \).

\(\omega_i \) are mutually exclusive and equi-probable
• Thus:

\[P("A\ occurs\ exactly\ k\ times\ in\ n\ trials") = \sum_{i=1}^{N} P_0(\omega_i) = NP_0(\omega) = Np^k q^{n-k}, \]

• Where:

\[N = n(n-1)\cdots(n-k+1) = \frac{n!}{k!(n-k)!} = \binom{n}{k} \]

• Generally:

\[P_n(k) = P("A\ occurs\ exactly\ k\ times\ in\ n\ trials") = \binom{n}{k} p^k q^{n-k}, \quad k = 0,1,2,\cdots,n, \]
Similarly, we may be interested to find out the probability of at least \(k \) occurrences in an \(n \) trial, in which case:

\[
P(X_0 \cup X_1 \cup \cdots \cup X_n) = \sum_{k=0}^{n} P(X_k) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k}.
\]

Note that Bernoulli trial consists of repeated independent and identical experiments each of which has only two outcomes \((A\) or its complement), with \(P(A) = p \), and \(P(\overline{A}) = q \).
Bernoulli Trial

• Often, it is interesting to determine the most likely value of k for a given n and p

• The most probable value of k is the number which maximizes (see the figure below) $P_n(k)$.

\[
P_n(k) \quad n = 12, \quad p = 1/2.
\]
Bernoulli Trial

- To obtain this value, consider the ratio:

\[
\frac{P_n(k-1)}{P_n(k)} = \frac{n! \, p^{k-1} \, q^{n-k+1}}{(n-k+1)! \, (k-1)!} \cdot \frac{(n-k)! \, k!}{n! \, p^k \, q^{n-k}} = \frac{k \, q^{k-1} \, p}{n-k+1}.
\]

- Thus \(P_n(k) \geq P_n(k-1) \), if \(k(1-p) \leq (n-k+1)p \)

or \(k \leq (n+1)p \). Thus \(P_n(k) \) as a function of \(k \) increases until \(k = (n+1)p \)

- If \(k \) is an integer, or the largest integer \(k_{max} \) is less than \((n+1)p \), \(P_n(k) \) represents the most likely number of successes in \(n \) trials.
Bernoulli’s Theorem

- Let A denote an event whose probability of occurrence in a single trial is p. If k denotes the number of occurrences of A in n independent trials, then

$$P \left(\left\{ \left| \frac{k}{n} - p \right| > \varepsilon \right\} \right) < \frac{pq}{n \varepsilon^2}.$$

- The above expression states that the frequency definition of probability of an event $\frac{k}{n}$ and its axiomatic definition (p) can be made compatible to any degree of accuracy.
Bernoulli’s Theorem

• Proof

\[
\sum_{k=0}^{n} k P_n(k) = \sum_{k=1}^{n-1} k \frac{n!}{(n-k)!k!} p^k q^{n-k} = \sum_{k=1}^{n} \frac{n!}{(n-k)!(k-1)!} p^k q^{n-k}
\]

\[
= \sum_{i=0}^{n-1} \frac{n!}{(n-i-1)!i!} p^{i+1} q^{n-i-1} = np \sum_{i=0}^{n-1} \frac{(n-1)!}{(n-1-i)!i!} p^i q^{n-1-i}
\]

\[
= np(p + q)^{n-1} = np.
\]

• Proceeding in a similar manner:

\[
\sum_{k=0}^{n} k^2 P_n(k) = \sum_{k=1}^{n} k \frac{n!}{(n-k)!(k-1)!} p^k q^{n-k} = \sum_{k=2}^{n} \frac{n!}{(n-k)!(k-2)!} p^k q^{n-k}
\]

\[
+ \sum_{k=1}^{n} \frac{n!}{(n-k)!(k-1)!} p^k q^{n-k} = n^2 p^2 + npq.
\]
Bernoulli’s Theorem

• Note that:

\[
\left| \frac{k}{n} - p \right| > \varepsilon \quad \text{is equivalent to} \quad (k - np)^2 > n^2 \varepsilon^2,
\]

\[
\sum_{k=0}^{n} (k - np)^2 P_n(k) > \sum_{k=0}^{n} n^2 \varepsilon^2 P_n(k) = n^2 \varepsilon^2.
\]

\[
\sum_{k=0}^{n} (k - np)^2 P_n(k) = \sum_{k=0}^{n} k^2 P_n(k) - 2np \sum_{k=0}^{n} k P_n(k) + n^2 p^2
\]

\[= n^2 p^2 + npq - 2np \cdot np + n^2 p^2 = npq.\]
Bernoulli’s Theorem

- The middle expression in the previous slide can be expressed as:

\[\sum_{k=0}^{n} (k - np)^2 P_n(k) = \sum_{|k-np| \leq n\varepsilon} (k - np)^2 P_n(k) + \sum_{|k-np| > n\varepsilon} (k - np)^2 P_n(k) \]

\[\geq \sum_{|k-np| > n\varepsilon} (k - np)^2 P_n(k) > n^2 \varepsilon^2 \sum_{|k-np| > n\varepsilon} P_n(k) \]

\[= n^2 \varepsilon^2 P\{|k - np| > n\varepsilon\}. \]

- Rearranging and combining terms yields:

\[P\left(\left\{\left|\frac{k}{n} - p\right| > \varepsilon\right\}\right) < \frac{pq}{n \varepsilon^2}. \]