Distributed Systems

Seminar 3 – Remote Procedure Call

Dr. Thomas Springer
What is the definition of an RPC according to Nelson? Distinguish, on the basis of this definition, RPC from the following:

- A local procedure call,
- Communication via email,
- Communication in a shared memory multiprocessor system.
Definition (by Nelson)

- Synchronous transfer of control thread
- Level of programming language
- Separate address spaces
- Coupling via relatively narrow channels
- Data exchange: call parameters and results

Synchronous transfer control thread and data by means of a procedure call with parameters between programs in separated address spaces via a narrow channel

Narrow channel: low bandwidth and/or high delay (relative to local communication)
Solution E3.1

<table>
<thead>
<tr>
<th>RPC defined by Nelson</th>
<th>Local procedure call</th>
<th>Email</th>
<th>Communication in a shared memory multiprocessor system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous transfer of control thread</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Level of programming language</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Separate address spaces</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Coupling via relatively narrow channels</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Data exchange: call parameters and results</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Exercise 3.2

- The RPC is an essential communication mechanism in distributed systems.
 - Discuss the basic steps of an RPC!
 - What is the meaning of the terms “marshalling” and “unmarshalling”?
 - Explain the connection between RPC interface descriptions and stub components!
Remote Procedure Call

Client-computer

- Client
 - local call
 - local result
- Client-Stub
 - call encoding
 - decoding
- Runtime-system
 - send
 - wait
 - receive

Network

- Call
 - Packet
- Result
 - Packet

Server-computer

- Runtime-system
 - receive
 - decoding
- Server-Stub
 - send
 - encoding
- Server
 - call
 - execute
 - result

Import \[\rightarrow\]

Export \[\rightarrow\]
The RPC is an essential communication mechanism in distributed systems.

- What is the meaning of the terms “marshalling” and “unmarshalling”?

 Marshalling is:
 - Transforming of a typed and possibly structured parameter set
 - from internal/sender-specific representation (byte order, structure representation)
 - into a serialized format
 - which allows to transfer the data via a network as message

 Unmarshalling is:
 - Reconstruction of typed and possibly structured data
 - From data serialized in messages
 - Into a receiver-specific data representation
 - To allow local processing of data at receiver

- Why necessary?
 - Serialization of structured data (local pointers not valid on server machine)
 - Heterogeneity of internal data representations (8 Bit/16 Bit for int, Big/Little Endian, ...)

Dr. Thomas Springer
• Interfaces used by compiler to generate client and server stubs

• Stubs encapsulate functionality to:
 • transmit local call to remote computer
 • receive call on remote computer and pass on
 • convert data
 o before transmission on client (marshalling)
 o on arrival at remote computer (unmarshalling)
Binding is an important prerequisite for establishing an RPC-based communication.

- What is the purpose of binding?
- Sketch the binding process for the methods direct addressing, broadcast-request and directory service.
- Discuss the advantages and disadvantages of the various methods of binding.
Solution E3.3a

- Binding is the process of coupling a client and a server by resolving the address of the server at client side.
- Maybe further exchange/negotiation of communication parameters.
- Address is e.g. IP address + Port number or Or Service endpoint (URI).
Solution E3.3b

- **Direct addressing**, e.g. IP address configured directly
 - As variable in code, in a configuration file, etc.

- **Broadcast request**, e.g. using a logic name (sub-net)
 - Discover servers in a local network or flush the internet

- **Directory service**
 - Server registers with logic name and address (and attributes) at directory service
 - Client requests server with logic name (and attributes)
 - Client gets address of server from directory service
 - Client can call procedures using address of server
Solution E3.3c

Direct Addressing
+ Fast binding process without network communication and service
+ High scalability for search
 – Static configuration – No rebinding at runtime
 – Binding information is invalid if address of server changes
 – Changes of binding information might require recompilation

Broadcast
+ Flexible binding and rebinding based on logic name possible
+ No service for binding required, direct comm. with potential services
+ Works well in intranet/LAN
 – Broadcast might not be supported in network
 – High overhead in large network infrastructures – flooding of network with search requests
 – high network load

Naming/Directory Service
+ Flexible binding and rebinding based on logic name possible
+ Highly scalable with distributed binding service
 – Binding process relatively complex – Network communication and binding service required
• **RPC systems have to handle different types of errors of the remote communication. The RPC error semantics defines what classes of errors can be handled.**

 • Which error classes are defined, which errors types can be handled and what mechanisms have to be used for handling?

 • What error class should be used for the following functionality of the online-shop:
 - User access of product catalog via Browser and HTTP
 - The submission of a product order
 - Money transfer for order payment
 - User request to order state
 - Removing a product from warehouse and adding it to a dispatch list
Solution E3.4a

- **Message delay or loss (request/response)**
 - Request gets lost
 - Server is not aware about request
 - no response, Client is blocked (forever or until a timeout)
 - Response gets lost
 - Server performs request
 - sends response
 - Client is blocked (forever or until a timeout)

- **Client crash**
 - after request
 - Server performs request
 - Client do not get response

- **Server crash**
 - after request
 - Server is not aware about request
 - no response, Client is blocked (forever or until a timeout)
Error semantics (Spector):

- **Maybe**
 - single execution without notification in the case of errors
 - only for “non-important” operations
- **At - least - once**
 - at least once execution (if no machine crashes happen)
 - only for idempotent operations
 - Repeated request in case of request/response lost after timeout
- **At - most - once**
 - duplicate recognition (sequence number) and removing; masks comm. failures
 - one execution if no machine crashes happen
- **Exactly - once**
 - exactly once execution
 - masks machine crashes, too
 - transaction concepts with warm restart and recovery
- User access of product catalog via Browser and HTTP
 - **Maybe, At-least-once**
 - Read access, user wants result but reading content could be performed several times without change of system data

- The submission of a product order
 - **At-most-once**
 - Order should not be performed twice

- Money transfer for order payment
 - **Exactly-once**
 - Transactional to ensure consistent accounts

- User request to order state
 - **Maybe/at-least-once**
 - State can be easily requested again but user may expect answer

- Removing a product from warehouse and adding it to a dispatch list
 - **Exactly-once**
 - Transactional to ensure consistent state of warehouse and dispatch list