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Abstract—This paper addresses the signal processing aspect of
wireless sensor networks. It analyzes several time and frequency
domain features of measurements that are taken from 3D
accelerometer sensors. The measurements represent various types
of movements related to humans and cars. The aim is to obtain
quantitative as well as qualitative comparisons concerning the
expression power of these features in the presence of various
sources of uncertainties (calibration, placement of sensors, and
time synchronization). For the qualitative analysis, we define
fuzzy sets and fuzzy membership functions for all the features.
Particular attention is given to the analysis of the existence of
correlation between measurements of different sensor nodes. We
will demonstrate that correlation coefficients of both time and
frequency domain features exhibit high degrees of uncertainties.
On the other hand, short time Fourier transformations (STFT)
of all types of movements prove to be agnostic of various forms
of measurement and calibration errors.

I. INTRODUCTION

A large number of applications in wireless sensor networks
employ accelerometer sensors. Some of these applications use
accelerometers to monitor the integrity of structures (bridges
and building) [1], [2], [3], and [4]; transportation infrastruc-
tures [5] and [6]; supply-chain management [7], Healthcare
[8], [9], [10] and [11], and earth quake and active volcano [12]
and [13]. Almost all of these applications make use of model-
based digital signal processing to detect interesting events such
as defects in bridges or abnormal drives, or the time and place
at which objects breaks as a result of damage in wheels or
major fractures in rails. Moreover, most of these applications
analyze the existence of correlation between temporal and
spatial features, for example, the existence of correlation
between features representing movements or vibrations of
suspender cables in bridges.

Unlike measurements taken from other types of sensors, the
measurements from accelerometer sensors can be affected by
three essential factors: calibration, placement, and orientation
of the sensors. Two accelerometers sensors can deliver dif-
ferent reports about a movement of they differ in calibration,
placement, or orientation or a combination of these. This is an
essential observation in the context of wireless sensor network
because of a basic assumption in spontaneous deployment.

In this paper, we provide analysis results of some mea-
surements taken from 3-dimensional accelerometer sensors.
The aim is to (1) give a comprehensive understanding of the

time- and frequency-domain features that can be extracted
from raw sensor data and, (2) examine their robustness despite
calibration, placement, and orientation errors. While these
features are exhaustively studied in the context of speech
recognition and image processing, little is done in the context
of wireless sensor networks, particularly with raw data that
comes from wireless accelerometer sensors.

The remaining part of this paper is organized as follows: In
Section II, related work is summarized. In section III, the time
and frequency domain features that are used for the analysis
are introduced. In section IV, the methodology we used to
acquire the sensor data is presented. In section V, a detail
account of the analysis as well as the results of the analysis
are presented and discussed. Finally, in section VI, concluding
remarks and outlook to future work are given.

II. RELATED WORK

Several techniques and features have been employed in the
past to process and classify data from accelerometer sensors.
Huynh and Schiele [14] demonstrate how recognition rates
can be improved by careful selection of features for different
activities. Their experiment result suggests that the choice of
a feature and a corresponding window length over which the
feature is computed affect a recognition rate. Lukowicz et al.
[15] investigate the existence of correlation in accelerometer
signals to estimate various human activities. Likewise, Lee
et al. [9] investigate the ambulatory condition (pulse) and
movement (inclination of human body) using oximeter and
triaxial accelerometer sensors.

Perhaps the most frequently employed technique in ex-
amining accelerometer signals is coherence. An interesting
work related to this is the one carried out by Engin et al.
[16] and [17] in which the presence of correlation between
different axes of individual accelerometers and between dif-
ferent segments of the same limb (of a human body) was
used to study the characteristics of tremor in patients with
Parkinson’s disease (PD). Data from triaxial accelerometers
are collected from several PD patients and the existence of
correlation (similar spectral features) is examined. The result
suggests that tremor in PD is generated by multiple oscillatory
circuits (in the central nervous system), which operate on
similar frequencies. Coherence and spectral features are also



used elsewhere to model and reason about various types of
movements of objects.

Marin-Perianu et al. [18] experiment with an incremental
correlation algorithm that enables wireless sensor nodes to
determine whether they are traveling together (in supply chain
management). The algorithm is implemented locally on a
sensor node and the data processed is a real-time data series.
The scalability of the algorithm is tested with respect to
complexities related to communication, energy, memory and
speed of execution.

The above approaches identify a set of time and frequency
domain features and adopt a particular technique to recognize
various activities and to examine the existence of correlation
between these activities. Except Huynh and Schiele, who show
how a recognition rate can be affected by the choice of
features and their window length, the rest focus rather on the
modeling aspect and employ a single technique (usually the
coherence function) to recognize activities. These approaches,
however, do not reveal much as to which techniques are
more suitable to which activities and why. We build upon
existing approaches, but address these and similar questions.
Our approach enables application developers who intend to
employ movement sensors, such as tilt and accelerometer
sensors, to identify relevant features and correlation tools for
recognizing interesting activities or events.

III. FEATURES

The time- and frequency-domain features we consider are
listed in table I. There are two reasons why we consider all
these features: Firstly, feature extraction costs computational
as well as communication resources. There is a relationship
between the cost, the robustness and the expressive power of
the features. Therefore, we closely examine the nature of these
relationships. For example, all the time domain-features avoid
the complexity of preprocessing - i.e., they do not require
the laborious task of framing, windowing, filtering, Fourier
transformation, liftering, and so on. Subsequently, they not
only consume little processing power, but the algorithms can
be directly deployed in resource constrained nodes. However,
they are not robust to measurement and calibration errors.
The second reason is our desire to support rapid prototyp-
ing by providing application developers the knowledge and
experience concerning the type of features they can consider
if they choose to employ accelerometer sensors. The features
we analyze are listed in table I.

IV. METHODOLOGY

The higher-level features that can be extracted from ac-
celerometer sensors are subject to three sources of errors
(uncertainties): calibration, non-optimal sensor placement, and
packet loss1. Time synchronization or the lack of it can be
an additional source of uncertainty if one is interested in
examining the existence of correlation between two sets of
measurements. Apart from being dependent on the clock drift,

1This is without considering the imperfection in the sensors themselves.

Domain Feature Remark
Time Mean

Zero crossing rate
Maxima/Minima
Autocorrelation
Cross correlation
Linear correlation coefficient
Standard deviation

Frequency Mean
Correlation FFT and STFT
Spectral roll-off
Spectral centroid
Spectral flux

TABLE I
TIME AND FREQUENCY DOMAIN FEATURES TO ANALYZE DATA FROM

ACCELEROMETER SENSORS

Processor 32 bit ARM7 core
Memory 256K RAM/2M Flash
Transceiver Chipcon CC2420

802.15.4 radio
Nominal power
consumption 25-90 mA
Size 35x25 mm

TABLE II
DESCRIPTION OF THE SUN SPOT SYSTEM

time synchronization is influenced by the transmission distance
as well.

Our aim is to analyze how agnostic the time- and frequency-
domain features are to these sources of errors. We consider
different types of movements. We use two Sun Spot wire-
less sensor nodes containing 3-dimensional accelerometers
(LIS3L02AQ) [19]. Table II summarizes the specification
of the nodes and table III summarizes the features of the
accelerometer sensors. The sensor nodes are simple, cheap
and with limited resources. The maximum sampling frequency
they support is 350 Hz (i.e., sampling every ≈ 3ms). The
average communication delay between the sensor nodes and
the remote sink is 4 ms. To minimize packet loss, all data
are logged to a remote computer at an average frequency of
150 Hz. Sampling is carried out in a controlled environment
to make sure that reading of all sensors takes place at the
same time. Moreover, the active memory of each node is not
fully overflown throughout the data acquisition period. The
movement types we consider are summarized in section IV-A
and IV-B.

A. Movement of people

1) A single person: The sensors are attached to the thighs
and wrists of a single person. The purpose is to inves-
tigate the the existence of a correlation between two

Resolution 0.5mg over 100 Hz BW
Range 2g/6g user selectable, full scale

TABLE III
FEATURE DESCRIPTION OF THE ACCELEROMETER SENSORS



opposite direction 3D movements. The measurements
are taken both from calibrated and uncalibrated sensors.

2) Two persons climbing up and down a staircase side
by side (without intentional synchronization of steps):
The sensors are attached to the thighs and wrists of
two people climbing a staircase of 18 steps side by
side. After the climb is over, the persons turn back
and climb down the staircase. To consider the two
opposite direction movements independently, the raw
measurements are stored separately.

3) Two persons climbing up and down a staircase one after
another (without intentional synchronization of steps):
The sensors are attached to the test persons and the
measurements are taken as in the previous case, but this
time, one person is moving in front of the other.

4) Dancing: The sensors are attached to the right thighs
of the test persons. They danced for about a minute.
While the dance is a free and uncoordinated movement
(with no premeditated pattern), there is, however, a body
contact to mark the occurrence of certain distinct events.

5) Couch: The sensors are fixed on the bodies of two
persons (once at the thighs and once at the waste). From
a sitting position, these places represent the movements’
center of gravity. The idea is to minimize the effect of
undesirable activities (drinking a coffee from a mug;
writing, etc.). The experiment measures the correlation
of movements of two persons siting on a couch. The
movements themselves are produced independently, but
the movement of one person affects the movement of
the other.

B. Movement of Car

1) Highway drive: a series of measurements are taken from
the accelerometer sensors that are placed on the back and
front seats of a car during a highway drive with an aver-
age speed of 120Km/H. The sensors themselves are not
fixed to the seats, but are simply laying. Measurements
from these sensors are taken to investigate the existence
of correlation between the different parts of a car even
though these parts react differently to accelerations and
brakes as well as to the irregular surface underneath the
car.

2) Highway drive: The sensors are attached to the seat belts
of the driver and the front passenger, so that they can be
closer to the center of gravity. However, exact alignment
is not made. The reason for fixing the sensors this time
is to measure the impact on the correlation due to the
free movement of the sensors in the previous setting.

3) Free drive: In this setting the sensors are fixed in the
front cabin of the car; they are calibrated and aligned to
seats of the driver and the front passenger.

4) City drive: the sensors are placed inside the glove
box at the front cabin of the car. Even though they
are calibrated before hand, they are placed untethered.
This is useful to measure the correlation between the
measurements of these closely placed but unfixed nodes.

It is expected to observe strong correlation due to
frequent accelerations and breaks as well as changes in
the direction of drive.

V. ANALYSIS AND RESULTS

A. Time Domain Features

1) Zero-crossing rate: Zero-crossing rate is a simple,
straightforward and inexpensive feature to examine the simi-
larity between two or more accelerometer sensors. It measures
whether two sets of time series measurements exhibit similar
patters. It is particularly useful to analyze measurements that
are corrupted by noise. For example, a measurement with
a high zero-crossing rate, i.e., the number of samples per
second that cross the zero reference line, indicates that it is
noisy. However, we observe that even for sensors having the
same orientation, the calibration error results in a deviation of
±40/s. Substituting the zero-crossing value by a mean value-
crossing, i.e., by defining a mean threshold that serves as a ref-
erence, results in a calibration error with a deviation between
2 and 15/s for individual axes and between 0 and 2/s for the
absolute acceleration values of the individual measurements.
Cross test of uncorrelated measurements, on the other hand,
reveals that the overall calibration error is markedly bigger:
between 7 and 50/s for the raw measurements and between 5
and 30/s for the absolute values.

2) Correlation coefficient: The correlation coefficient is
another inexpensive but very useful tool to test whether two
time-series readings exhibit similarity. Compared to the human
movements, the movements related to the car drives yield big-
ger correlation coefficients, ranging from 0.4 to 0.9. Exception
to this are the measurements taken from the sensors which lay
fixed on the front and back seats of the car. In which case,
it was not at all possible to establish correlation. Cross test
of uncorrelated readings, on the other hand, results in correla-
tion coefficients between 0.2 and ±0.1 only. The correlation
coefficients related to human movements are markedly small,
i.e., in the ranges of 0.2 and 0.3. The correlation coefficients
of the absolute values of all the measurements are notably
better. The scenario that produces the highest correlation is
the movements of people on the couch.

It must be noted, however, in the absence of time synchro-
nization, the correlation coefficients of all movements are very
small.

3) Cross correlation: The cross correlation is useful to
measure the extent of the offset between two time-series
measurements. This is particularly useful to model correlated
movements that cannot be compared piecewise. A typical
example is the correlation between the movements of people
climbing up and down a staircase without synchronizing their
steps. Intuitively, the movements should demonstrate strong
correlations. However, due to the anatomy of the persons and
the relative distance between the two people (back and forth),
a sample-by-sample correlation is irrelevant. With the help
of the cross correlation, we are able to detect and correct a
mean offset value of ± 1.4 s over all the three axes of the
accelerometer sensors.



4) Autocorrelation: Another approach to deal with mea-
surements that cannot be compared piecewise is to test the
linear correlation between two autocorrelation functions of two
time series measurements. This feature performs very well to
test uncorrelated movements instead of correlated movements.

Table IV summarizes the different time-domain features
we consider. The features test both the presence and the
absence of correlation between different measurements. In
the second and the third column, the boundary signifies the
width of the variance of similarity. We define fuzzy sets
to qualitatively model the uncertainty associated with each
feature. A trapezoid function is used to express membership.
The beginning and end of the trapezoids are taken from the
experiment results.

Feature Deviation Deviation Uncertainty
(Correlated) (Uncorrelated)

ZCR/MCR (s.T) 0.0 - 15.0 7 - 50 Medium
ZCR/MCR (Abs.) 0.0 - 2.0 5.0 - 30.0 Low
Mean value (s.T) ±0.5g ±0.5g Unsuitable
Mean value (Abs.) ±0.05g ±0.5g Medium
Corr. coeffi. (s.T. m) 0.2 - 1 < 0.2 Medium/High
Corr. coeffi. (s.T. c) 0.4 - 1.0 < 0.4 Low
Legend
s.T: Individual time series measurements (x, y, z)
Abs.: The absolute values of the raw sensor measurements
m: Human movements
c: Car movements

TABLE IV
SUMMARY OF TIME DOMAIN FEATURES

B. Frequency Domain Features

All the frequency domain features require preprocessing and
FFT. The resource consumption of these steps is discussed
in [20] and [21]. Additional to these processes, we carry
out frequency normalization (using a hamming window) to
maximize the frequency resolution. This is because, unlike
the time domain features, the frequency domain features
heavily depend on domain knowledge, i.e., knowledge about
the movements themselves.

1) Maxima: The n − maxima of a frequency spectrum
is used to compare the dominant frequencies of different
measurements. To obtain a significant size of representative
frequency samples, first the i − th maxima will be summed
up and divided by the number of the total Maxima. Once this is
done, comparison is made by selecting the n−th maximas and
observing its deviation from the average maxima. For human
movements, n = 100 is sufficient, while for car n is usually in
the order of 1000. This is because human movements contain
low frequencies and the average distance for the first 100
maximas in frequency domain of the individual time series
measurements lies between 0.7 and 3 Hz. The distance of
the maxima of the combination of the measurements from
dissimilar movements lies between 1.6 and 4.9 Hz. For car
movement, the corresponding results are between 5 and 13
Hz for measurement with strong correlation and 20 and 30
for uncorrelated measurements.

2) Energy: The spectrum energy of a set of sensor readings
reveals the spectrum’s structure. In this context, the spectrum
energy refers to the overall energy of the two readings being
analyzed. To start with, the spectrum is divided into n sub-
bands and the portion of energy in each band is normalized
by the overall energy of the spectrum. Correlation test is
performed sub-band by sub-band comparison of different
measurements. The stronger the existence of a correlation
between the measurements, the lesser the difference between
the sub-band energies. As a result the average difference of
the sub-band energies is used to measure correlation. In our
analysis, we find that the energy mass of similar movements
of objects to be between 0.006 and 0.1, while for uncorrelated,
dissimilar movements the mass is between 0.2 and 0.9. Human
movement is very difficult to categorize with the energy mass
as its range is not strikingly different for similar and dissimilar
movements.

3) Linear correlation coefficient: The frequency domain
linear correlation coefficients reveal the presence of a strong
correlation (between 0.6 and 0.99) for similar movements.
Unfortunately, we observe (not infrequently), values above
0.6 even when the movements have nothing to do with
each other. The best explanation for this is that all types of
movements have high frequency components which reduce the
significance of the bandpass frequencies, which are distinct
from movement to movement. As a result, a large portion of
the curves are similar and can wrongly be interpreted as being
correlated. We attempt to reduce this effect by quantizing
the measurements. We observe some improvement, testing the
presence of similarity with linear correlation coefficients in
the frequency domain remains feeble, nevertheless. Moreover,
the quantization level is very much dependent on the mea-
surements being compared or tested - the bigger the pick to
pick amplitudes of the measurements, the larger should be the
quantization level.

We investigate The change of frequencies over time as
a measure of correlation. For this, we use the Short Time
Fourier Transform (STFT), which is computed by dividing the
sensor measurements into several overlapping frames. Each
frame is then Fourier transformed, and the complex result is
added to a matrix, recording the magnitude and phase of each
point in time and frequency domain. As a scaling factor, we
sum up the correlation coefficients and divide them by the
size of the frequencies being considered. The test shows a
marked difference between the movements of people and the
movements of cars. For human movements, the results are on
the average between 0.1 and 0.3, which confirms the results
we get in the time domain for the same data set. Cross tests of
uncorrelated movements result in weighted linear correlation
coefficients that range between 0.03 and 0.09. This much
cannot be achieved in the time domain for the same data sets.

The result of car related movements are even better. While
the correlation coefficients for similar movements are between
0.2 and 0.6, for unrelated movements these are between 0.02
and 0.1. This observation suggests that other frequency domain
analysis such as coherence, can be significantly improved by



considering STFT instead of the linear FFT.
4) Spectral roll-off: The spectral roll-off is another struc-

tural feature in the frequency domain in which only the
Fourier transformation of the acceleration vectors are taken
into account. In most cases, such as in speech recognition,
it is usually customary to consider α = 85%. This, however,
does not result in any significant difference between correlated
and uncorrelated movements. Not unexpectedly, a significant
porition of the energy of most movements is contained within
the lower frequency components. Subsequently, we lower
down the value of α to 60%. As a result, similar movements
reveal a roll-off distance that range from 0 to 4 Hz while the
roll-off distance for uncorrelated movements are between 2.5
and 10 Hz.

5) Spectral centroid: The spectral centroid is similar to
the “first n-maxima” and indicates the relative location of
the “centre of gravity”of the spectrum. It is computed as the
weighted mean of the frequencies - the magnitudes of the
frequencies being taken as weights. This scheme requires a
precise knowledge of the movements being considered. The
spectral centroid requires that the spectrum should be divided
into several frames and the centroid of each frame is indepen-
dently computed and piecewise comparison is performed on
the centroids of the measurements being investigated.

Regardless of the movement types, division of the entire
spectrum into five equal segments results in a centroid distance
that ranges from 0.2 to 0.5 Hz for related movements and from
0.3 to 1.7 Hz for unrelated movements. By taking the absolute
value of the spectrum, the related movements yield a better
correlation, the centroid being tighter than the previous, i.e.,
from 0.2 to 0.3 Hz.

6) Spectral Flux: The spectral flux is a measure of how
quickly the power spectral changes. Ideally, similar move-
ments should have a deviation of 0 flow. To compute the
spectral flux of two measurements, one should compare mea-
surements that have the same time duration. In the simplest
case of considering the entire duration, we obtain a spectral
flux that ranges from 0.0026 to 0.25 for similar movements,
in which case 0.25 is rather a worst case. Otherwise, the
spectral flux of similar movements is between 0 and 0.1. On
the contrary, the spectral flux of unrelated movements varies
from 0.2 to 1.

Table V summarizes our observation for the frequency
domain analysis.

VI. CONCLUSION

We considered various time and frequency domain fea-
tures to analyze the existence of correlation between various
measurements of accelerometer sensors. The measurements
represent movements of humans and cars for various scenar-
ios, both in calibrated and uncalibrated conditions. The time
domain features we considered are: zero-crossing rate (corr.,
mean-value crossing rate), correlation coefficients, and cross
correlations. The frequency domain features are: maxima and
energy; correlation coefficients of both FFT and STFT, spectral
roll-off, spectral centroids, and spectral flux. We find out that,

Feature Deviation Deviation Uncertainty
(Correlated) (Uncorrelated)

Maxima (s.T. m) 0.7 - 3Hz 1.4 - 3.9Hz High
Maxima (Abs. m) 0.7 - 3.5Hz 1.6 - 4.8Hz High
Maxima (s.T. c) 5 - 13Hz 20 - 30Hz Medium
Maxima (Abs. c.) 7 - 18Hz 11 - 25Hz Medium
Energy (Abs. m.) 0.0 - 0.02 0.02 - 0.9 Medium
Energy (Abs. c.) 0.0 - 0.1 0.2 - 0.9 Low
Corr. (FFT) s.T. Abs. 0.6 - 0.9 0.6 - 0.9 Very high
Corr. (STFT) Abs. m. 0.1 - 0.3 0.03 - 0.09 Low
Corr. (STFT) Abs. c. 0.2 - 0.6 0.02 - 0.1 Low
Spectral roll-off (Abs.) 0 - 4Hz 2.5 - 10.0Hz Medium
Spectral centroid (s.T) 0.2 - 0.5Hz 0.3 - 1.7Hz Low
Spectral Centroid (Abs.) 0.2 - 0.3Hz 0.3 - 1.7Hz Low
Spectral flux (Abs.) 0.0 - 0.25 0.2 - 0.1 Low
Legend
s.T: Individual time-series measurements (x, y, z)
Abs.: The absolute values of the raw sensor measurements
m: Human movements
c: Car movements

TABLE V
SUMMARY OF THE FREQUENCY DOMAIN FEATURES

the features extracted from the absolute values of the raw mea-
surements are more robust to noise and calibration errors than
the features extracted directly from the raw measurements. The
frequency domain features that are least vulnerable to noise
and exhibit the strongest expression power are the correlation
coefficients of the absolute values of the short time Fourier
transformations.
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