
HTTP/2 Streams: Is the Future of WebSockets
decided?

Max Fietze

Faculty of Computer Science, TU Dresden

Abstract. The communication in the World Wide Web is mainly real-
ized by the HTTP protocol. First standardized in 1996 it was primarily
developed for the transmission of pure text-based websites. Over the
years the websites became more and more complex and now contain in-
teractive media, which results in a very inefficient transmission of the
data. Because of the fact that the HTTP protocol remained unchanged
for more than a decade, the WebSockets standard was developed for an
optimized communication. Nearly 20 years after the first HTTP protocol,
a new version, named HTTP/2, was published with many enhancements.
This paper discusses whether HTTP/2 will make WebSockets obsolete
in the future. For a better comprehension, a brief overview of HTTP/1.0
and HTTP/1.1 will be presented including a discussion of deficits. After
that a short summary what is new in HTTP/2 and what WebSockets
characterizes will be given. Finally these two protocols with their ben-
efits or disadvantages will be compared and then the paper gives an
assessment if one of the protocols is able to replace the other.

Keywords: HTTP, WebSockets, Comparison

1 History of HTTP

The first attempts to develop a standard for transferring webpages over a shared
network started at the CERN Research Center, mainly under the direction of
Roy Fielding and Tim Berners-Lee in 1989. A first basic approach included the
GET request and described a simple client-server communication. This ”Original
HTTP” was published in 1991, and is known as HTTP 0.9 [4].

1.1 HTTP/1.0

HTTP/1.0 added many features to the original HTTP protocol, such as more
request methods (HEAD, POST, e.t.c.) but still relied on the restriction that
every resource request has to be made over a separate connection [5]. This implied
a big overhead when a website consisted of many different elements, such as
pictures.



1.2 HTTP/1.1

In 1999, the HTTP/1.1 standard was published and introduced the additional
Keep-Alive header, which instructs the server to keep the connection for further
client requests. This allows sending of multiple requests over a single TCP con-
nection, without closing the connection after each request (see figure 1) and also
the ”pipelining” of requests. Pipelining means that a client can send multiple
requests without waiting for the corresponding responses [6], which can decrease
the load time especially over a connection with a high Round Trip Time (RTT).
In figure 2 you can see a comparison between a connection without and with
pipelining.

client clientserver server
open

tim
e

multiple connections

close

persistent connection

open

close
open

close

close

open

Fig. 1. Comparison between multiple connections and a single persistent connection
[25]

serverclient serverclient
open

close

open

close

tim
e

no pipelining pipelining

Fig. 2. Pipelining of requests [26]



2 Key features of HTTP/2

HTTP/2 is just a revision of the older HTTP/1.1 Protocol. Therefore, it sup-
ports all of the core features of HTTP/1.1, however, tries to be more efficient
in many ways [1]. It was mainly inspired by the experimental SPDY protocol,
developed by Google[23]. Different to the past version numbers, only the whole
integer is mentioned, so it is only called HTTP/2 instead of HTTP/2.0. In the
following section we will summarize some of the key features, that were added
or semantics that are used differently:

Streams and Multiplexing: A very common problem of HTTP/1.1 is the so
called ”Head-of-line blocking” (HOL blocking), which can dramatically decrease
the performance of the page load time [2]. This phenomenon occurs because the
requests over a pipelined TCP connection are processed in the FIFO principle
(First in, first out), so a single slow request can suspend all other. HTTP/2 uses
streams consisting of single frames. Each frame contains an stream ID, which is
used to reassign the frames to the corresponding stream. This allows the Client
and Server to send many different streams at the same time over a single TCP
connection (called Multiplexing, see figure 3), which is an fundamental differ-
ence to the HTTP/1.1 delivery model. Also it avoids the HOL problem, because
when one streams stucks, another stream can continue sending. This increases
the usage of available bandwidth and makes workarounds like spriting of images
unnecessary.

Fig. 3. Multiple different streams within a shared connection [27]

Stream Priority and Dependencies: A possible disadvantage of a multiplexed
connection can be the interdependence of the streams, especially when a stream
needs information of a so far not transferred stream.This can delay for example
an interim rending of a website before it is fully loaded. To resolve this problem,
each stream can be assigned to a specific priority or information about interde-
pendencies, which is defined in the header information [9]. This should be minded
when processing the streams, especially when the capacity for sending is limited.

Header field compression: HTTP/1.1 did not had any standardized header
compression algorithms, although the headers of HTTP requests are highly re-



dundant and uniformly. For a more effective communication and to reduce the
data size of the headers HTTP/2 introduced the HPACK algorithm [3]. It uses a
header table which contains 61 static table entries with very common and often
used headers and a dynamic table which keeps track of used header parts and
caches them with an identifier. When a header is reused, the sender just has to
send the corresponding identifier, which decreases the amount of data that has
to be sent dramatically.

Binary protocol: While HTTP/1.1 was still a text-based protocol, HTTP/2
is full binary. The advantage is that binary data is much more efficient to handle
and the coding for transmission is more efficient, too. Furthermore, there is an
well-defined standard how the data has to be parsed, while there were overall
four different ways under HTTP/1.1, which was very likely to cause errors [7] [8].

Server-Push: Under HTTP/1.1 the client was fully responsible to extract
the required requests from the initial response for a complete rendering of a
website, like style sheets, and to request these additional resources themselve.
With HTTP/2 the server is able to proactively promise the client which resources
it is very likely to need and send them in the cache self-initiated, before the client
requests them. When the client recognizes which resources it needs, but already
received them by the server-push, it don’t has to request them again from the
server. This saves time and decreases the amount of requests in the network.

3 Introduction to WebSockets

Web applications were steadily developed following the request-response system,
which means that the communication was always initiated by the client to the
server, requesting to send new data. But especially modern real-time applica-
tions require, that the server can send the client self-initiated data at certain
events, even when the client doesn’t explicitly requests them. A very common
way to achieve this over HTTP is the so-called ”Long polling”, which uses the
traditional polling technique, but the client is not expecting an immediate re-
sponse and keeps the connection open till the server sends a response when an
event occurs. The biggest issue of this technique is that every new request has
to use a complete header, which causes a very high overhead (compared to Web-
Sockets see section 4). Additionally, the client has to send a request after every
response from the server, but in the meantime between the response from the
server and the new request, the server is not able to respond to the client, which
can delay notifications from the server. This makes applications that need a very
low latency nearly impossible.

A widespread approach to solve the problems and allow an efficient bidirec-
tional communciation is the WebSocket technique. It is a TCP-based protocol,
which was standardized by the IETF in RFC 6455. In contrast to HTTP it of-
fers a real bidirectional communication, without constant polling by the client.
It consists of two parts: a handshake and the data transfer [16]. The handshake



Fig. 4. Structure of a communcation with long polling

executes a HTTP request, which contains a defined HTTP Upgrade request [17].
After the handshake the data transfer uses own headers, which are limited to
the most necessary information and cause just a small overhead. The opportu-
nity of bidirectional connection allows manifold applications, like real-time social
feeds, multiplayer games or collaborative editing of documents, which were much
more difficult with the HTTP protocol, due to the high latency. WebSockets are
currently supported by all major web browsers.

4 Comparison between HTTP/2 and WebSockets

WebSockets is an independent TCP-based protocol, which only relationship to
HTTP is the handshake to upgrade the connection [11]. Therefore, a comparison
between these two techniques is basically possible, but on different levels. Both
techniques offer a better bandwidth usage through multiplexing and a more ef-
ficient processing through the binary representation (optional for WebSockets).
HTTP/2 offers additionally a very efficient compression algorithm for the head-
ers. However, compared to the uncompressed headers of WebSockets this is not
a huge benefit, because the headers of WebSockets are extremely small from
scratch. When it comes to the ability of a real bidirectional communication,
both protocols start to differentiate. Although HTTP/2 differs from the past
HTTP protocols that the server is able to send data self-initiated, this is still
only possible if the client sent an initial request before. This means the client
has to initiate a new request when it expects new data from the server. Com-
pared to WebSockets, this is not a full bidirectional communication. Although it
is basically possible to allow a bidirectional communication with HTTP/2 (e.g.,
with long polling or server sent events), its not designed for this purpose. So
there still has to be sent more requests from the client to the server, because
the server is not able to initiate the communication at its own, and the client
has to send requests even if no update from the server is available. The only
advantage of using HTTP/2 instead of HTTP/1.1 however is, that the size of
the requests are much smaller causing less traffic in the network. WebSockets
are designed from scratch for an efficient bidirectional communication and is
accordingly optimized, therefore the overhead for communication is extremely



low. When it comes to scalability of applications using bidirectional communi-
cation WebSockets have an real advantage compared to HTTP. Considering the
overhead of a HTTP communication, an average HTTP/1.1 header has a size of
around 700-800 bytes [20] [21]. A test of KeyCDN resulted that the header size
of HTTP/2 is decreased about 30% compared to HTTP/1.1 [24], which means
that an average HTTP/2 header has the size of about 550 bytes (rounded).
Compared to a typical WebSocket header which has a size of 2 Bytes [21] it is
a huge difference, especially when considering many clients communicating with
a server. For that we created an interpolation with 3 different use cases consid-
ering the pure header overhead (inspired by [21]), on the one side a specified
amount of clients using normal HTTP polling and on the other side the clients
are using WebSockets (see table 1). When illustrating the results graphically the
difference is obvious (see figure 5), the header ratio between HTTP polling and
WebSockets is about 275:1. Assuming there are 1 million clients requesting the
server every second, this means that HTTP polling causes an overhead of 4,4
Gbit/s just for the headers. WebSockets cause in contrast just 16 Mbit/s of over-
head. Another difference that has to be kept in mind for further consideration
is the year of introduction. While the WebSockets protocol was standardized in
2011, HTTP/2 is a relatively young protocol and standardized just in 2015. For
a better overview about the similarities and differences take a look at table 2.

Table 1. Interpolation about bandwidth usage of HTTP and WebSockets (4400 bits
vs. 16 bits header) by header overhead, Overhead in megabit per second

Number of clients Overhead HTTP Overhead WebSockets

Use Case A 10000 44 0,16
Use Case B 100000 440 1,6
Use Case C 1000000 4400 16

Table 2. Tabular comparison betwenn HTTP/2 and WebSockets

HTTP/2 WebSockets

Type of representation Binary Binary or textual
Header Compression Yes No

Multiplexing Yes Yes
Priorization of Streams Yes No

Direction Client to Server and Server-Push Bidirectional
Scalability Poor Good

Year of Introduction 2015 2011



Fig. 5. Graphical representation of table 1, consider logarithmic scale

5 Current Adoption Rates

To get an overview, which protocol will prevail against the other over time,
it is useful to take a look at the current adoption rates. On the Internet are
various websites which analyze the most popular websites according to the used
techniques.

For the consideration auf HTTP/2 this paper refers primarily to the data
available from W3Techs1, which analyzes the top 10 million websites (unique
addresses, no subdomains). The popularity ranking of the analyzed websites is
provided by the data of Alexa, an Amazon.com company [12]. The statistic is
reported and published daily. In figure 6 the current data as from May 23, 2017
can be seen. The visible data reaches back one year, so till May 2016, approx-
imately one year after the official standardization of HTTP/2. A clear upward
tendency, which rises nearly linear can be seen. On May 23, 2017, the current
spread of HTTP/2 was 14,2%, based on the analyzed websites. Considering the
fact that HTTP/2 is still a very young protocol, the previous distribution is
quite remarkable.

Another interesting statistic can be found on HTTP/2 Dashboard2, which is
specialized in the adoption of HTTP/2. The site, unlike W3Techs, analyzes each
subdomain individually and then subdivides the web pages according to whether
they have announced the use of HTTP/2, only partial support or if they support
HTTP/2 fully. Note the ascents, marked by the red lines 1 and 3. At the time
of 1 Cloudflare implemented the support, whereby nearly all web pages, which
use the Cloudflare proxy technology now also supports HTTP/2 [13]. The same

1 www.w3techs.com/technologies/details/ce-http2/all/all – Retrieved May 23,
2017

2 http://isthewebhttp2yet.com/measurements/adoption.html – Retrieved May 23,
2017



Fig. 6. Historical trend of the adoption of HTTP/2 since May 2016 from W3Techs [28]

applies to point 3, where wikipedia and blogspot enabled the use of HTTP/2 [14]
[15]. It can be seen that large content providers are moving their infrastructure
to HTTP/2, which gives the spread of HTTP/2 a big boost. Notice that the rise
at line 2 is just because of an adapted measurement methodology. In conclusion,
the spread of HTTP/2 is evolving steadily and it is assumed that it will be the
dominant HTTP standard in the near future.

Regarding the adoption of WebSockets, it is more difficult to obtain reliable
data. This is probably due to the fact that the use of WebSockets can not be
determined directly by a normal page call since WebSocket applications are usu-
ally started by a user interaction or because the adoption is comparatively low
to other techniques (see further below). Fortunately many current implementa-
tions use the Socket.IO framework, which uses mainly WebSockets and polling
as a fallback option [18]. Socket.IO is monitored by the website of BuiltWith3

and offers statistics like the two mentioned before. A current trend diagram can
be found in figure 8, where a relatively constant behavior with a slight trend
downwards can be seen. The adoption among the top 10000 websites (according
to Quantcast4) is just about 0,2% [19]. However, since it is only the specific
use of the Socket.IO API it is not possible to extract an exact value how many
websites use WebSockets on an average. But the very low adoption among the
top 10000 websites of the very popular Socket.IO API suggests, that the tech-
nique of WebSockets is not very accepted so far. Whether it will change in the
near future is hard to say, but compared to HTTP/2, WebSockets are almost
meaningless.

3 www.trends.builtwith.com/javascript/Socket.IO – Retrieved May 23, 2017
4 www.quantcast.com – Retrieved May 23, 2017



N
um
be
r
of
D
om
ai
ns

Announced, Partial, and True Support

Announced Support Partial Support True Support

Jan '15 Jan '16Jul '15 Jul '16
0

50k

100k

150k

200k

250k

300k

Highcharts.com

1

2
3

Fig. 7. Historical trend of the adoption of HTTP/2 since November 2014 from HTTP/2
Dashboard [29]

Fig. 8. Historical trend of the adoption of WebSockets using the Socket.IO API since
June 2016 from BuiltWith, Blue line: Top 100.000 websites, Green line: Top 10.000
websites [19]



6 Conclusion

The introduction of HTTP/2 offered many useful changes compared to the older
HTTP versions. The focus here was on better utilization of the available band-
width, for example by preventing the HOL blocking problem and the efficient
header compression. Also due to the fact that it is an official HTTP standard
and that it is compatible with previous versions is contributing that the adop-
tion will increase very quickly and more and more servers will switch to the
new standard. But now to the main question of this paper, considering whether
HTTP/2 really can replace WebSockets:

In our opinion this will not happen in the near future, as the deployment of
both techniques pursued different objectives. WebSockets have been developed
from the beginning to enable efficient bidirectional communication on the Inter-
net without having to rely on the original request-response system. The headers
are reduced to the absolut minimum and the protocol allows a wide range of
applications which would have been difficult to implement through pure HTTP
communication.

HTTP/2, by contrast, was developed for a general more efficient client-server
communication, which does not necessarily has fully equal sides. Header com-
pression and multiplexing allows much better network- and resource utilization
than it was previously possible under HTTP/1.1. This brings tremendous bene-
fits to server operators, as reflected by the rapid adoption of HTTP/2, although
it is a relatively new standard. The approach by server-push to allow the server
to send resources to the client without the explicit request of the client, but how-
ever this was in our opinion rather developed to reduce the number of necessary
requests (and thus round trip times) for a faster page load time, than to stand
in competition to WebSockets.

Somehow surprisingly is the very low current adoption of WebSockets. Even
large companies like Facebook do not rely on WebSockets at all, although it
would be a quite useful technique e.g. for the chat feature. There is an interesting
comment from an Facebook web engineer who says the main reason for that is
that WebSockets are not widely adopted yet and long polling is working well for
their use cases [22]. It turns out that the strict necessity to use WebSockets often
does not exist and it is therefore easier to save the effort for the implementation
of WebSockets. Also the maximum possible compatibility often speaks for using
HTTP/2.

This does not mean, however, that WebSockets are completely replaceable.
Applications that require very low latency and much unforeseen communication
from the server to the client are well advised to think about to use WebSockets.
Section 4 showed that the communication overhead is extremely low compared
to HTTP, and thus has many advantages for the server operator as well for
the customer through a smoother user experience. It remains to await whether
new developments in the future tend to be based on WebSockets, or whether
long-polling is sufficient for most applications.



Also the further development of the HTTP standard could have a great
influence on the use of WebSockets. If the standard in the next versions focuses
on real equality between client and server and makes the communication even
more efficient, this would really can cause making WebSockets obsolete. However,
since the change from HTTP/1.1 to HTTP/2 has taken 16 years and HTTP/2
was introduced recently, this may take a very long time.

In conclusion, the future of WebSockets is not yet decided, but it remains
to be seen how WebSockets will continue to spread, or if they will disappear in
insignificance.



References

1. Internet Engineering Task Force (IETF). (2015). RFC 7540 - Hypertext Transfer
Protocol Version 2 (HTTP/2). Retrieved 11:35, May 18, 2017, from https://tools.

ietf.org/html/rfc7540

2. Head-of-line blocking. (2017, May 7). In Wikipedia, The Free Encyclopedia. Re-
trieved 12:37, May 22, 2017, from https://en.wikipedia.org/wiki/Head-of-

line_blocking

3. Internet Engineering Task Force (IETF). (2015). RFC 7541 - HPACK: Header Com-
pression for HTTP/2. Retrieved 19:00, May 18, 2017, from https://tools.ietf.

org/html/rfc7541

4. Tim Berners-Lee. (1991). The Original HTTP as defined in 1991. Retrieved 14:15,
May 22, 2017, from https://www.w3.org/Protocols/HTTP/AsImplemented.html

5. Internet Engineering Task Force (IETF). (1996). RFC 1945 - Hypertext Transfer
Protocol – HTTP/1.0. Retrieved 14:30, May 22, 2017, from https://tools.ietf.

org/search/rfc1945

6. Internet Engineering Task Force (IETF). (2014). RFC 7230 - Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing - Section 6.3.2. Retrieved 15:30,
May 23, 2017, from https://tools.ietf.org/html/rfc7230#section-6.3.2

7. IETF HTTP Working Group. (n.d.). HTTP/2 Frequently Asked Questions. Re-
trieved 11:30, May 24, 2017, from https://http2.github.io/faq/#why-is-http2-

binary

8. Internet Engineering Task Force (IETF). (1999). RFC 2616 - Hypertext Transfer
Protocol – HTTP/1.1. Retrieved 10:00, May 23, 2017, from https://tools.ietf.

org/html/rfc2616#section-4.4

9. Internet Engineering Task Force (IETF). (2015). RFC 7540 - Hypertext Transfer
Protocol Version 2 (HTTP/2) - Section 5.3. Retrieved 17:10, May 23, 2017, from
https://tools.ietf.org/html/rfc7540#section-5.3

10. Internet Engineering Task Force (IETF). (2011). RFC 6455 - The WebSocket Pro-
tocol. Retrieved 17:30, May 23, 2017, from https://tools.ietf.org/html/rfc6455

11. Internet Engineering Task Force (IETF). (2011). RFC 6455 - The WebSocket Pro-
tocol - Section 1.7. Retrieved 17:40, May 23, 2017, from https://tools.ietf.org/

html/rfc6455#section-1.7

12. W3Techs. (n.d.). Technologies Overview. Retrieved 18:00, May 23, 2017, from
https://w3techs.com/technologies

13. Cloudflare. (2015, December 3). HTTP/2 is here!. Retrieved 18:30, May 23, 2017,
from https://blog.cloudflare.com/introducing-http2/

14. Wikipedia. (2016, May 4). Tweet from @Wikipedia. Retrieved 18:35, May 23, 2017,
from https://twitter.com/Wikipedia/status/727910305112563713

15. Google Security Blog. (2016, May 3). Bringing HTTPS to all blogspot domain
blogs. Retrieved 18:40, May 23, 2017, from https://security.googleblog.com/

2016/05/bringing-https-to-all-blogspot-domain.html

16. Internet Engineering Task Force (IETF). (2011). RFC 6455 - The WebSocket Pro-
tocol - Section 1.2. Retrieved 19:00, May 23, 2017, from https://tools.ietf.org/

html/rfc6455#section-1.2

17. Internet Engineering Task Force (IETF). (2011). RFC 6455 - The WebSocket Pro-
tocol - Section 1.3. Retrieved 19:10, May 23, 2017, from https://tools.ietf.org/

html/rfc6455#section-1.3

18. Socket.IO. (2017, April 17). In Wikipedia, The Free Encyclopedia. Retrieved 19:30,
May 23, 2017, from https://en.wikipedia.org/wiki/Socket.IO



19. BuiltWith. (2017, May 23). Socket.IO Usage Statistics. Retrieved 19:45, May 23,
2017, from https://trends.builtwith.com/javascript/Socket.IO

20. The Chromium Projects. (n.d.). SPDY: An experimental protocol for a faster
web. Retrieved 10:30, May 24, 2017, from http://dev.chromium.org/spdy/spdy-

whitepaper

21. Peter Lubbers, Frank Greco. (n.d.). HTML5 WebSocket: A Quantum Leap in Scal-
ability for the Web. Retrieved 12:30, May 24, 2017, from https://websocket.org/

quantum.html

22. Ronen Pinko. (2014, September 20). Quora board entry. Retrieved 11:30, May
27, 2017, from https://www.quora.com/Why-does-Facebook-use-long-polling-

instead-of-WebSocket-in-order-to-instant-chat

23. HTTP/2. (2017, May 27). In Wikipedia, The Free Encyclopedia. Retrieved 12:19,
May 27, 2017, from https://en.wikipedia.org/wiki/HTTP/2

24. Brian Jackson. (2016, April 25). KeyCDN Enables HTTP/2 HPACK Compression -
Huffman Encoding. Retrieved 14:00, May 25, 2017 https://www.keycdn.com/blog/

http2-hpack-compression/

25. Wikimedia Commons. HTTP persistent connection, client-server connection
schema. (c) CC0. Retrieved June 1, 2017 from https://commons.wikimedia.org/

wiki/File:HTTP_persistent_connection.svg

26. Wikimedia Commons. HTTP pipelining, client-server connection schema. (c) CC0.
Retrieved June 1, 2017 from https://commons.wikimedia.org/wiki/File:HTTP_

pipelining2.svg

27. Google. Screenshot of HTTP/2 101 (Chrome Dev Summit 2015). (c) CC-BY.
Retrieved June 1, 2017 from https://www.youtube.com/watch?v=r5oT_2ndjms&t=

275s

28. W3Techs. Usage of HTTP/2 for websites. Retrieved May 23, 2017 from https:

//w3techs.com/technologies/details/ce-http2/all/all

29. HTTP/2 Dashboard. HTTP/2 Adoption. Retrieved May 23, 2017 from http://

isthewebhttp2yet.com/measurements/adoption.html


