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Abstract. An essential aspect of Mark Weiser’s vision for ubiquitous comput-
ing is that computers become “invisible”, demanding very little attention of 
their users. For this to happen, computers should be able to establish a shared 
understanding of the conceptual and social settings in which they operate, i.e., 
they should be context aware. This paper addresses one aspect of context-
awareness, namely the management of context rules in mobile and wearable 
devices. Context rules are employed to predict higher-level human situations 
(activities), and to actuate desirable operations which are suitable to these situa-
tions. Because context rules are application specific, they are defined by appli-
cation developers and users. So far, little consideration is given in the literature 
to take the habit (experience) of users into account to dynamically generate and 
manage context rules. In this paper we will provide a framework to associate 
decision events (signifying the actions performed by a user) with numerous 
context types which describe a situation of interest. From an aggregate of deci-
sion-context associations we generate context rules which enable mobile de-
vices to proactively provide useful services. 

1. Introduction 

A little over a decade ago, Mark Weiser asserted that in less than 20 years, ubiquitous 
computing would become dominant, and computers will cease to be obtrusive. More-
over, a single user would interact not just with one, but with many devices, each of 
which is “so imbedded, so fitting, so natural, that we use it without even thinking 
about it [1]”. Since then, indisputable achievements have been made to substantiate 
his assertion: Whereas once it has been considered to be a revolution to provide indi-
viduals with personal computers, it is now an everyday practice to carry with us sev-
eral mobile devices and communicate with them on the spur of the moment [2]. The 
devices with which we interact are, however, everything but invisible; we still switch 
off our mobile phones or set their ringing style to vibration mode manually whenever 
we attend meetings, lectures, etc., or forget to do so and end up upsetting others as 
well as ourselves. Furthermore, despite significant advances in the communication 
and networking technologies as well as interactive office and home appliances, by 
and large, human intervention is required to decide whether and how our devices 
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should cooperate with each other. Subsequently, the increment in the ratio of mobile 
devices to a user causes distraction where it should make everyday life more manage-
able [3].  
If mobile and wearable devices are able to capture what is taking place around them 
(i.e., if they become context-aware), they can provide suitable services proactively, 
and adapt to their surrounding autonomously.  
Context-awareness can be achieved in two stages: First, the desired context of a user 
or a device needs to be captured; second, an operation corresponding to the context of 
interest needs to be specified. Both process entail the definition and management of a 
set of context rules, which are useful (1) for inferring higher-level human situations 
(activities) from numerous explicit context types that can directly be captured by 
employing sensors [4, 5]; and (2) for actuating certain operations inside mobile de-
vices whenever a context of interest is captured and a condition is evaluated to be true 
[6].  
In this paper, we will discuss the role of context rules in detail and propose a frame-
work that enables mobile devices to dynamically generate (at least in part) context 
rules by associate a user’s activities with a context in which the activities unfold. The 
decision-context associations are eventually employed to dynamically generate con-
text rules.  
The rest of this paper is organised as follows: in section II, we will discuss the way 
context rules can be organised in context-aware systems and applications; in section 
III, we will summarise related work; in section IV, we will consider three different 
scenarios for which the dynamic generation of context rules applies; in section V, we 
will discuss decision-context associations as well as event expression semantics; in 
section VI, we will discuss the components of the architecture, followed by experi-
ment results in section VII. Finally, in section VIII, we will close by providing con-
cluding remarks and future work.  

II. Context Rules 

Context rules are essential components by which certain criteria are evaluated to 
determine how mobile devices should adapts to a context. Figure 1 shows the way 
rules are embedded into context-aware applications. Because context rules are appli-
cation-specific, they are usually specified either at design time by the application 
developer or at runtime by the user of the application. User-defined rules are often 
simple rules describing simple behaviour, since user side operation should avoid 
excessive cognitive load for the application to be relevant to the user.   
Defining context rules at design time and embedding them into an application’s busi-
ness model ensures a side-effect free modification of behaviour. Moreover, it enables 
the designer to specify a mechanism (identify the types of sensors) for capturing the 
explicit context types. This approach, however, should be complemented by a learn-
ing scheme so that the system can accommodate new context types which are not 
expressed in a rule at design time, but may as well reveal some vital aspects of a 
situation of interest. This is particularly true if there are multiple ways of capturing 
complex human situations, such as human activities or emotional states [7].  
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Figure 1: A context rule definition and processing component as a part of a context-aware application. 
 
If all exhaustive context types cannot be specified at design time, the system should 
be able to accommodate new aspects by learning about their capability to describe a 
situation of interest. Besides identifying the context types, rules also require the 
specification of existential quantifiers which are used to set criteria or thresholds. 
Consider the following example: ‘If environment loudness is above 12 db, set ringing 
tone volume to 2.5’ [8] – here the context type is environmental loudness, and its 
value is  12 db. To define such rules, the existential quantifiers 12 db and 2.5 (what-
ever the unit) require expert-knowledge. On the other hand, if a context-aware system 
is capable of learning new environments, it may be able to dynamically compute the 
threshold values associated with a context.  

 

 
 
Figure 2: Use of context-decision association to dynamically generate context rules. 
 
We modify the architecture of figure 1 in order to allow mobile devices to learn about 
new aspects of a situation of interest, and to produce context rules which determine 
the way mobile devices should dynamically adapt to the situation. To this end, we 
introduce a feedback system which associates a user’s decision (signifying a desirable 
modification of a behaviour inside a mobile device) with a context (representing the 
situation of interest), and which eventually generates context rules from the associa-
tion. Moreover, we introduce the decision-context association component and the 
event management component to manage context rules. Furthermore, we take out the 
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rule organiser (managing a pool of induction rules in figure 1 and 2) outside of a 
context-aware application.  
In this paper, an application is defined to be a software entity which automates a 
process that should otherwise be carried out manually by a user. Some examples are 
word processors and tourist guide applications. A context-aware system, on the other 
hand, is responsible for managing context and context rules, so that an application 
can proactively provide a useful service.  

III. Related Work 

Ranganathan et al. propose a rule description and composition framework based on a 
first order predicate logic [9]. A context is represented as a predicate with three ar-
guments: subject, relater, and object. The subject part of a context predicate refers to 
an entity to which the context refers; the relater refers to the way the subject is related 
to the object; and the object part of a context predicate refers to a value (state) of the 
context predicate that is associated with the subject. The model enables the creation 
of complex operations using Boolean operations and quantifiers. Similarly, Wang et 
al. [10] propose the Semantic Space framework in which a logic-based reasoner em-
ploys a Generic Rule Language based on the Jena2 framework to perform forward- 
and backward-chaining reasoning about human activities and whereabouts. In both 
cases, however, rules are created manually, by application developers. 
Castro and Muntz [11] propose a framework for context-based recording and retrieval 
of very large multimedia objects in an interactive environment. The framework en-
ables the dynamic association of geographical locations during the recording of a 
place of interest, so that a context-based query is possible with minimal signal-
processing. Likewise, Pascoe [12] proposes a framework for associating location 
information with a note to enable context-based classification and retrieval of data. 
For example, a field worker in Kenya creates a note whenever he observes a wild 
animal; a context-aware system observing the creation of a note will internally asso-
ciates the note with the output of a GPS receiver. Once an association is made, the 
field workers can query the system to learn about which wild animals are found in a 
certain area. We build on the experiences learned from the approaches of Castro and 
Muntz as well as Pascoe; our contribution is that we associate several context types 
besides location information. Moreover, our architecture enables us to support multi-
ple applications.  

IV. Scenarios 

A wearable system can be trained to generate context-rules by associating: 
1. The decision events of a single application with a specific situation; 
2. Multiple decision events of a single application with various situations; and, 
3. Multiple decision events of multiple applications with a specified situation. 
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An example for (1) is training a system to switch a mobile phone to a vibration mode 
whenever a user attends a particular lecture. The task of the system is to recognise the 
occurrences of the context types describing the lecture session and to associate the set 
of context types with the switching of the mobile phone into a vibration mode. In (2), 
the goal is to train a system to associate different context types to a set of decision 
events which originate from a single application only. This happens, for example, 
when a user trains a system to modify the configuration of a mobile phone in different 
situations. The various decision events correspond to (i.e. refer to) the actions which 
switch the mobile phone to a vibration mode when the user attends a lecture; adjust 
the volume when the user walks along a noisy street, and so forth. Here the system 
should recognise the occurrences of the various decision events, and should associate 
each decision event with context types which represent the corresponding situations 
of interest. In (3), the goal is to train a system to recognise the activities of multiple 
applications which take place in one and the same situation. A typical example is the 
set of related activities which take place during a presentation session. The activities 
may include: adjusting a room’s light system, turning on a beamer, loading a Power-
Point application, and so on.  

V. Decision-Context Association  

We associate a user’s decisions with a situation in which the decisions are made. If 
the decisions are habitual decisions, then the systems identifies a set of context types 
which best describe the situation in which the decisions are made. When next the 
context types are captured, the system executes actions with which the context types 
are associated. If the system associates wrong context types with a decision, a user 
inputs a negative feedback, prompting the system to disintegrate the wrong decision-
context association, a process we labelled as unlearning.  
To manage decision events, there needs to be a formal expression of events and of 
context rules. We distinguish between primitive events and composite events. Primi-
tive events are those predefined in the system, and a mechanism for their detection is 
assumed to be available. Primitive events include temporal events as well as events 
generated by the invocation of methods or subroutines to perform specific actions, 
i.e., decision events. All physical aspects which are captured by physical sensors 
(temperature, relative humidity, light intensity, etc.) are described as primitive context 
events. In general, a primitive event, E, is expressed by an event expression, which 
includes the event’s name, the subject to which the event refers, the event’s value and 
the time of occurrence (timestamp). Hence, a primitive event is represented as a 
predicate with four arguments. The semantics for expressing a primitive event is 
given by: 

 
( ) ( ) ( )( )( ) ( ) ( )( ) )1(,,, tsttsvsneventtsvsntE =∧∃∃∃∃≡

 
The existential quantifiers: n, s, v, and ts are the event name, the subject, event in-
stance (value), and the timestamp, respectively. Note that v in equation (1) can be a 
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numerical value or an event object. Equation (2) and (3) demonstrate a context and 
decision event, respectively.  

 

( ) ( ) )2(AM10:00C,20room5052,e,temperatureventAM10:00tEroom °≡=  

( ) ( ) )3(6275 AM10:05vibration,i,nokiaswitch,eventAM10:05tEmobile ≡=  

Equation (2) describes the temperature of a room at 10:00 AM, while equation (3) 
describes the occurrence of a decision event after a Nokia 6275i mobile phone’s ring-
ing style is changed to a vibration mode. Once primitive events are described this 
way, we can define a context rule using first order predicate logic. For example, to 
evaluate a temperature measurement of room5052, and to adjust a heater accordingly, 
the rule expression is given by equation (4), which states that if the temperature 
measurement1 of room5052 goes below the threshold j, heater k should be adjusted 
such that the value of k is between l and m. 
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A. Observation Time 

The Primitive events discussed so far are useful for modelling simple behaviours. 
However, for expressing complex behaviours, it is necessary to detect certain combi-
nations of different events as a single event, i.e., as a composite event. Composite 
events are defined by applying event operators to constituent events (i.e., primitive 
events), and are useful for expressing complex behaviours. One of these behaviours is 
an observation time, a period required by a context-aware system to identify those 
decisions which are habitually made when a mobile user is in a situation of interest. It 
can be ether an absolute temporal event or a relative temporal event. An absolute 
temporal event corresponds to a unique time span on the time line with a clearly de-
fined reference time and an offset time. A relative temporal event begins at a unique 
time on the time line, but the ending time depends of the frequency of occurrence of a 
specified decision event. We adopt two composite event expressions (ANY and Ape-
riodic) from the Snoop event expression language [13] to specify an observation time. 
The ANY composite event is a conjunction event that occurs when m out of n primi-
tive events occur, regardless of their order of occurrence. Formally, 
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1  Equation (2) is used as a reference, where the temperature variable i is used instead of 20°C. 

 6 



 
The composite event expression Aperiodic is the occurrence of an event, E2, within a 
closed time interval [E1, E3]. Formally,  
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The Aperiodic composite event is a non-cumulative event; i.e., it is signalled every 
time E2 is detected within the time interval started by E1 and ended by E3. In equation 
(6),  denotes the non-occurrence of the event E( )23 tE¬ 3 at time t2. 
Referring to the three scenarios we describe in section II, we will define three differ-
ent observation periods, one for each scenario. Let E1(t) = t1, and E3(t) = t2. The ob-
servation time for training a system when to switch a mobile phone to a vibration 
mode is defined as an Aperiodic composite event, where E2(t) is defined as:  

 

( ) ( ) ( ) ( )( ) )7(,,6275,2 tsttsvibrationinokiaswitcheventtstE mobile =∧∃≡  

The ANY composite event (where m = 1) is used to define the observation time for 
training a system to associate the decision events of a single application to different 
situations (scenario 2). Hence, E2(t) is given by ANY(1, Ex, Ey,…, Ez), where (Ex, 
Ey,…, Ez) are the various decision events which can be generated inside of a single 
application. On the other hand, to train a system to manage multiple applications in a 
similar situation of interest, such as managing a presentation session, a decision table 
is required to define all decision events which can be generated by the applications.  
Subsequently, the event enumeration of the ANY composite event includes all the 
events described by an event table.  

VI. Architecture 

As can be seen in figure 2, our architecture has three components for associating 
decision events with context types, and for eventually generating and managing con-
text rules. These are the event management component, the rule organiser, and the 
decision-context associating component. Interaction between the components de-
pends on whether the system is in an observation phase or in an execution phase. 
During an execution phase, the responsibility of the system is to sense context types 
which signify a situation of interest, and evaluates the pool of induction rules to exe-
cute desirable actions.   

A. The Event Management Component (EM) 

The EM has two essential tasks: (1) During an observation time, it queries context 
sources and pushes the result to the Decision-Context Association component, so that 
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the latter can associate decision events with a set of context types; during an execu-
tion period, it subscribes to context sources, and when a desirable context is captured, 
notifies the Rule Organiser about the result, so that a rule or a set of rules referring to 
the context type can be processed; (2) Immediately after an observation period is 
over, it receives a set of decision-context associations from the Decision-Context 
Association component to generate context rules.  
At present, we have classified context types into three classes for the EM to carry out 
the second task: temporal, numeric, and nonnumeric context types. Examples of non-
numeric context types are calendar entries (meeting, lecture, presentation, etc.), emo-
tional states (stress level, etc.), mappings of an RFID (room A, room B, etc). Exam-
ples of numeric context types are temperature, relative humidity, sound pressure, etc. 
Since numeric context types are very difficult to model (they can assume an arbitrar-
ily large range of values), we employed a heuristic decision to map them into a mean-
ingful abstraction. For example, temperature measurements are mapped to cold, luke-
warm, warm, or hot; relative humidity measurements are mapped to dry, moderate, or 
moist; sound pressure measurements are mapped to silent, normal, loud, or noisy, etc. 
We employed heuristic judgements because the meanings of the conceptual abstrac-
tions depend on the entity they describe. To evaluate a temporal context, the day of 
the week and the time of day are extracted from it. To determine existential compo-
nents of a rule, for numerical contexts, we use standard deviation, for non-numerical 
components we use frequency of occurrence. Thus, the Event Management compo-
nent attempts to learn patterns in a user’s decision. 
In general, when the EM receives decision-context associations, it identifies the most 
representative context types as well as the corresponding values from a decision-
context association. These context types, joined by the conjunction operation, become 
the antecedents of a rule while the decision event, correspondingly the action refer-
ring to it, becomes the consequent of the rule. We will demonstrate this by example in 
section V1.   

B. The Decision-Context Association Component (DCA) 

The DCA is responsible for subscribing to a single or multiple applications, for asso-
ciating decision events with context types which are acquired by the system from the 
computing environment at the time the decision events are produced. As we have 
mentioned earlier, decisions are the basic elements with which useful services are 
executed or the behaviour of an interactive system is modified. When a decision 
event first occurs, it receives a UUID to identify it distinctively. We denote an in-
stance of a decision event, Ej, by ei

j, where i indicate the relative time of occurrence 
of the event ej with respect to the occurrences of the same event ej-1. A decision event, 
associated with contexts, is persisted by the DCA until an observation time is over. 
When an observation time for a given decision event is over, an aggregation of deci-
sion-context associations will be passed over the EM which processes the decision-
context associations in order to generate context rules.  

 8 



C. The Rule Organiser (RO) 

The OR manages context rules. It receives from the EM notification of the occurrence 
of a context of interest, and evaluates all rules referring to the context. The rules may 
deal with context inference, i.e., reasoning about a higher-level context which ab-
stracts a real-world situation such as human activity, or actuation of a service, for 
example, switching a mobile phone to a vibration mode if the user happens to be 
attending a lecture.  
At present, the rules for context inference are described manually while the rules for 
service actuation are learned. We use Bayesian Networks to encode conditional de-
pendencies between an implicit context (an abstraction of a conceptual or social situa-
tion) and several explicit context types which arrive from sensor abstracting compo-
nents via the EM2. For example, given measurements from a temperature sensor, 
humidity sensor, and light intensity sensor, the Bayesian Network can determine 
whether the measurements refer to a room, a corridor or an outdoor place. We employ 
empirical knowledge to determine conditional dependencies and to setup the Bayes-
ian Networks. Thus, the task of the RO as far as context inference is concerned is to 
receive sensor measurements from the EM, map the measurements according to a 
predefined rule to corresponding features (for example, a temperature measurement is 
mapped to cold, lukewarm, warm, or hot), determine conditional dependencies of the 
features to potential higher-level contexts, and finally, compute posterior probabilities 
to determine the most likely higher-level context. The second task of the RO, which is 
carried out autonomously, is to proactively actuate a service by associating the ser-
vice with a context.   

VII. Validation 

At present, our implementation of the architecture is capable of associating decisions 
events of a single application with simple but numerous context types each of which 
describes a situation of interest (scenario I). Work is on progress to support scenario 
(2) and (3).  
We used the Nokia Mobile Internet toolkit 4.0 (NMIT 4.0), Series 40 Platform 3rd 
Edition, to simulate an application which autonomously adjusts the ringer style of a 
Nokia 6275i mobile phone. Our choice of the mobile phone is motivated by the rich-
ness of decision events which can be generated inside it. To support decision-context 
association, we integrated an Event Import and Export (EIE) component into the 
application, residing on the mobile phone. It is responsible for dispatching and receiv-
ing decision events from and to the mobile phone. During an observation time, deci-
sion events are exported from the application to the DCA (which runs remotely on a 
laptop); during an execution time, decision events (or more precisely the issuance for 
their creation) are imported from the rule organiser to the application to perform an 
action associated with the occurrence of a context of interest.   

                                                           
2 Context reasoning is treated in detail in a separate paper [5]. 
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Figure 3: The 1-wire Sensor Network and the DCA Communication 
 
To gather surrounding information, we employed the 1-wire3 protocol to interface 
several Dallas semiconductor sensors (temperature, light intensity, relative humidity, 
etc.) to a laptop via the DS9490R USB adapter. The number of nodes in the 1-Wire 
network depends on the available sensors. We varied the number of active nodes at 
random to simulate dynamic availability of sensing elements. The Primitive Context 
Server is responsible for listening to the arrival and departure of an iButton® sensor, 
and reacts accordingly: when a sensor arrives, it creates an appropriate container to 
read data from the sensor, to attach a timestamp to the reading, and to store the result 
locally or notify the EM about the context. The context types which appear in a con-
text-decision association are those the timestamps of which match the timestamp of 
the decision event.  
We trained our system to autonomously switch the mobile phone (the decision event 
to be learned) whenever a mobile user attends a lecture session. An observation time 
of one month (an absolute temporal event) was set, during which time 4 lecture ses-
sions were attended. The set of context types which were collected at the times the 
decision event was produced are enumerated in table 2. The context types which 
appear in the association most frequently (more than 50% of the time) are time, tem-
perature, light intensity, and relative humidity. These context types are therefore cho-
sen to be representative. The second step is to determine their values (or the features 
to which these values refer). This is warm for temperature; moderate for relative 
humidity; and visible for light intensity. The EM resolved the temporal context to day 
(Tuesday) and to the time of the day (14:30 {±5 minute}). The context types are used both 
for inference and for proactively actuating a service, i.e., switching the mobile phone 
to a vibration mode. The implicit context that was inferred by the Bayesian rule or-
ganiser is the higher-level concept (context) room. The resulting context rule is given 
by equation 7.  
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1 [[Context: time: 05.09.2006, 14:35:17] 

[Context: temperature: 19°C] 
[Context: SP: 11 dB] 
[Context: LI: 720 Lux] 
[Context: RH: 54%]] 

2 [[Context: time: 13.09.2006, 10:10:23]  
[Context: RH: 48%]  
[Context: SP: 11.98 dB] 
[Context: temperature: 17°C]] 

3 [[Context: time: 19.09.2006, 14:27:45] 
[Context: RH: 52%]  
[Context: temperature: 21°C] 
[Context: LI: 1030 Lux]] 

4 [[Context: time: 26.09. 2006, 14:32:10] 
[Context: temperature: 23°C] 
[Context: LI: 900 Lux] 
 [Context: RH: 48%]] 

TABLE 2: Decision-Context Associations. 
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Identification of representative context types describing a situation of interest is based 
on frequency of occurrence. This, however, is not optimal to model complex situa-
tions. The second version of our work employs the Decision Tree algorithm, which is 
more robust, and enables to associate decision events which arrive from multiple 
applications. This will enable us to model multiple activities which take place in one 
and the same situation.  

VIII. Conclusion 

This paper was motivated by the hypothesis that if context-aware systems are capable 
of associating the activities of a user with the situation in which these activities take 
place, then they can proactively provide services suitable to the situation of a mobile 
user. Subsequently, we proposed a feedback system to context-aware applications, 
and introduced three components to the feedback systems in order to process decision 
events (signifying a user’s activities) and context information. These components are 
the event management component, the decision-context associating component, and 
the rule organiser.  
The event management component has two tasks. The first task is to query available 
context sources, so that the query result can be associated with a decision event, while 
the second task is to generate a context rule from an aggregate of decision-context 
associations. The decision-context associating component is responsible for subscrib-
ing to one or multiple applications to be notified of the occurrences of decision events 
whenever a user interacts with the application(s) to perform certain actions. The rule 
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organiser is responsible for reasoning about an implicit context from several explicit 
context atoms, and for firing context rules corresponding to the context of the user. 
We could be able to train our system to dynamically load a relevant document when-
ever a user attended a lecture. The context types which provided indirect evidence 
about a lecture session were time, temperature, relative humidity, and light intensity. 
Obviously, these primitive contexts are not sufficient to describe a lecture session as 
accurately as possible. Our aim was, however, to identify representative contexts 
types based on frequency of occurrence instead of collecting as much context infor-
mation as possible to model a higher-level context (lecture). Work is in progress to 
employ more powerful learning schemes such as hidden Markov models in order to 
model complex activities and situations. 
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