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Recognition  
of Complex Settings 
by Aggregating 
Atomic Scenes
Waltenegus Dargie and Tobias Tersch, Technical University of Dresden

This approach imitates 

human reasoning 

to enable flexible 

context recognition. 

Its usefulness is 

demonstrated by 

employing audio-

signal processing 

to recognize several 

everyday situations.

One important aspect of ubiquitous computing is context awareness, which aims 

to establish a shared understanding of the user’s social and conceptual settings 

(contexts). Establishing such a shared understanding can be simple or complex. By sim-

ple, we mean that you can easily obtain the necessary sensors and can map the sensed

data to a meaningful setting. In most cases, how-
ever, the process is complex and the end result is 
uncertain. In the latter situation, context acquisi-
tion involves modeling and reasoning about the 
characteristics of and relationships between sev-
eral entities.

Most approaches to context reasoning model 
complex settings (higher-level contexts) as mono-
lithic scenes rather than aggregations of distinct 
scenes. For example, recognition of a street setting 
on the basis of features extracted from an audio sig-
nal requires an existing model of a street. To pro-
duce the model, such approaches will take audio 
signals from various streets, analyze these signals’ 
stochastic properties, and extract the most represen-
tative (and independent) features. However, these 
approaches don’t separate the signals according to 
the scenes that make up the complex setting (cars, 
pedestrians, street bands, and so forth).

In reality, a street setting isn’t a result of a sta-
tionary mix of different events but rather a com-
plex mix of time-variant events. For example, the 
frequency and types of cars passing by change con-
tinuously. A recognition scheme can deal with this 
type of dynamic only if it can separate the street’s 
stationary scenes from the transient scenes. More-

over, by modeling the scenes independently and es-
tablishing a relationship between them, we can de-
fine a higher-level context declaratively.

We model complex settings as an aggregation 
of distinct atomic scenes. To support declarative 
context aggregation, we provide a conceptual ar-
chitecture that enables a systematic modeling and 
gradual reasoning of complex settings. Applying 
our architecture to auditory-based context recog-
nition, we’ve modeled seven everyday situations 
with more than 20 atomic scenes, achieving high 
recognition rates for both the atomic scenes and 
complex settings.

A conceptual architecture  
for context recognition
Humans recognize complex settings by perceiving 
individual settings and examining the relationships 
between them. Their certainty of the perceived set-
ting depends on how well they have gathered and 
interpreted data from their surroundings. It also 
depends on the presence or absence of some vital 
scenes that constitute the setting. A complex setting 
consists of individual settings unfolding in a cer-
tain order. Moreover, by combining individual set-
tings from their memory, humans can imagine set-
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tings they have never experienced. For example, a person who never 
watched a symphony orchestra playing Beethoven can imagine it by 
combining pictures of individual scenes of an orchestra from his or 
her experience.

Our aim is to imitate human-like reasoning. Proper imitation 
will lead us to

improve context recognition accuracy and
declaratively define an entirely new setting by aggregating known 
individual scenes.

To this end, we propose the four-layered conceptual architecture in 
Figure 1.

The architecture’s bottom layer (the raw-sensor-data layer) con-
sists of an array of physical sensors embedded in mobile devices or 
carefully placed in physical environments.

The second layer extracts primitive features (contexts). A primi-
tive context represents a single, indivisible aspect of a certain phe-
nomenon or physical entity (device, place, person, and so forth). It’s 
a meaningful interpretation of raw sensed data. Because it’s primi-
tive, it’s extracted either from a single sensor or from multiple sen-
sors representing the same aspect. Unlike a higher-level context, 
whose meaning is application-specific, a primitive context can be 
useful for recognizing several higher-level contexts.

The third layer constructs atomic scenes. The premise for this 
layer is that most everyday settings consist of distinct scenes, and 
multiple settings can have several scenes in common. If the sys-
tem recognizes these scenes and stores their models separately in a 
knowledge base, it can reuse them to declaratively define complex 
settings for which it hasn’t previously been trained.

For example, we can describe a meeting setting by the flipping 
of papers, conversations, and occasional whispers. We can describe 
a lecture by a monotonous oration, flipping of papers, occasional 
coughs, sporadic whispers, the sound of writing with chalk on a 
blackboard, and so forth. These two settings share the flipping of 
papers and whispering. A context-recognition system can therefore 
exploit this knowledge to accommodate the definition of a meeting 
or a lecture even though it has never been trained to recognize ei-
ther of these two contexts.

The fourth layer handles context recognition. It employs a de-
terministic or probabilistic reasoning scheme or a combination of 
both (for more on these approaches, see the “Related Work in Con-
text Recognition” sidebar on p. 60). It aggregates evidence from 
the third layer, establishes logical or probabilistic relations be-
tween the atomic scenes the system has already recognized, and 
computes a higher-level context. The layer takes into account do-
main knowledge of the mutual occurrence of the atomic scenes.

Common to all layers except the raw-sensor-data layer is the 
knowledge base. It comprises facts that constitute an applica-
tion domain’s vocabulary and a list of assertions about individ-
ual named entities in terms of this vocabulary. The vocabulary 
consists of concepts, which denote sets of entities, and relations, 
which denote binary relationships between these entities. The 
knowledge base also allows the building of complex descriptions 
of concepts and relations. The system uses this knowledge to ex-
tract meaningful features from sensors, classify atomic scenes, 
and model relationships between the atomic scenes to recognize 
higher-level contexts.

•
•

Auditory-based context recognition
We chose auditory signals for three reasons. First, among the hu-
man senses, hearing is second only to vision in recognizing social 
and conceptual settings; this is due partly to the richness in infor-
mation of audio signals. Second, you can embed cheap but practi-
cal microphones in almost all types of places or mobile devices, 
including PDAs and mobile phones. Finally, auditory-based con-
text recognition consumes significantly fewer computing resources 
than camera-based context recognition.

To better explain the implementation of our architecture for audi-
tory-based context recognition, we offer here a summary of digital 
audio-signal processing.

Even though auditory-based context recognition is similar to 
speech recognition, there are several differences. For example, in 
speech recognition, knowledge of human perception (tone, pitch, 
loudness, and so forth) is useful to disambiguate an uttered speech. 
This is possible because

the speaker isn’t far from the microphone and speaks sufficiently 
loud, and
no significant hindrance exists between the speaker and the 
microphone.

This isn’t the case with auditory-based context recognition. 
First, the audio-signal amplitude representing a user’s surrounding 
isn’t appreciably large because the audio sources might be farther 
from the user (the microphone). Moreover, the device with the em-
bedded microphone might be hidden in a suitcase or pocket. So, 
auditory-based context recognition can’t achieve the same accu-
racy as speech recognition.

Extracting audio features
The statistical properties of audio signals representing most every-
day settings aren’t stationary. To extract features that represent tem-
poral and spectral aspects, audio-based recognition systems divide 
the audio data stream into small time frames that can then be con-
sidered quasi-stationary. Some overlap between the frames is desir-
able; typically, the overlap is between 25 and 50 percent. A frame’s 
duration is usually between 10 and 50 milliseconds, depending on 
the desired recognition accuracy and computation time. Further pro-
cessing isn’t necessary to extract temporal features, but at least two 
additional steps are necessary to extract spectral properties.

•

•

Context
recognition
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recognition

Primitive features
(context)

Raw sensor
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Figure 1. A 
conceptual 
architecture for 
recognition of 
complex settings. 
This architecture 
allows a 
recognition 
system to mimic 
human reasoning.
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Owing to the abrupt separation of neighboring frames, high- 
frequency components will emerge at both edges of each frame. 
This frequency leakage should be removed (or at least its effect 
should be minimized) through a windowing operation, a filtering 
process that multiplies each frame with a window function that 
decays rapidly toward the edges. Before this process, however, 
we want to smooth the spectrum and enhance the high-frequency 
components by passing the frames through a first-order, finite- 
impulse-response preemphasis high-pass filter:

ssp(n) = s(n) − s(n − 1)

In this equation, ssp(n) is the improved nth sample of a frame, s(n) 
is the original nth sample, s(n − 1) is the original n − 1th sample, 

and µ is a unitless quantity, which normally ranges between 0.90 
and 0.98. For the windowing operation, we use a standard Hem-
ming window, which we can describe as

sw(n) = {0.54 − 0.46 × cos(2π(n − 1)/(N − 1))} × ssp(n)

where sw(n) refers to the nth sample of a frame that has passed 
through a Hemming window and N is the number of samples in a 
frame.

Mel-frequency cepstral coefficients (MFCCs) are the most fre-
quently used features for classifying auditory data. They represent 
frequency bands that are Mel-scaled to approximate the human 
auditory system’s response more accurately than linearly spaced 
frequency bands obtained directly from a fast Fourier transform 

trolled conditions was 96 percent (true positive) and 100 per-
cent (true negative).

Filip Bonnevier employed Bayesian networks to recognize 
25 different contexts from 21 MPEG-7 features with a 69 per-
cent recognition rate.9 Interestingly, the context recognition 
ran on a pocket PC.

Table A summarizes the audio-based context-recognition 
schemes, their recognized contexts, and their recognition 
accuracies.
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A context recognition (reasoning) process can be determin-
istic, probabilistic, or both. Deterministic context reason-
ing classifies sensed data into distinct states and produces a 
distinct output that can’t be uncertain or disputable. Prob-
abilistic reasoning, on the other hand, considers sensed 
data to be uncertain input and thus outputs multiple con-
textual states with associated degrees of truthfulness.

Several researchers have proposed probabilistic-reason-
ing techniques for context reasoning. These techniques dif-
fer according to the type of context they recognize and the 
types of sensors they employ.

Nicolas Moeënne-Loccoz, François Brémond, and Mo-
nique Thonnat proposed Bayesian networks to recognize 
various human activities on a street (aggressive behavior, 
casual talk, and play); they obtained sensed data from a 
camera.1 Huadong Wu employed a camera and several mi-
crophones to reason about the attention of people during 
a meeting session.2 He applied the Dempster-Shafer theory 
of evidence to combine data from microphones with data 
from an omnidirectional camera.

Jani Mäntyjärvi, Johan Himberg, and Pertti Huuskonen 
proposed k-means clustering and minimum-variance seg-
mentation algorithms to process data from a skin conduc-
tance sensor, a microphone, a light sensor, an accelerometer, 
and a temperature sensor, to recognize a mobile device’s 
status and its user’s activity.3 Device status refers to whether 
the device is in the user’s hands, on a table, or inside a suit-
case; user activity refers to walking, running, or going up or 
down a staircase.

Some researchers have focused particularly on process-
ing audio signals to recognize various everyday human 
situations. Vesa Peltonen and his colleagues classified 
auditory scenes into predefined classes by employing two 
classification schemes: a 1-NN (1-nearest neighbor) classi-
fier and Mel-frequency cepstral coefficients (MFCCs) with 
Gaussian mixture models.4 The auditory scenes comprised 
several everyday outdoor and indoor situations (streets, 
restaurants, offices, homes, cars, and so forth). The fea-
tures extracted from audio signals for classification were 
time and frequency domain features and linear prediction 
coefficients. Altogether, the classification systems clas-
sified 17 indoor and outdoor scenes with an accuracy of 
68.4 percent.

For their experiment, Peltonen and his colleagues con-

sidered various configurations: a binaural setup (a Brüel & 
Kjaer 4128 head and torso simulator), a stereo setup (AKG 
C460B microphones), and a B-format setup, which contains 
3D information of the audio event being recorded (Sound-
Field MkV microphone). They recorded the sounds on a digi-
tal multitask recorder with a 16-bit, 48-kHz sampling rate 
and on a Sony (TCD-D10) digital audio tape recorder with a 
16-bit, 48-kHz sampling rate.

Antti Eronen replaced the two classifiers that Peltonen 
and his colleagues used with hidden Markov models (HMMs) 
to imitate human hearing sensitivity and to increase recogni-
tion accuracy up to 88 percent.5

Ling Ma, Dan Smith, and Ben Milner also employed HMMs 
and MFCCs to recognize 10 auditory scenes.6 By varying the 
hidden states of the Markov models, they achieved different 
recognition rates. With only three hidden states, the classi-
fier achieved 78 percent context recognition; with 15 hidden 
states, it achieved 91.5 percent recognition. Remarkably, 
context recognition declined for more than 15 hidden states. 
Dan Smith, Ling Ma, and Nick Ryan extended this research by 
introducing a belief revision mechanism that increased the 
recognition rate to 92.27 percent and the number of recog-
nized contexts to 12.7

Panu Korpipää and his colleagues employed a naive Bayes-
ian classifier and an extensive set of audio features derived 
partly from the algorithms of the MPEG-7 standard.8 They 
based the classification mainly on audio features measured 
in a home scenario. To collect the data, Korpipää and his col-
leagues used an extra-small sensor box attached to a shoul-
der strap of a backpack containing a laptop. When collect-
ing scenario data, researchers wore the backpack. A cordless 
mouse controlled the measurement system to mark the sce-
nario phases. The microphone was a small, omnidirectional 
AKG C 417/B.

With a resolution of 1 second in segments of 5–30 seconds 
and using leave-one-out cross-validation, Korpipää and his 
colleagues achieved a recognition rate of 87 percent of true 
positives and 95 percent of true negatives, averaged over 
nine 8-minute scenarios containing 17 segments of different 
lengths and nine different contexts. The reference accura-
cies measured by testing with training data were 88 percent 
(true positive) and 95 percent (true negative), suggesting 
that the model can cover the variability introduced in the 
data on purpose. Reference recognition accuracy in con-

Related Work in Context Recognition

Table A. Audio-based context-recognition schemes.

Authors
Primitive features 
(contexts) Classifier

Recognition 
accuracy (%) Context

Peltonen  
et al.4

Temporal, spectral,  
Mel-frequency cepstral  
coefficient (MFCC)

k-nearest neighbor  
(k-NN) and Gaussian  
mixture model (GMM)

68.4  
(17 of 26 contexts)

Bathroom, street, church,  
car, supermarket, office

Eronen 
et al.5

MFCC Hidden Markov  
model (HMM)

Between 61 and 85 
(18 contexts)

Library, office, lecture,  
train, bus

Ma, Smith, 
and Milner6

MFCC HMM 91.5  
(10 contexts)

Bar, beach, bus, lecture,  
office, street, launderette

Smith, Ma, 
and Ryan7

MFCC HMM 92.27  
(12 contexts)

Bus, car, presentation,  
supermarket, train, office

Korpipää 
et al.8

MPEG-7 Naïve Bayesian  
classifier

88 
(9 contexts)

Running, walking, music, 
speech, elevator, tap water, car

Bonnevier9 Spectral, temporal,  
MPEG-7

Bayesian network 69  
(25 contexts)

Street, car, bus, cooking,  
TV, kitchen, living room
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(FFT) or a discrete cosine transformation (DCT). Such represen-
tations allow context-recognition schemes to “perceive” their sur-
roundings as humans would perceive theirs.

To obtain MFCCs, we perform an FFT; the result passes through 
a bank of triangular filters called Mel-filters (see Figure 2 on p. 62) 
to produce the Mel-spectrum. The number of filters can vary, but 
as a rule, speech recognition uses 23 filters. These filters are equi-
distant in the Mel-frequency domain, with a 50 percent overlap be-
tween adjacent filters. The following equation computes the center 
of each triangular filter:
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where ci is the ith cepstral coefficient, fi is the ith frequency 
component, N is the number of the triangular filters, and M is 

trolled conditions was 96 percent (true positive) and 100 per-
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Filip Bonnevier employed Bayesian networks to recognize 
25 different contexts from 21 MPEG-7 features with a 69 per-
cent recognition rate.9 Interestingly, the context recognition 
ran on a pocket PC.
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accuracies.
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the number of the extracted MFCCs. In this way, we set the 
dimension of the feature vectors; the typical dimension is 13.

To weaken the effect of very low and high orders of the cep
stral coefficients, we need to subject the MFCCs to a “band-
pass filtering” process called liftering. The following equation 

displays a typical liftering function:

 
 c
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where ci is the corrected cepstral coeffi-
cient, c is the ith uncorrected cepstral coef-
ficient, and L is a liftering factor.

Recognition
Feature extraction quantizes the audio sig-
nal and transforms it into various char-
acteristic features. This results in an n- 
dimensional feature vector representing 
each audio frame. A classifier then takes 
this feature vector and determines what it 
represents—that is, it determines an audi-
tory scene.

Several recognition techniques are read-
ily available, most of which we mention in 
the sidebar. The three most common are 
k-nearest neighbor (k-NN) classifiers, hid-
den Markov models (HMMs), and Bayesian 
networks.

Implementation
We selected these seven higher-level con-
texts: office, cafeteria, library, tram, street, 
lecture, and train. Table 1 lists these set-
tings along with the associated atomic 
scenes.

We chose the atomic scenes on the ba-
sis of how well they represented the higher-
level settings and how accurately they could 
be recognized.

The raw-sensor-data layer consisted of 
commonplace microphones embedded in 
ordinary laptop PCs during the training and 
test phases. Moreover, we recorded the au-
dio signals without much preparation to im-
itate how users handle their mobile devices 
while moving or carrying out other more 
important activities.

We implemented the second layer by 
adopting the OC-volume framework (http://
ocvolume.sourceforge.net). Even though the 
framework was initially intended for speech 
recognition, we could reuse it for extract-
ing MFCCs and for vector quantization, 
using the LBG (Linde, Buzo, and Gray) al-
gorithm.1 However, we had to modify the 
algorithm to

model time dependency in the audio signals and
increase the signals’ bandwidth to accommodate the surrounding 
noise’s dominant frequencies.

As a result, we could consider ranges of frequencies between 30 and 

•
•

Figure 2. A triangular filter bank. The filters’ response has a linear frequency 
spacing below 1,000 Hz and a logarithmic spacing above 1,000 Hz. HMel(f) denotes a 
normalized magnitude spectrum.
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Table 1. Higher-level contexts defined declaratively  
as aggregations of atomic scenes.

Higher-level context Individual scenes

Office Clacking of keyboard
Conversation
Mouse clicking
Telephone conversation
Telephone ringing

Cafeteria Background noise
Chair movement
Clacking of cash register keys
Clattering dishes
Conversation

Library Chair movement
Clacking of keyboard
Coughing
Door opening and closing
Flipping pages
Mouse clicking
Whispering

Tram Station announcement signal
Background noise
Door-closing warning
People getting on and off

Street Moving cars
People walking and talking
Background noise

Lecture Background noise
Chair movement
Coughing
Flipping pages
Oration
Whispering
Writing on a chalkboard

Train Background noise
People getting on and off
Conversation
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10,000 Hz. For speech recognition, the frequency of interest is be-
low 3,400 Hz.

To realize the atomic-scene layer, we chose a k-NN classifier be-
cause of its simplicity. It also classifies a large number of scenes in 
an acceptable recognition time. The classifier performs a class vote 
among the k-nearest neighbors on a point to be classified. A Euclid-
ean distance, d, between the points determines which atomic scenes 
are represented by the extracted MFCCs. We set k = 1. Vesa Peltonen 
and his colleagues demonstrated that classification with k greater 
than 1 yields no significant improvement in recognition accuracy.2

Table 2 displays the atomic scenes we could recognize, the rec-
ognition accuracy, and the deviation, with the atomic scenes that 

were wrongly recognized. The quality of the recognized atomic 
scenes depended on how distinct they were from other atomic 
scenes. It also depended on the recorded audio signal’s quality.

We chose a Bayesian network to model relationships between 
the higher-level contexts and the atomic scenes and to recognize 
a higher-level context. We used the JavaBayes framework (www.
cs.cmu.edu/~javabayes/index.html) to implement the knowledge 
base and the context-recognition layer. The knowledge base stores 
models of the Bayesian network structure as well as conditional-
probability distributions.

The Bayesian classifier establishes a network based on the 
atomic scenes recognized in the lower layer. We applied heuristic  

Table 2. Recognition accuracy of atomic scenes.

Atomic scene Recognition rate (%) Deviation (%), with incorrect classifications

Car 100 0

Flipping pages 100 0

Door opening and closing 91 Background noise, Tram: 9

Chair movement 80 Background noise, Tram: 20

Door-closing warning 100 0

Clattering dishes 50 Coughing: 50

Coughing 100 0

Background noise, Tram 87.5 Oration: 12.5

Writing on a chalkboard 80 Whispering: 20

Whispering 56 Background noise, Lecture: 44

Oration 75 Background noise, Cafeteria: 10
Conversation, Office: 5
Background noise, Lecture: 5

Conversation 72 Oration: 18
Background noise, Train: 10

Background noise, Street 58 Writing on a chalkboard: 23
Background noise, Cafeteria: 19

Background noise, Lecture 40 Whispering: 60

Mouse clicking 94 Flipping pages: 4
Clacking of keyboard: 2

Background noise, Train 100 0

Station announcement signal 0 Poorly captured audio signal

Clacking of keyboard 79 Mouse clicking: 10
Background noise, Library: 6
Door opening and closing: 3
Coughing: 1
Background noise, Train: 1

Conversation, Telephone 100 0

Background noise, Cafeteria 65 Conversation: 25
Station announcement signal: 5
Chair movement: 5

Background noise, Library 62 Clacking of keyboard: 32
Mouse clicking: 6

Overall recognition rate 69.92
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observations for establishing the conditional dependencies between 
the atomic scenes and the higher-level contexts. Figure 3 shows our 
Bayesian network.

Bayesian networks apply Bayes’s theorem to model probabilistic 
relationships among distinctions of interest in uncertain reasoning. 
The networks are directed acyclic graphs (DAGs) in which nodes 
represent random variables and a directed arrow represents a con-
ditional dependency between the variables. A particular configura-
tion of a Bayesian network refers to an instantiation of the random 
variables with values from a 2D value vector. A particular configu-
ration’s likelihood is determined by the sum of the products of the 
associated conditional probabilities.

A Bayesian network obeys the Markov condition for mathemati-
cal and computational tractability. So, a node is conditionally inde-
pendent of its nondescendants given its parent in G, the network’s 
graph topology. Mathematically, we express this as

 
 p n n n p n parent nj j j

j

N

1 2
1

, ,..., |( ) = ( )( )
=

∏

where n1, n2, …, nj are the possible values of the network’s random 
variables, and p refers to probability.

Once we establish a Bayesian network and define the degree 

of independence between random variables, 
even partially, it’s possible to carry out three 
essential tasks.3 First, because the model 
encodes dependencies among all variables, 
it can readily reason about situations where 
some data entries are missing. Second, we 
can train the network to learn causal rela-
tionships and hence use it to understand a 
problem domain and to predict the conse-
quences of intervention. Finally, because 
the model has both causal and probabilis-
tic semantics, it’s ideal for combining prior 
knowledge (which often comes in causal 
form) and data.

Discussion
Table 3 lists our higher-level contexts and the 
corresponding atomic scenes that contribute 
to their recognition. The last column lists the 
normalized percentage of each atomic scene’s 
contribution. The percentage doesn’t add up 
to 100 percent because the list doesn’t include 
erroneous atomic scenes.

The higher-level context with the lowest 
recognition rate is a street (37 percent). In 
fact, the spurious cafeteria context had higher 
recognition accuracy—47 percent. Interest-
ingly, the Bayesian classifier could recognize 
a cafeteria with 100 percent accuracy without 
mistaking it for a street or another contending 
setting. This implies that context recognition 
is asymmetric—a context’s recognition accu-
racy depends on not only how well it’s repre-
sented by the atomic scenes but also whether 
the captured auditory test signal typically 
represents the setting. For our case, for exam-

ple, the test signal came twice from a street with little activity, and 
the activities at a nearby cafeteria dominated the recording. Predict-
ably, this led to a wrong conclusion.

On the other hand, page flipping might seem difficult to rec-
ognize because it isn’t loud. We could, however, recognize it with 
100 percent accuracy. This is because the atomic scene was associ-
ated with a lecture and a library, where the background noise and 
other atomic scenes could be distinctly discerned. Moreover, as 
we trained and tested our system, we placed a laptop with a micro-
phone near the user who was reading and flipping pages.

The least-recognized scene—in fact, the system didn’t recognize 
it at all—was chair movement in a library. The system sometimes 
mistook an oration in a lecture room for a conversation in an office 
or cafeteria, which is understandable.

We were interested in comparing our results with others’, but this 
wasn’t easy. Some research reports conceal a wealth of information. 
Maybe this is because recognition accuracy depends on not only the 
particular schemes or features employed but also many other fac-
tors. To begin with, it depends on the types of contexts to be recog-
nized. The larger and more similar the context types, the harder it 
is to distinguish between them. Recognition accuracy also depends 
on the test signal’s length, the audio signal’s sampling rate, the  

Driving car

Flipping pages

Whisper

Background

Conversation

Door-closing warning

Chair movement

Writing on a chalkboard

Clattering dishes

Mouse clicking

CoughingTelephone ringing

Clacking of cash register keys

Context

Station announcement signal

Clacking of keyboard

Oration

Figure 3. A Bayesian network for establishing conditional dependencies between 
higher-level settings and atomic scenes. The child nodes represent the atomic 
scenes, and the parent node represents the higher-level contexts. Altogether, 
the parent node can have seven different values depending on the network 
configuration.
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MFCCs’ size, and the size of the code book of the vector quantiza-
tion process. Subsequently, a trade-off always exists between recog-
nition time and recognition accuracy.

More important, the recording devices used and the audio signal’s 
length and duration influence context-recognition accuracy. Using ex-
pensive, bulky, and power-hungry audio devices might yield remark-
able accuracy, but using them in everyday situations, particularly in 
mobile environments, isn’t feasible.

The research that comes closest to ours is that of Peltonen and his 
colleagues and Antti Eronen (see the sidebar). Our atomic-scene-
recognition accuracy is similar to theirs, but we achieved recog-
nition accuracy through commonplace microphones and ordinary 
laptop computers as compared to the sophisticated devices they 
used to record audio signals. Moreover, our approach can be gener-
alized to accommodate sensors other than microphones, while their 
approaches are limited to audio-based context recognition.

Our experience demonstrates the difficulty of context rec-
ognition using a single context source—namely, an audio 

signal. Humans aptly apply other faculties besides hearing to ap-
propriately perceive their surroundings. This justifies the need for 
heterogeneous sensing.

We’re interested in investigating the possibility of deploying—at 
least in part—audio-signal-processing algorithms on wireless sen-

sor nodes. This will enable us to gather and process surrounding 
acoustic information and to better interface the physical world with 
the virtual world.
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Table 3. Recognition of complex settings by aggregating atomic scenes.

Higher-level context
Correctly and incorrectly  
recognized contexts (%)

Distribution of the correctly  
recognized atomic scenes (%)

Library Library: 67
Office: 33

Clacking of keyboard: 25.17
Mouse clicking: 23.87
Door opening and closing: 20.86
Chair movement: 7

Office Office: 90
Train: 10

Conversation, Telephone: 70.7
Clacking of keyboard: 25.17
Mouse clicking: 3.7

Cafeteria Cafeteria: 100 Background noise, Cafeteria: 51.86
Conversation: 32.8
Clattering dishes: 7.4

Street Street: 37
Cafeteria: 47
Lecture: 10
Train: 5

Moving cars: 51.49
Chair movement: 10.89
Background noise, Street: 10
Conversation: 8.49
Background noise, Cafeteria: 7.4

Tram Tram: 75
Cafeteria: 25

Background noise, Tram: 70
Station announcement signal: 7

Train Train: 40
Library: 40
Lecture: 15
Office: 5

Background noise, Train: 87.67
Conversation: 9.4

Lecture Lecture: 100 Oration: 36.53
Chair movement, Lecture: 26.03
Background noise, Lecture: 15.19
Writing on chalkboard: 8.22
Whispering: 6.4

Overall recognition rate 72.71
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