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Abstract 
Provision of services that suit the setting of a pervasive 
user and the reduction of user side input (less 
obtrusiveness) are two main goals of a context aware 
computing. To attain these goals, applications should be 
able to seamlessly interact with a large number of 
wireless sensor nodes in order to gather relevant 
information regarding the user and his environment. 
Since, either nodes or the user or both can be mobile, 
applications must identify relevant sensor nodes at 
runtime, possibly to share them with other applications. 
However, the pervasive user faces two challenges: 
mobile devices and wireless sensors are resource-
constrained, on one hand; and on the other hand, the 
mobile user requires timely context information. 
Therefore, fast and efficient search for sensor nodes is 
essential. In this paper we advocate dynamic context 
information sharing; and introduce an architecture that 
supports it. We will compare our approach with 
previously suggested protocols to show that our 
approach conserves processing time by introducing 
context dependent, hierarchical, and semantic-based 
search.  
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I. INTRODUCTION 
Recent advances in wireless sensor networks have 
enabled the deployment of dense yet cheap and 
unobtrusive sensors almost everywhere [1]. These 
sensors are capable of processing data locally and use a 
wireless link to transmit sensed data to a remote 
destination.  
Likewise, developments in integrated circuit technology 
have enabled the integration of multiple micro-sensors 
and -actuators as a single, intelligent node of compact 
geometry that can be embedded in a mobile device, such 
as a mobile phone or a PDA [2]. 
The next step is to impeccably link the physical world to 
digital data networks so that a pervasive user can access 
environmental data virtually from anywhere without 
imposing restriction to his mobility or attention.  

Sensed data give applications active awareness regarding 
the user’s environment so that services can be tailored to 
suit his setting. By active awareness we mean that the 
user not only has knowledge about his computing 
environment, but also can monitor and control it by way 
of virtual presence; that is, without the need to be 
actually present at the place where an event is taking 
place. Active awareness also means that applications 
‘know’ where and how to present sensitive services 
without compromising the user’s privacy.  
One main challenge is that a pervasive user might 
change his environment quite often. With change in 
environment, his preferences potentially change. 
Moreover, the state of available resources changes as the 
user moves in time and/or space - new sensor nodes with 
better quality of services may arrive; existing nodes may 
fail, move, or, depending on their residual energy, report 
wrong information [3].  
Consequently, context aware applications must be 
designed to receive data input from multiple sensors and 
to adapt as the available sensors change over time. This 
can be done if they are supported by a distributed, 
efficient, and fast searching mechanism that provides 
network resources at runtime.  
To highlight our discussions, we give two brief, but 
practical scenarios below.  
Suppose Christian arrives at the University of Kassel to 
attend a conference but he is not familiar with the 
campus. At the entrance gate he signs as a guest to 
download a context aware Campus Navigator application 
that helps him find his way through the campus. The 
application needs a location sensor; but Christian does 
not have one on any of his mobile devices. Within his 
Bluetooth proximity, there are three students (Janet, 
Peter, and Phoebe) who happen to have location sensors, 
and are willing to share their location context with him, 
as their location is his location.  
Peter has a GPS receiver, which gives absolute location 
information; Janet uses her PDA infrared port to detect 
infrared beckons which are distributed inside every 
building, intended for indoors use; Phoebe uses short-
range RF transceiver to detect RF beckons, intended for 
building-wise sensing.  
Christian’s campus navigator dynamically selects 
Phoebe’s location sensor to reach at the right building. 
Such a sharing scenario is shown in Figure 1 and 2. 
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As Christian enters the conference room, another context 
aware application that monitors the status of his mobile 
devices begins querying in an ad hoc manner a set of 
sensors for environmental data to determine Christian’s 
activity. 
 

  
 

Figure1 Dynamic Context sharing 
 

 
 

Some of the data obtained are:  
 

Sound Level = 12 dB 
Light Intensity = 1000 Lux  
Temperature = 20oC 
Location = Uni-Kassel [Room-2343] 
Collocated_ People = 75  
Application Running = [PowerPoint] 
Time = 9:00 AM 
 

With these data, the application consults its codebook to 
determine the setting in which its user is found. It 
appears Christian is in a conference hall. Once the 
setting is determined, the application refers previous 
actions for the same setting. Then it takes the following 
decisions: firstly, it lowers the volume of Christian’s 
PDA; secondly, an audio reminder is played: “It appears 
you are attending a conference; do you want to switch 
off your mobile phone?” 
The two scenarios above demonstrate some typical 
features of context aware computing. The first scenario 
demonstrates the fact that in a pervasive environment 
either applications or the sensors they need, or both, may 
not be a priori known. There must be a dynamic 
discovery of resources everywhere, anytime; and these 
resources must be shared between multiple users.  
The second scenario exhibits the amount of sensor input 
needed to undertake high-level context composition 
without obstructing the user. Composition may involve 
many atomic contexts that are directly sensed using a 
physical sensor; or it may involve high-level data 
processing entities, which make some form of context 
transformation, such as context mapping or 
interpretation, to a sensed data.  
The location information, Location = Uni-Kassel 
[Room-2343] is a typical example. It can be a result of 
data first received from a GPS receiver and is then 
mapped to a street address in Kassel; or it can be a 

mapping of beacon ID that is obtained from an RF 
receiver within the campus.  
Both scenarios show that unlike many traditional 
applications, context aware applications are data-driven 
[4], in that they proactively collect data from a physical 
environment at runtime. There is therefore an intensive 
data flow between applications and service discovery 
mechanisms to identify available resources.  If the two 
reside on separate devices and the media of 
communications between them is a wireless link (as is 
often the case in an ad hoc scenario) this may incur 
considerable bandwidth consumption and processing 
time. 
In this paper we will discuss some service discovery 
protocols (SDP) that are proposed for wireless sensor 
networks and show some of their limitations. Once we 
have done that, we will introduce our approach for an 
improved performance. We will show how our approach 
reduces both searching time and the amount of search 
result data transmission. 
This paper is organised as follows: section II discusses 
typical challenges in resource sharing and previous 
approaches to tackle them; section III introduces our 
approach that is aimed at fast searching and minimising 
the amount of search-result data transmission; and 
finally section V gives a brief conclusion. 

II SERVICE DISCOVERY PROTOCOLS 
A “traditional” way of accessing sensed data uses a 
warehouse approach, where data are extracted from 
devices in a predefined way and stored in a centralised 
database system that is responsible for query processing 
[5]. Applications view the sensing network as a single 
unit that supports high-level query language [6]. This 
approach is suitable for fixed, task-specific1 sensor 
networks. It has one major limitation, nevertheless: the 
warehouse approach consumes network resources to 
transfer large amount of raw data from devices to 
databases. Besides, for mobile sensor nodes a centralised 
approach may not scale. 
Another approach is a distributed device database 
approach [5], where the query workload determines the 
data that are extracted from remote sites, and where 
possibly a portion of the query is analysed locally on the 
sensor node.  Here nodes are capable of processing query 
requests and have sufficient memory to save historical 
sensed data. When applications are interested to query a 
particular region of a sensor network, they flood the 
entire network with their requests. In such a scenario, 
nodes are aware of their own location (possibly via a 
GPS sensor). So, nodes that cover the region in which an 
application shows interest cooperate with one another to 
make low-level data aggregation, thereby reducing the 
amount of data that must be transmitted to the 
application. This approach marginally optimises network 

                                                           
1 The task type of the network is known at the time the sensor network 
is deployed; or the network may be reprogrammable and the task it 
supports may change slowly overtime [4].   
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resources. However, it is still suitable for task-specific 
networks, since all nodes must remain active, their radio 
turned on, listening for a request. This may cause 
considerable waste of node energy. 
A more flexible and efficient approach uses a service 
discovery protocol (SDP); not only to identify eligible 
nodes but also to access important information such as 
the type of data that can be provided by a node, the 
mode2 in which the node can operate, transmission 
power levels, and the current residual energy [7]. Such 
data enriches an application’s knowledge regarding a 
node and the quality of service it delivers. 
In a simple SDP, such as the Bluetooth universally 
unique identifier (UUID) [8], services register using a 
universally unique ID. A request query for a given 
service specifies the ID of the service it searches and 
expects to receive either a positive or negative response 
– no inexact matching is possible or required. 
Another SDP approach, mostly used by Internet search 
engines (such as Google), attempts to match the pattern 
of keywords or attributes of a service description to a 
request query. The service-requesting query may contain 
a specific name and/or a set of one or more attributes. 
The SDP attempts to match the query’s pattern with the 
pattern of the service description its database contains. If 
m out of n attributes match, the SPD deems searching a 
success. If there are j services whose attributes overlap, 
they may all be considered eligible and it is up to the 
application to refine the inexact search response. 
More sophisticated service discovery protocols use 
semantic information associated with services to 
improve the quality of service discovery. This allows 
applications to set priorities, expected values of service 
attributes, and some index of a match’s closeness [9].  
The Jini [10] service discovery protocol and leasing 
mechanism is one example. It uses a trio of protocols 
called discovery, join, and lookup. A pair of these 
protocols, discovery and join, occur when a resource is 
plugged in; discovery occurs when a service is looking 
for a lookup service with which to register; join occurs 
when a service has located a lookup service and wishes 
to join it. Lookup occurs when a client or user needs to 
locate and invoke a service described by its interface 
type.  
Jini is a heavyweight SDP, most suitable for fixed 
networks as opposed to wireless networks. For resource 
constrained wireless sensor networks, however, it is slow 
because access to individual sensors is object-based, 
affecting the potential low-level energy saving by data 
aggregation [7]. 
The Enhanced Bluetooth SDP [9] is another example 
that handles searching beyond pattern matching. It uses a 
semantic based service discovery mechanism by 
implementing the Darpa Agent Markup Language and 
Ontology Inference Layer (DAML+OIL) [12]. Here 
searching is made rigorously to reduce the number of 
                                                           
2 Some nodes can operate as cluster nodes or gateway nodes. The 
reader is kindly referred to [11] to get a better understanding of 
different modes of operations in wireless sensor networks. 

inexact request matching so that application side 
processing is minimised, and to reduce the amount of 
search result data transmission. The SDP, however, 
imposes heavy computational and memory burden upon 
resource-constrained devices. Besides, search is slow. In 
the next section, we will discuss how we can improve 
the performance of this SPD by introducing context-
based, hierarchical search suitable for wireless sensor 
networks. 

III. CONTEXT BASED NODE ORGANISATION 
We aim at the following three important goals: 

 Ease of application development by shielding 
application developers from the worry of sensed 
data collection. 

 Enhance accuracy of search result through 
systematic node organisation. 

 Improve search time by using caching. 
 

The choice of a specific SDP is mainly dictated by 
processing time and bandwidth. If processing time is the 
crucial issue at the side of the service discovery 
mechanism, a pattern-matching algorithm yields a faster 
response time. This is particularly useful if the discovery 
mechanism has to accommodate a large number of 
requests. But search result is inexact, and needs further 
application side processing. If on the contrary, 
bandwidth is a more important issue, and application 
side processing should be avoided, semantic based 
search is more effective since it minimises inexact 
matching.  
The main problem with semantic based search is that it is 
rigorous and slow. If the SDP has to deal with a wide 
range of resources and should accommodate a large 
number of requests, it does not scale. Moreover, it causes 
latency to sensed data [7]. 
By systematically balancing the two approaches, a better 
performance can be attained. Consequently, we propose 
a hierarchical search mechanism and the caching of 
search results to improve the performance of a semantic 
based SDP. 
Unlike general-purpose communication networks, 
resources supported by wireless sensor networks can be 
hierarchically and ontologically classified based on the 
type of context they sense and/or process. Figure 3 
shows a layered architecture we propose to classify 
network resources.  
At the lower level we have sensors; they sense the 
physical world directly. We classify them by the atomic 
context they sense, such as seismic, acoustic, visual, etc. 
The second layer contains nodes, which are responsible 
to gather raw data from child sensors for a low-level data 
aggregation. We classify aggregator nodes as 
homogeneous and heterogeneous aggregators.  
Homogeneous aggregators receive raw data from 
homogeneous sensors. For example, a temperature 
aggregator node receives a raw data from many 
temperature sensors within a certain region to calculate 
the average temperature. A heterogeneous aggregator 
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receives raw data from heterogeneous sensors. For 
example, to resolve the identity and orientation of a 
moving object a node may require raw data from motion 
sensors and a digital camera.  
At a given time a sensor node may be found in either or 
both of the last two layers, though it is costly for a 
wireless node both to sense and to aggregate sensed data 
at the same time. 
The third layer is a mediation layer; it facilitates node 
discovery. It contains at least one SDP and a number of 
node organisers (NO). We discuss node organisers 
shortly. Through the mediation layer, context aware 
applications identify the suitable set of sensor nodes at 
runtime in a dynamic and scalable fashion. 
Figure 2 shows our layered architecture for wireless 
sensor networks. 
 
 
   
 
 
 
 
 
 

Figure 2. A layered architecture to represent wireless 
sensor nodes 

 
Once we arrange resources as described above, we take a 
two-tier approach to the mediation layer in order to make 
searching more efficient and fast.  
At a primary level, a lightweight pattern-matching search 
identifies services that closely match to a request query. 
If this search resolves only to a single node, no further 
semantic based search is necessary. Search result is 
immediately returned to the application. If, however, a 
pattern-matching result has resolved to a large number of 
nodes and further refinement is required, a secondary 
level, semantic based search is carried out by an NO per 
context.  
We restrict a given NO to specialise in a particular 
resource at a given layer. A location sensor node 
organiser, for example, is responsible only for location 
sensors or aggregators, and can handle a semantic based 
search only for location sensor nodes. By this we make 
sure that search at the NO is lightweight, faster, and 
more accurate. 
We assume reasonably that a patter-matching search can 
resolve in which class of resources a request query is 
interested. In the first scenario of section I, for example, 
we see the Navigator searching for a location sensor. 
Once the context of a node is identified, an NO that has 
semantic-based information for that particular context 
carries out the rest of the assignment. 
Since we invoke an NO to carry out a rigorous search 
only for a particular context, searching time is by far 
smaller than searching through a general-purpose 
resource discovery database. Another shortcoming of 
almost all service discovery protocols we discussed so 

far is that a new search must be made every time a 
search query is received. If two applications are 
interested for a particular sensor node at the same time or 
in closer time interval, the SPD does not keep history of 
previously made search results. Therefore it has to 
process search query again and again.  In our approach, 
all Node Organisers keep a history of previously made 
search results, the latency of which is determined by the 
nature of the wireless sensor network.  
When an NO receives a pattern-matching search result 
from a service discovery mechanism or a request query 
directly from an application, it first consults its history to 
see if a similar query has been handled previously before 
it carries out a semantic search; if yes, then it pings the 
node for availability. If the node is still available, then no 
semantic search is needed. Only otherwise, will it carry 
out a rigorous, semantic based search. 
Figure 3 shows our hierarchical service discovery 
approach. 
 

 
 
Figure 3. A hierarchical service discovery approach for 

a wireless sensor network 

IV. CONCLUSION 
Identifying the right sensor nodes at the right time to 
extract context data from a physical environment is a 
challenge of context aware applications. Consequently, a 
scalable and fast service discovery protocol suitable for 
wireless sensor networks is important.  
In this paper we studied some existing distributed service 
discovery protocols since wireless sensor networks share 
many properties with traditional distributed systems. We 
showed that most service discovery protocols either 
return inexact search results to gain processing time, or 
impose computational and memory burden on resource-
constrained mobile devices. Therefore, we proposed a 
context dependent, hierarchical, and semantic-based 
SDP (service discovery protocol) to avoid inexact search 
results while maintaining small processing time. We also 
showed how our approach improves processing time by 
keeping the history of previous search results.   
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