
Managing Context Rules in Mobile
Devices

Waltenegus Dargie

Chair of Computer Networks, Faculty of Computer Science, Technical University of Dresden
D-01062 Dresden, Germany

waltenegus.dargie@tu-dresden.de

Abstract. An essential aspect of Mark Weiser’s vision for ubiquitous comput-
ing is that computers become “invisible”, demanding very little attention of
their users. For this to happen, computers should be able to establish a shared
understanding of the conceptual and social settings in which they operate, i.e.,
they should be context aware. This paper addresses one aspect of context-
awareness, namely the management of context rules in mobile and wearable
devices. Context rules are employed to predict higher-level human situations
(activities), and to actuate desirable operations which are suitable to these situa-
tions. Because context rules are application specific, they are defined by appli-
cation developers and users. So far, little consideration is given in the literature
to take the habit (experience) of users into account to dynamically generate and
manage context rules. In this paper we will provide a framework to associate
decision events (signifying the actions performed by a user) with numerous
context types which describe a situation of interest. From an aggregate of deci-
sion-context associations we generate context rules which enable mobile de-
vices to proactively provide useful services.

1. Introduction

A little over a decade ago, Mark Weiser asserted that in less than 20 years, ubiquitous
computing would become dominant, and computers will cease to be obtrusive. More-
over, a single user would interact not just with one, but with many devices, each of
which is “so imbedded, so fitting, so natural, that we use it without even thinking
about it [1]”. Since then, indisputable achievements have been made to substantiate
his assertion: Whereas once it has been considered to be a revolution to provide indi-
viduals with personal computers, it is now an everyday practice to carry with us sev-
eral mobile devices and communicate with them on the spur of the moment [2]. The
devices with which we interact are, however, everything but invisible; we still switch
off our mobile phones or set their ringing style to vibration mode manually whenever
we attend meetings, lectures, etc., or forget to do so and end up upsetting others as
well as ourselves. Furthermore, despite significant advances in the communication
and networking technologies as well as interactive office and home appliances, by
and large, human intervention is required to decide whether and how our devices

 1

should cooperate with each other. Subsequently, the increment in the ratio of mobile
devices to a user causes distraction where it should make everyday life more manage-
able [3].
If mobile and wearable devices are able to capture what is taking place around them
(i.e., if they become context-aware), they can provide suitable services proactively,
and adapt to their surrounding autonomously.
Context-awareness can be achieved in two stages: First, the desired context of a user
or a device needs to be captured; second, an operation corresponding to the context of
interest needs to be specified. Both process entail the definition and management of a
set of context rules, which are useful (1) for inferring higher-level human situations
(activities) from numerous explicit context types that can directly be captured by
employing sensors [4, 5]; and (2) for actuating certain operations inside mobile de-
vices whenever a context of interest is captured and a condition is evaluated to be true
[6].
In this paper, we will discuss the role of context rules in detail and propose a frame-
work that enables mobile devices to dynamically generate (at least in part) context
rules by associate a user’s activities with a context in which the activities unfold. The
decision-context associations are eventually employed to dynamically generate con-
text rules.
The rest of this paper is organised as follows: in section II, we will discuss the way
context rules can be organised in context-aware systems and applications; in section
III, we will summarise related work; in section IV, we will consider three different
scenarios for which the dynamic generation of context rules applies; in section V, we
will discuss decision-context associations as well as event expression semantics; in
section VI, we will discuss the components of the architecture, followed by experi-
ment results in section VII. Finally, in section VIII, we will close by providing con-
cluding remarks and future work.

II. Context Rules

Context rules are essential components by which certain criteria are evaluated to
determine how mobile devices should adapts to a context. Figure 1 shows the way
rules are embedded into context-aware applications. Because context rules are appli-
cation-specific, they are usually specified either at design time by the application
developer or at runtime by the user of the application. User-defined rules are often
simple rules describing simple behaviour, since user side operation should avoid
excessive cognitive load for the application to be relevant to the user.
Defining context rules at design time and embedding them into an application’s busi-
ness model ensures a side-effect free modification of behaviour. Moreover, it enables
the designer to specify a mechanism (identify the types of sensors) for capturing the
explicit context types. This approach, however, should be complemented by a learn-
ing scheme so that the system can accommodate new context types which are not
expressed in a rule at design time, but may as well reveal some vital aspects of a
situation of interest. This is particularly true if there are multiple ways of capturing
complex human situations, such as human activities or emotional states [7].

 2

Figure 1: A context rule definition and processing component as a part of a context-aware application.

If all exhaustive context types cannot be specified at design time, the system should
be able to accommodate new aspects by learning about their capability to describe a
situation of interest. Besides identifying the context types, rules also require the
specification of existential quantifiers which are used to set criteria or thresholds.
Consider the following example: ‘If environment loudness is above 12 db, set ringing
tone volume to 2.5’ [8] – here the context type is environmental loudness, and its
value is 12 db. To define such rules, the existential quantifiers 12 db and 2.5 (what-
ever the unit) require expert-knowledge. On the other hand, if a context-aware system
is capable of learning new environments, it may be able to dynamically compute the
threshold values associated with a context.

Figure 2: Use of context-decision association to dynamically generate context rules.

We modify the architecture of figure 1 in order to allow mobile devices to learn about
new aspects of a situation of interest, and to produce context rules which determine
the way mobile devices should dynamically adapt to the situation. To this end, we
introduce a feedback system which associates a user’s decision (signifying a desirable
modification of a behaviour inside a mobile device) with a context (representing the
situation of interest), and which eventually generates context rules from the associa-
tion. Moreover, we introduce the decision-context association component and the
event management component to manage context rules. Furthermore, we take out the

 3

rule organiser (managing a pool of induction rules in figure 1 and 2) outside of a
context-aware application.
In this paper, an application is defined to be a software entity which automates a
process that should otherwise be carried out manually by a user. Some examples are
word processors and tourist guide applications. A context-aware system, on the other
hand, is responsible for managing context and context rules, so that an application
can proactively provide a useful service.

III. Related Work

Ranganathan et al. propose a rule description and composition framework based on a
first order predicate logic [9]. A context is represented as a predicate with three ar-
guments: subject, relater, and object. The subject part of a context predicate refers to
an entity to which the context refers; the relater refers to the way the subject is related
to the object; and the object part of a context predicate refers to a value (state) of the
context predicate that is associated with the subject. The model enables the creation
of complex operations using Boolean operations and quantifiers. Similarly, Wang et
al. [10] propose the Semantic Space framework in which a logic-based reasoner em-
ploys a Generic Rule Language based on the Jena2 framework to perform forward-
and backward-chaining reasoning about human activities and whereabouts. In both
cases, however, rules are created manually, by application developers.
Castro and Muntz [11] propose a framework for context-based recording and retrieval
of very large multimedia objects in an interactive environment. The framework en-
ables the dynamic association of geographical locations during the recording of a
place of interest, so that a context-based query is possible with minimal signal-
processing. Likewise, Pascoe [12] proposes a framework for associating location
information with a note to enable context-based classification and retrieval of data.
For example, a field worker in Kenya creates a note whenever he observes a wild
animal; a context-aware system observing the creation of a note will internally asso-
ciates the note with the output of a GPS receiver. Once an association is made, the
field workers can query the system to learn about which wild animals are found in a
certain area. We build on the experiences learned from the approaches of Castro and
Muntz as well as Pascoe; our contribution is that we associate several context types
besides location information. Moreover, our architecture enables us to support multi-
ple applications.

IV. Scenarios

A wearable system can be trained to generate context-rules by associating:
1. The decision events of a single application with a specific situation;
2. Multiple decision events of a single application with various situations; and,
3. Multiple decision events of multiple applications with a specified situation.

 4

An example for (1) is training a system to switch a mobile phone to a vibration mode
whenever a user attends a particular lecture. The task of the system is to recognise the
occurrences of the context types describing the lecture session and to associate the set
of context types with the switching of the mobile phone into a vibration mode. In (2),
the goal is to train a system to associate different context types to a set of decision
events which originate from a single application only. This happens, for example,
when a user trains a system to modify the configuration of a mobile phone in different
situations. The various decision events correspond to (i.e. refer to) the actions which
switch the mobile phone to a vibration mode when the user attends a lecture; adjust
the volume when the user walks along a noisy street, and so forth. Here the system
should recognise the occurrences of the various decision events, and should associate
each decision event with context types which represent the corresponding situations
of interest. In (3), the goal is to train a system to recognise the activities of multiple
applications which take place in one and the same situation. A typical example is the
set of related activities which take place during a presentation session. The activities
may include: adjusting a room’s light system, turning on a beamer, loading a Power-
Point application, and so on.

V. Decision-Context Association

We associate a user’s decisions with a situation in which the decisions are made. If
the decisions are habitual decisions, then the systems identifies a set of context types
which best describe the situation in which the decisions are made. When next the
context types are captured, the system executes actions with which the context types
are associated. If the system associates wrong context types with a decision, a user
inputs a negative feedback, prompting the system to disintegrate the wrong decision-
context association, a process we labelled as unlearning.
To manage decision events, there needs to be a formal expression of events and of
context rules. We distinguish between primitive events and composite events. Primi-
tive events are those predefined in the system, and a mechanism for their detection is
assumed to be available. Primitive events include temporal events as well as events
generated by the invocation of methods or subroutines to perform specific actions,
i.e., decision events. All physical aspects which are captured by physical sensors
(temperature, relative humidity, light intensity, etc.) are described as primitive context
events. In general, a primitive event, E, is expressed by an event expression, which
includes the event’s name, the subject to which the event refers, the event’s value and
the time of occurrence (timestamp). Hence, a primitive event is represented as a
predicate with four arguments. The semantics for expressing a primitive event is
given by:

() () ()()() () ()())1(,,, tsttsvsneventtsvsntE =∧∃∃∃∃≡

The existential quantifiers: n, s, v, and ts are the event name, the subject, event in-
stance (value), and the timestamp, respectively. Note that v in equation (1) can be a

 5

numerical value or an event object. Equation (2) and (3) demonstrate a context and
decision event, respectively.

() ())2(AM10:00C,20room5052,e,temperatureventAM10:00tEroom °≡=

() ())3(6275 AM10:05vibration,i,nokiaswitch,eventAM10:05tEmobile ≡=

Equation (2) describes the temperature of a room at 10:00 AM, while equation (3)
describes the occurrence of a decision event after a Nokia 6275i mobile phone’s ring-
ing style is changed to a vibration mode. Once primitive events are described this
way, we can define a context rule using first order predicate logic. For example, to
evaluate a temperature measurement of room5052, and to adjust a heater accordingly,
the rule expression is given by equation (4), which states that if the temperature
measurement1 of room5052 goes below the threshold j, heater k should be adjusted
such that the value of k is between l and m.

()()() ()()() () () () () ()4
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≤≤∧⊃<∧∃∃∃∀∀∀ mklkheaterjitEmljkit room

A. Observation Time

The Primitive events discussed so far are useful for modelling simple behaviours.
However, for expressing complex behaviours, it is necessary to detect certain combi-
nations of different events as a single event, i.e., as a composite event. Composite
events are defined by applying event operators to constituent events (i.e., primitive
events), and are useful for expressing complex behaviours. One of these behaviours is
an observation time, a period required by a context-aware system to identify those
decisions which are habitually made when a mobile user is in a situation of interest. It
can be ether an absolute temporal event or a relative temporal event. An absolute
temporal event corresponds to a unique time span on the time line with a clearly de-
fined reference time and an offset time. A relative temporal event begins at a unique
time on the time line, but the ending time depends of the frequency of occurrence of a
specified decision event. We adopt two composite event expressions (ANY and Ape-
riodic) from the Snoop event expression language [13] to specify an observation time.
The ANY composite event is a conjunction event that occurs when m out of n primi-
tive events occur, regardless of their order of occurrence. Formally,

()() ()() ()

() () () ()
()
()
()

)5(

...
,,...,,,1

1...

...

......,,,, 121

121

12121

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≠≠≠≠∧
≤≤∧

≤≤≤≤∧

∧∧∧∧

∃∃∃= −

−

−

lkji
nlkji

ttt

tEtEtEtE

ttttEEEmANY m

lmkji

mn

1 Equation (2) is used as a reference, where the temperature variable i is used instead of 20°C.

 6

The composite event expression Aperiodic is the occurrence of an event, E2, within a
closed time interval [E1, E3]. Formally,

()() ()() () ()
() () ()()())6(

3
,,

2211

211
21321 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
¬⊃<≤∧≤∧

∧
∃∃=

tEttttt
tEtE

tttEEEA

The Aperiodic composite event is a non-cumulative event; i.e., it is signalled every
time E2 is detected within the time interval started by E1 and ended by E3. In equation
(6), denotes the non-occurrence of the event E()23 tE¬ 3 at time t2.
Referring to the three scenarios we describe in section II, we will define three differ-
ent observation periods, one for each scenario. Let E1(t) = t1, and E3(t) = t2. The ob-
servation time for training a system when to switch a mobile phone to a vibration
mode is defined as an Aperiodic composite event, where E2(t) is defined as:

() () () ()())7(,,6275,2 tsttsvibrationinokiaswitcheventtstE mobile =∧∃≡

The ANY composite event (where m = 1) is used to define the observation time for
training a system to associate the decision events of a single application to different
situations (scenario 2). Hence, E2(t) is given by ANY(1, Ex, Ey,…, Ez), where (Ex,
Ey,…, Ez) are the various decision events which can be generated inside of a single
application. On the other hand, to train a system to manage multiple applications in a
similar situation of interest, such as managing a presentation session, a decision table
is required to define all decision events which can be generated by the applications.
Subsequently, the event enumeration of the ANY composite event includes all the
events described by an event table.

VI. Architecture

As can be seen in figure 2, our architecture has three components for associating
decision events with context types, and for eventually generating and managing con-
text rules. These are the event management component, the rule organiser, and the
decision-context associating component. Interaction between the components de-
pends on whether the system is in an observation phase or in an execution phase.
During an execution phase, the responsibility of the system is to sense context types
which signify a situation of interest, and evaluates the pool of induction rules to exe-
cute desirable actions.

A. The Event Management Component (EM)

The EM has two essential tasks: (1) During an observation time, it queries context
sources and pushes the result to the Decision-Context Association component, so that

 7

the latter can associate decision events with a set of context types; during an execu-
tion period, it subscribes to context sources, and when a desirable context is captured,
notifies the Rule Organiser about the result, so that a rule or a set of rules referring to
the context type can be processed; (2) Immediately after an observation period is
over, it receives a set of decision-context associations from the Decision-Context
Association component to generate context rules.
At present, we have classified context types into three classes for the EM to carry out
the second task: temporal, numeric, and nonnumeric context types. Examples of non-
numeric context types are calendar entries (meeting, lecture, presentation, etc.), emo-
tional states (stress level, etc.), mappings of an RFID (room A, room B, etc). Exam-
ples of numeric context types are temperature, relative humidity, sound pressure, etc.
Since numeric context types are very difficult to model (they can assume an arbitrar-
ily large range of values), we employed a heuristic decision to map them into a mean-
ingful abstraction. For example, temperature measurements are mapped to cold, luke-
warm, warm, or hot; relative humidity measurements are mapped to dry, moderate, or
moist; sound pressure measurements are mapped to silent, normal, loud, or noisy, etc.
We employed heuristic judgements because the meanings of the conceptual abstrac-
tions depend on the entity they describe. To evaluate a temporal context, the day of
the week and the time of day are extracted from it. To determine existential compo-
nents of a rule, for numerical contexts, we use standard deviation, for non-numerical
components we use frequency of occurrence. Thus, the Event Management compo-
nent attempts to learn patterns in a user’s decision.
In general, when the EM receives decision-context associations, it identifies the most
representative context types as well as the corresponding values from a decision-
context association. These context types, joined by the conjunction operation, become
the antecedents of a rule while the decision event, correspondingly the action refer-
ring to it, becomes the consequent of the rule. We will demonstrate this by example in
section V1.

B. The Decision-Context Association Component (DCA)

The DCA is responsible for subscribing to a single or multiple applications, for asso-
ciating decision events with context types which are acquired by the system from the
computing environment at the time the decision events are produced. As we have
mentioned earlier, decisions are the basic elements with which useful services are
executed or the behaviour of an interactive system is modified. When a decision
event first occurs, it receives a UUID to identify it distinctively. We denote an in-
stance of a decision event, Ej, by ei

j, where i indicate the relative time of occurrence
of the event ej with respect to the occurrences of the same event ej-1. A decision event,
associated with contexts, is persisted by the DCA until an observation time is over.
When an observation time for a given decision event is over, an aggregation of deci-
sion-context associations will be passed over the EM which processes the decision-
context associations in order to generate context rules.

 8

C. The Rule Organiser (RO)

The OR manages context rules. It receives from the EM notification of the occurrence
of a context of interest, and evaluates all rules referring to the context. The rules may
deal with context inference, i.e., reasoning about a higher-level context which ab-
stracts a real-world situation such as human activity, or actuation of a service, for
example, switching a mobile phone to a vibration mode if the user happens to be
attending a lecture.
At present, the rules for context inference are described manually while the rules for
service actuation are learned. We use Bayesian Networks to encode conditional de-
pendencies between an implicit context (an abstraction of a conceptual or social situa-
tion) and several explicit context types which arrive from sensor abstracting compo-
nents via the EM2. For example, given measurements from a temperature sensor,
humidity sensor, and light intensity sensor, the Bayesian Network can determine
whether the measurements refer to a room, a corridor or an outdoor place. We employ
empirical knowledge to determine conditional dependencies and to setup the Bayes-
ian Networks. Thus, the task of the RO as far as context inference is concerned is to
receive sensor measurements from the EM, map the measurements according to a
predefined rule to corresponding features (for example, a temperature measurement is
mapped to cold, lukewarm, warm, or hot), determine conditional dependencies of the
features to potential higher-level contexts, and finally, compute posterior probabilities
to determine the most likely higher-level context. The second task of the RO, which is
carried out autonomously, is to proactively actuate a service by associating the ser-
vice with a context.

VII. Validation

At present, our implementation of the architecture is capable of associating decisions
events of a single application with simple but numerous context types each of which
describes a situation of interest (scenario I). Work is on progress to support scenario
(2) and (3).
We used the Nokia Mobile Internet toolkit 4.0 (NMIT 4.0), Series 40 Platform 3rd
Edition, to simulate an application which autonomously adjusts the ringer style of a
Nokia 6275i mobile phone. Our choice of the mobile phone is motivated by the rich-
ness of decision events which can be generated inside it. To support decision-context
association, we integrated an Event Import and Export (EIE) component into the
application, residing on the mobile phone. It is responsible for dispatching and receiv-
ing decision events from and to the mobile phone. During an observation time, deci-
sion events are exported from the application to the DCA (which runs remotely on a
laptop); during an execution time, decision events (or more precisely the issuance for
their creation) are imported from the rule organiser to the application to perform an
action associated with the occurrence of a context of interest.

2 Context reasoning is treated in detail in a separate paper [5].

 9

Figure 3: The 1-wire Sensor Network and the DCA Communication

To gather surrounding information, we employed the 1-wire3 protocol to interface
several Dallas semiconductor sensors (temperature, light intensity, relative humidity,
etc.) to a laptop via the DS9490R USB adapter. The number of nodes in the 1-Wire
network depends on the available sensors. We varied the number of active nodes at
random to simulate dynamic availability of sensing elements. The Primitive Context
Server is responsible for listening to the arrival and departure of an iButton® sensor,
and reacts accordingly: when a sensor arrives, it creates an appropriate container to
read data from the sensor, to attach a timestamp to the reading, and to store the result
locally or notify the EM about the context. The context types which appear in a con-
text-decision association are those the timestamps of which match the timestamp of
the decision event.
We trained our system to autonomously switch the mobile phone (the decision event
to be learned) whenever a mobile user attends a lecture session. An observation time
of one month (an absolute temporal event) was set, during which time 4 lecture ses-
sions were attended. The set of context types which were collected at the times the
decision event was produced are enumerated in table 2. The context types which
appear in the association most frequently (more than 50% of the time) are time, tem-
perature, light intensity, and relative humidity. These context types are therefore cho-
sen to be representative. The second step is to determine their values (or the features
to which these values refer). This is warm for temperature; moderate for relative
humidity; and visible for light intensity. The EM resolved the temporal context to day
(Tuesday) and to the time of the day (14:30 {±5 minute}). The context types are used both
for inference and for proactively actuating a service, i.e., switching the mobile phone
to a vibration mode. The implicit context that was inferred by the Bayesian rule or-
ganiser is the higher-level concept (context) room. The resulting context rule is given
by equation 7.

 10

1 [[Context: time: 05.09.2006, 14:35:17]

[Context: temperature: 19°C]
[Context: SP: 11 dB]
[Context: LI: 720 Lux]
[Context: RH: 54%]]

2 [[Context: time: 13.09.2006, 10:10:23]
[Context: RH: 48%]
[Context: SP: 11.98 dB]
[Context: temperature: 17°C]]

3 [[Context: time: 19.09.2006, 14:27:45]
[Context: RH: 52%]
[Context: temperature: 21°C]
[Context: LI: 1030 Lux]]

4 [[Context: time: 26.09. 2006, 14:32:10]
[Context: temperature: 23°C]
[Context: LI: 900 Lux]
 [Context: RH: 48%]]

TABLE 2: Decision-Context Associations.

()()()
() () ()

() () ()
()()()

)8(
6275

"""35:4",,"25:14"""
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⊃⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∧∧=

∧∧∧
∀∀∀

vibrationinokiadecision
Rooml1tbetweenTuesdayd

lloactionttimedday
ltd

Identification of representative context types describing a situation of interest is based
on frequency of occurrence. This, however, is not optimal to model complex situa-
tions. The second version of our work employs the Decision Tree algorithm, which is
more robust, and enables to associate decision events which arrive from multiple
applications. This will enable us to model multiple activities which take place in one
and the same situation.

VIII. Conclusion

This paper was motivated by the hypothesis that if context-aware systems are capable
of associating the activities of a user with the situation in which these activities take
place, then they can proactively provide services suitable to the situation of a mobile
user. Subsequently, we proposed a feedback system to context-aware applications,
and introduced three components to the feedback systems in order to process decision
events (signifying a user’s activities) and context information. These components are
the event management component, the decision-context associating component, and
the rule organiser.
The event management component has two tasks. The first task is to query available
context sources, so that the query result can be associated with a decision event, while
the second task is to generate a context rule from an aggregate of decision-context
associations. The decision-context associating component is responsible for subscrib-
ing to one or multiple applications to be notified of the occurrences of decision events
whenever a user interacts with the application(s) to perform certain actions. The rule

 11

organiser is responsible for reasoning about an implicit context from several explicit
context atoms, and for firing context rules corresponding to the context of the user.
We could be able to train our system to dynamically load a relevant document when-
ever a user attended a lecture. The context types which provided indirect evidence
about a lecture session were time, temperature, relative humidity, and light intensity.
Obviously, these primitive contexts are not sufficient to describe a lecture session as
accurately as possible. Our aim was, however, to identify representative contexts
types based on frequency of occurrence instead of collecting as much context infor-
mation as possible to model a higher-level context (lecture). Work is in progress to
employ more powerful learning schemes such as hidden Markov models in order to
model complex activities and situations.

References

1. Weiser, M: The computer for the 21st century. SIGMOBILE Mob. Comput. Commun.
Rev. 3, 3 (Jul. 1999), 3-11.

2. Dargie, W.: A Distributed Architecture for Computing Context in Mobile Devices.
Doctoral Thesis, 2006.

3. Henricksen, K., and Indulska, L.: Modeling and Using Imperfect Context Informa-
tion. In Proc. of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops (March 14 - 17, 2004). PERCOMW. IEEE Computer
Society, Washington, DC, 33-37.

4. Korpipää P, Mäntyjärvi J, Kela J, Kernen H., and Malm E-J. 2003, Managing Con-
text Information in Mobile Devices. IEEE Pervasive Computing 2, 3 (July-Sept.
2003), 42-51.

5. Schmidt, A., Beigl, M., and Gellersen, H.-W. 1999. There is more to context than lo-
cation. Computers and Graphics 23 (1999), no. 6, 893–901.

6. W. Dargie, “Dynamic Generation of Context Rules,” Lecture Notes in Computer Sci-
ence, Volume 3996, Jun 2006, Pages 102 – 115.

7. Korpipää, P., Koskinen, M., Peltola, J., Mäkelä, S., and Seppänen, T.: Bayesian ap-
proach to sensor-based context awareness. Personal and Ubiquitous Comput. 7, 2
(Jul. 2003), 113-124.

8. Mäntyjärvi, J., Himberg, J., and Huuskonen, P.: Collaborative Context Recognition
for Handheld Devices. In: Proceedings of the First IEEE international Conference on
Pervasive Computing and Communications (March 23 - 26, 2003).

9. Ranganathan, A., Campbell, R.: An infrastructure for context-awareness based on
first order logic. Personal Ubiquitous Comput. 7, 6 (2003)

10. Wang, X., Dong, J. S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic Space: An
Infrastructure for Smart Spaces. IEEE Pervasive Computing 3, 3 (Jul. 2004), 32-39.

11. Castro, P. and Muntz, R.: Managing context for smart spaces, IEEE Personal Com-
munications, vol.7, no. 5, October 2000

12. Pascoe, J., Ryan, N., Morse, D.: Using while moving: HCI issues in fieldwork envi-
ronments, ACM Trans. Comput.-Hum. Interact. 7, 3 (Sep. 2000), 417-437.

13. Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S: Composite Events for
Active Databases: Semantics, Contexts and Detection, in Proceedings of the 20th in-
ternational Conference on Very Large Data Bases, September 12 - 15, 1994.

 12

