

1

Sharing of context information in pervasive computing
Waltenegus Dargie, Olaf Droegehorn, and Klaus David

Department of Electrical Engineering and Computer Science
Chair of Communication Technology (ComTec)

University of Kassel
Wilhelmshöher Allee 73

D-34121 Kassel
Email: {waltenegus.dargie, olaf.droegehorn, klaus.david. } @ comtec.e-technik.uni-kassel.de

Abstract
Provision of services that suit the setting of a pervasive
user and the reduction of user side input (less
obtrusiveness) are two main goals of a context aware
computing. To attain these goals, applications should be
able to seamlessly interact with a large number of
wireless sensor nodes in order to gather relevant
information regarding the user and his environment.
Since, either nodes or the user or both can be mobile,
applications must identify relevant sensor nodes at
runtime, possibly to share them with other applications.
However, the pervasive user faces two challenges:
mobile devices and wireless sensors are resource-
constrained, on one hand; and on the other hand, the
mobile user requires timely context information.
Therefore, fast and efficient search for sensor nodes is
essential. In this paper we advocate dynamic context
information sharing; and introduce an architecture that
supports it. We will compare our approach with
previously suggested protocols to show that our
approach conserves processing time by introducing
context dependent, hierarchical, and semantic-based
search.

KEY WORDS
Pervasive Computing, Context awareness, SDP (service
discovery protocol), Search result data transmission,
search time

I. INTRODUCTION
Recent advances in wireless sensor networks have
enabled the deployment of dense yet cheap and
unobtrusive sensors almost everywhere [1]. These
sensors are capable of processing data locally and use a
wireless link to transmit sensed data to a remote
destination.
Likewise, developments in integrated circuit technology
have enabled the integration of multiple micro-sensors
and -actuators as a single, intelligent node of compact
geometry that can be embedded in a mobile device, such
as a mobile phone or a PDA [2].
The next step is to impeccably link the physical world to
digital data networks so that a pervasive user can access
environmental data virtually from anywhere without
imposing restriction to his mobility or attention.

Sensed data give applications active awareness regarding
the user’s environment so that services can be tailored to
suit his setting. By active awareness we mean that the
user not only has knowledge about his computing
environment, but also can monitor and control it by way
of virtual presence; that is, without the need to be
actually present at the place where an event is taking
place. Active awareness also means that applications
‘know’ where and how to present sensitive services
without compromising the user’s privacy.
One main challenge is that a pervasive user might
change his environment quite often. With change in
environment, his preferences potentially change.
Moreover, the state of available resources changes as the
user moves in time and/or space - new sensor nodes with
better quality of services may arrive; existing nodes may
fail, move, or, depending on their residual energy, report
wrong information [3].
Consequently, context aware applications must be
designed to receive data input from multiple sensors and
to adapt as the available sensors change over time. This
can be done if they are supported by a distributed,
efficient, and fast searching mechanism that provides
network resources at runtime.
To highlight our discussions, we give two brief, but
practical scenarios below.
Suppose Christian arrives at the University of Kassel to
attend a conference but he is not familiar with the
campus. At the entrance gate he signs as a guest to
download a context aware Campus Navigator application
that helps him find his way through the campus. The
application needs a location sensor; but Christian does
not have one on any of his mobile devices. Within his
Bluetooth proximity, there are three students (Janet,
Peter, and Phoebe) who happen to have location sensors,
and are willing to share their location context with him,
as their location is his location.
Peter has a GPS receiver, which gives absolute location
information; Janet uses her PDA infrared port to detect
infrared beckons which are distributed inside every
building, intended for indoors use; Phoebe uses short-
range RF transceiver to detect RF beckons, intended for
building-wise sensing.
Christian’s campus navigator dynamically selects
Phoebe’s location sensor to reach at the right building.
Such a sharing scenario is shown in Figure 1 and 2.

2

As Christian enters the conference room, another context
aware application that monitors the status of his mobile
devices begins querying in an ad hoc manner a set of
sensors for environmental data to determine Christian’s
activity.

Figure1 Dynamic Context sharing

Some of the data obtained are:

Sound Level = 12 dB
Light Intensity = 1000 Lux
Temperature = 20oC
Location = Uni-Kassel [Room-2343]
Collocated_ People = 75
Application Running = [PowerPoint]
Time = 9:00 AM

With these data, the application consults its codebook to
determine the setting in which its user is found. It
appears Christian is in a conference hall. Once the
setting is determined, the application refers previous
actions for the same setting. Then it takes the following
decisions: firstly, it lowers the volume of Christian’s
PDA; secondly, an audio reminder is played: “It appears
you are attending a conference; do you want to switch
off your mobile phone?”
The two scenarios above demonstrate some typical
features of context aware computing. The first scenario
demonstrates the fact that in a pervasive environment
either applications or the sensors they need, or both, may
not be a priori known. There must be a dynamic
discovery of resources everywhere, anytime; and these
resources must be shared between multiple users.
The second scenario exhibits the amount of sensor input
needed to undertake high-level context composition
without obstructing the user. Composition may involve
many atomic contexts that are directly sensed using a
physical sensor; or it may involve high-level data
processing entities, which make some form of context
transformation, such as context mapping or
interpretation, to a sensed data.
The location information, Location = Uni-Kassel
[Room-2343] is a typical example. It can be a result of
data first received from a GPS receiver and is then
mapped to a street address in Kassel; or it can be a

mapping of beacon ID that is obtained from an RF
receiver within the campus.
Both scenarios show that unlike many traditional
applications, context aware applications are data-driven
[4], in that they proactively collect data from a physical
environment at runtime. There is therefore an intensive
data flow between applications and service discovery
mechanisms to identify available resources. If the two
reside on separate devices and the media of
communications between them is a wireless link (as is
often the case in an ad hoc scenario) this may incur
considerable bandwidth consumption and processing
time.
In this paper we will discuss some service discovery
protocols (SDP) that are proposed for wireless sensor
networks and show some of their limitations. Once we
have done that, we will introduce our approach for an
improved performance. We will show how our approach
reduces both searching time and the amount of search
result data transmission.
This paper is organised as follows: section II discusses
typical challenges in resource sharing and previous
approaches to tackle them; section III introduces our
approach that is aimed at fast searching and minimising
the amount of search-result data transmission; and
finally section V gives a brief conclusion.

II SERVICE DISCOVERY PROTOCOLS
A “traditional” way of accessing sensed data uses a
warehouse approach, where data are extracted from
devices in a predefined way and stored in a centralised
database system that is responsible for query processing
[5]. Applications view the sensing network as a single
unit that supports high-level query language [6]. This
approach is suitable for fixed, task-specific1 sensor
networks. It has one major limitation, nevertheless: the
warehouse approach consumes network resources to
transfer large amount of raw data from devices to
databases. Besides, for mobile sensor nodes a centralised
approach may not scale.
Another approach is a distributed device database
approach [5], where the query workload determines the
data that are extracted from remote sites, and where
possibly a portion of the query is analysed locally on the
sensor node. Here nodes are capable of processing query
requests and have sufficient memory to save historical
sensed data. When applications are interested to query a
particular region of a sensor network, they flood the
entire network with their requests. In such a scenario,
nodes are aware of their own location (possibly via a
GPS sensor). So, nodes that cover the region in which an
application shows interest cooperate with one another to
make low-level data aggregation, thereby reducing the
amount of data that must be transmitted to the
application. This approach marginally optimises network

1 The task type of the network is known at the time the sensor network
is deployed; or the network may be reprogrammable and the task it
supports may change slowly overtime [4].

3

resources. However, it is still suitable for task-specific
networks, since all nodes must remain active, their radio
turned on, listening for a request. This may cause
considerable waste of node energy.
A more flexible and efficient approach uses a service
discovery protocol (SDP); not only to identify eligible
nodes but also to access important information such as
the type of data that can be provided by a node, the
mode2 in which the node can operate, transmission
power levels, and the current residual energy [7]. Such
data enriches an application’s knowledge regarding a
node and the quality of service it delivers.
In a simple SDP, such as the Bluetooth universally
unique identifier (UUID) [8], services register using a
universally unique ID. A request query for a given
service specifies the ID of the service it searches and
expects to receive either a positive or negative response
– no inexact matching is possible or required.
Another SDP approach, mostly used by Internet search
engines (such as Google), attempts to match the pattern
of keywords or attributes of a service description to a
request query. The service-requesting query may contain
a specific name and/or a set of one or more attributes.
The SDP attempts to match the query’s pattern with the
pattern of the service description its database contains. If
m out of n attributes match, the SPD deems searching a
success. If there are j services whose attributes overlap,
they may all be considered eligible and it is up to the
application to refine the inexact search response.
More sophisticated service discovery protocols use
semantic information associated with services to
improve the quality of service discovery. This allows
applications to set priorities, expected values of service
attributes, and some index of a match’s closeness [9].
The Jini [10] service discovery protocol and leasing
mechanism is one example. It uses a trio of protocols
called discovery, join, and lookup. A pair of these
protocols, discovery and join, occur when a resource is
plugged in; discovery occurs when a service is looking
for a lookup service with which to register; join occurs
when a service has located a lookup service and wishes
to join it. Lookup occurs when a client or user needs to
locate and invoke a service described by its interface
type.
Jini is a heavyweight SDP, most suitable for fixed
networks as opposed to wireless networks. For resource
constrained wireless sensor networks, however, it is slow
because access to individual sensors is object-based,
affecting the potential low-level energy saving by data
aggregation [7].
The Enhanced Bluetooth SDP [9] is another example
that handles searching beyond pattern matching. It uses a
semantic based service discovery mechanism by
implementing the Darpa Agent Markup Language and
Ontology Inference Layer (DAML+OIL) [12]. Here
searching is made rigorously to reduce the number of

2 Some nodes can operate as cluster nodes or gateway nodes. The
reader is kindly referred to [11] to get a better understanding of
different modes of operations in wireless sensor networks.

inexact request matching so that application side
processing is minimised, and to reduce the amount of
search result data transmission. The SDP, however,
imposes heavy computational and memory burden upon
resource-constrained devices. Besides, search is slow. In
the next section, we will discuss how we can improve
the performance of this SPD by introducing context-
based, hierarchical search suitable for wireless sensor
networks.

III. CONTEXT BASED NODE ORGANISATION
We aim at the following three important goals:

 Ease of application development by shielding
application developers from the worry of sensed
data collection.

 Enhance accuracy of search result through
systematic node organisation.

 Improve search time by using caching.

The choice of a specific SDP is mainly dictated by
processing time and bandwidth. If processing time is the
crucial issue at the side of the service discovery
mechanism, a pattern-matching algorithm yields a faster
response time. This is particularly useful if the discovery
mechanism has to accommodate a large number of
requests. But search result is inexact, and needs further
application side processing. If on the contrary,
bandwidth is a more important issue, and application
side processing should be avoided, semantic based
search is more effective since it minimises inexact
matching.
The main problem with semantic based search is that it is
rigorous and slow. If the SDP has to deal with a wide
range of resources and should accommodate a large
number of requests, it does not scale. Moreover, it causes
latency to sensed data [7].
By systematically balancing the two approaches, a better
performance can be attained. Consequently, we propose
a hierarchical search mechanism and the caching of
search results to improve the performance of a semantic
based SDP.
Unlike general-purpose communication networks,
resources supported by wireless sensor networks can be
hierarchically and ontologically classified based on the
type of context they sense and/or process. Figure 3
shows a layered architecture we propose to classify
network resources.
At the lower level we have sensors; they sense the
physical world directly. We classify them by the atomic
context they sense, such as seismic, acoustic, visual, etc.
The second layer contains nodes, which are responsible
to gather raw data from child sensors for a low-level data
aggregation. We classify aggregator nodes as
homogeneous and heterogeneous aggregators.
Homogeneous aggregators receive raw data from
homogeneous sensors. For example, a temperature
aggregator node receives a raw data from many
temperature sensors within a certain region to calculate
the average temperature. A heterogeneous aggregator

4

receives raw data from heterogeneous sensors. For
example, to resolve the identity and orientation of a
moving object a node may require raw data from motion
sensors and a digital camera.
At a given time a sensor node may be found in either or
both of the last two layers, though it is costly for a
wireless node both to sense and to aggregate sensed data
at the same time.
The third layer is a mediation layer; it facilitates node
discovery. It contains at least one SDP and a number of
node organisers (NO). We discuss node organisers
shortly. Through the mediation layer, context aware
applications identify the suitable set of sensor nodes at
runtime in a dynamic and scalable fashion.
Figure 2 shows our layered architecture for wireless
sensor networks.

Figure 2. A layered architecture to represent wireless
sensor nodes

Once we arrange resources as described above, we take a
two-tier approach to the mediation layer in order to make
searching more efficient and fast.
At a primary level, a lightweight pattern-matching search
identifies services that closely match to a request query.
If this search resolves only to a single node, no further
semantic based search is necessary. Search result is
immediately returned to the application. If, however, a
pattern-matching result has resolved to a large number of
nodes and further refinement is required, a secondary
level, semantic based search is carried out by an NO per
context.
We restrict a given NO to specialise in a particular
resource at a given layer. A location sensor node
organiser, for example, is responsible only for location
sensors or aggregators, and can handle a semantic based
search only for location sensor nodes. By this we make
sure that search at the NO is lightweight, faster, and
more accurate.
We assume reasonably that a patter-matching search can
resolve in which class of resources a request query is
interested. In the first scenario of section I, for example,
we see the Navigator searching for a location sensor.
Once the context of a node is identified, an NO that has
semantic-based information for that particular context
carries out the rest of the assignment.
Since we invoke an NO to carry out a rigorous search
only for a particular context, searching time is by far
smaller than searching through a general-purpose
resource discovery database. Another shortcoming of
almost all service discovery protocols we discussed so

far is that a new search must be made every time a
search query is received. If two applications are
interested for a particular sensor node at the same time or
in closer time interval, the SPD does not keep history of
previously made search results. Therefore it has to
process search query again and again. In our approach,
all Node Organisers keep a history of previously made
search results, the latency of which is determined by the
nature of the wireless sensor network.
When an NO receives a pattern-matching search result
from a service discovery mechanism or a request query
directly from an application, it first consults its history to
see if a similar query has been handled previously before
it carries out a semantic search; if yes, then it pings the
node for availability. If the node is still available, then no
semantic search is needed. Only otherwise, will it carry
out a rigorous, semantic based search.
Figure 3 shows our hierarchical service discovery
approach.

Figure 3. A hierarchical service discovery approach for

a wireless sensor network

IV. CONCLUSION
Identifying the right sensor nodes at the right time to
extract context data from a physical environment is a
challenge of context aware applications. Consequently, a
scalable and fast service discovery protocol suitable for
wireless sensor networks is important.
In this paper we studied some existing distributed service
discovery protocols since wireless sensor networks share
many properties with traditional distributed systems. We
showed that most service discovery protocols either
return inexact search results to gain processing time, or
impose computational and memory burden on resource-
constrained mobile devices. Therefore, we proposed a
context dependent, hierarchical, and semantic-based
SDP (service discovery protocol) to avoid inexact search
results while maintaining small processing time. We also
showed how our approach improves processing time by
keeping the history of previous search results.

ACKNOWLEDGMENT

We would like to acknowledge partial funding of the
German “Bundesministerium für Bildung und Forschung

Applications

Mediation

Aggregators
Physical Sensors

5

(BMBF)” in the framework of the Wireless Internet
Projects.

REFERENCE
[1] G. J. Pottie and W. J. Kaiser, “Wireless Integrated

Network Sensors,” Communication of the ACM,
Vol. 43, No. 5, May 2000 pp. 51-58.

[2] “Smart Dust training seminar,” Crossbow
Technology, San Jose, CA, 2004.

[3] Umar Saif, “Architectures for Ubiquitous
Computing,” Ph. D dissertation, University of
Cambridge, UK, 2002.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin,
“Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks,”
IEEE/ACM Transactions on Networking, Vol. 11
No. 1 February 2003.

[5] P. Bonnet et al., “Querying the Physical World,”
IEEE Personal Communication, October 2000,
pp. 10-15.

[6] Philip B. Gibbons et al., “Iris Net: An
Architecture for a Worldwide Sensor Web,” IEEE
Pervasive Computing, October 2003, pp.22-33.

[7] W. Heinzelman et al., “Middleware to Support
Sensor Network Applications,” IEEE
Transactions on of Networking, January 2004,
pp. 6-14.

[8] http://www.bluetooth.com
[9] S. Avancha, A. Joshi, and T. Finin, “Enhanced

Service Discovery in Bluetooth,” IEEE Comp.,
Vol 35, No. 6, June 2002 pp. 96-99.

[10] http://www.java.sun.com
[11] W. B. Heinzelman, A. P. Chandrakasan, and H.

Balakrishnan, “An Application-Specific Protocol
Architecture for Wireless Microsensor
Networks,” IEEE Transaction on Wireless
Communications, Vol. 1, No. 4, October 2002, pp.
660-670.

[12] http://www.w3c.org

